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Summary. In the paper a first order language is constructed. It
includes the universal quantifier and the following propositional connec-
tives: truth, negation, and conjunction. The variables are divided into
three kinds: bound variables, fixed variables, and free variables. An infi-
nite number of predicates for each arity is provided. Schemes of structural
induction and schemes justifying definitions by structural induction have
been proved. The concept of a closed formula (a formula without free
occurrences of bound variables) is introduced.

MML Identifier: QC LANG1.

The articles [7], [8], [5], [1], [3], [4], [6], and [2] provide the notation and termi-
nology for this paper. The following propositions are true:

(1) For all non-empty sets D1, D2 for every element k of D1 holds [: {k},
D2 :] ⊆ [: D1, D2 :].

(2) For all non-empty sets D1, D2 for all elements k1, k2, k3 of D1 holds
[: {k1, k2, k3}, D2 :] ⊆ [: D1, D2 :].

In the sequel k, l denote natural numbers. The constant Var is a non-empty
set and is defined by:

Var = [: {4, 5, 6}, � :].

Next we state two propositions:

(3) Var = [: {4, 5, 6}, � :].

(4) Var ⊆ [: � , � :].

We now define five new constructions. A variable is an element of Var.
The constant BoundVar is a non-empty subset of Var and is defined by:
BoundVar = [: {4}, � :].
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The constant FixedVar is a non-empty subset of Var and is defined by:
FixedVar = [: {5}, � :].

The constant FreeVar is a non-empty subset of Var and is defined by:
FreeVar = [: {6}, � :].

The constant PredSym is a non-empty set and is defined by:
PredSym = {〈〈k, l〉〉 : 7 ≤ k}.

The following propositions are true:

(5) For every element IT of Var holds IT is a variable.

(6) BoundVar = [: {4}, � :].

(7) FixedVar = [: {5}, � :].

(8) FreeVar = [: {6}, � :].

(9) PredSym = {〈〈k, l〉〉 : 7 ≤ k}.

(10) PredSym ⊆ [: � , � :].

A predicate symbol is an element of PredSym.

The following proposition is true

(11) For every element IT of PredSym holds IT is a predicate symbol.

Let P be an element of PredSym. The functor Arity(P ) yielding a natural
number, is defined by:

P1 = 7 + Arity(P ).

Next we state a proposition

(12) For every predicate symbol P for every natural number IT holds IT =
Arity(P ) if and only if P1 = 7 + IT .

In the sequel P will denote a predicate symbol. Let us consider k. The functor
PredSymk yields a non-empty subset of PredSym and is defined by:

PredSymk = {P : Arity(P ) = k}.

Next we state a proposition

(13) For every natural number k for every non-empty subset IT of PredSym
holds IT = PredSymk if and only if IT = {P : Arity(P ) = k}.

We now define four new modes. A bound variable is an element of BoundVar.
A fixed variable is an element of FixedVar.
A free variable is an element of FreeVar.
Let us consider k. A k-ary predicate symbol is an element of PredSymk.

One can prove the following four propositions:

(14) For every element IT of BoundVar holds IT is a bound variable.

(15) For every element IT of FixedVar holds IT is a fixed variable.

(16) For every element IT of FreeVar holds IT is a free variable.

(17) For every natural number k for every element IT of PredSymk holds IT

is a k-ary predicate symbol.

Let k be a natural number. The mode list of variables of the length k, which
widens to the type a finite sequence of elements of Var, is defined by:

len it = k.

One can prove the following proposition
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(18) For every natural number k for every finite sequence IT of elements of
Var holds IT is a list of variables of the length k if and only if len IT = k.

Let D be a non-empty set. The predicate D is closed is defined by:

(i) D is a subset of [: � , � :] ∗,

(ii) for every natural number k for every k-ary predicate symbol p for every
list of variables ll of the length k holds 〈p〉 � ll ∈ D,

(iii) 〈〈〈0, 0〉〉〉 ∈ D,

(iv) for every finite sequence p of elements of [: � , � :] such that p ∈ D holds
〈〈〈1, 0〉〉〉 � p ∈ D,

(v) for all finite sequences p, q of elements of [: � , � :] such that p ∈ D and
q ∈ D holds (〈〈〈2, 0〉〉〉 � p) � q ∈ D,

(vi) for every bound variable x for every finite sequence p of elements of [: � ,

� :] such that p ∈ D holds (〈〈〈3, 0〉〉〉 � 〈x〉) � p ∈ D.

We now state a proposition

(19) Let D be a non-empty set. Then D is closed if and only if the following
conditions are satisfied:

(i) D is a subset of [: � , � :]∗,

(ii) for every natural number k for every k-ary predicate symbol p for every
list of variables ll of the length k holds 〈p〉 � ll ∈ D,

(iii) 〈〈〈0, 0〉〉〉 ∈ D,

(iv) for every finite sequence p of elements of [: � , � :] such that p ∈ D holds
〈〈〈1, 0〉〉〉 � p ∈ D,

(v) for all finite sequences p, q of elements of [: � , � :] such that p ∈ D and
q ∈ D holds (〈〈〈2, 0〉〉〉 � p) � q ∈ D,

(vi) for every bound variable x for every finite sequence p of elements of [: � ,

� :] such that p ∈ D holds (〈〈〈3, 0〉〉〉 � 〈x〉) � p ∈ D.

The constant WFF is a non-empty set and is defined by:

WFF is closed and for every non-empty set D such that D is closed holds
WFF ⊆ D.

Next we state two propositions:

(20) For every non-empty set IT holds IT = WFF if and only if IT is closed
and for every non-empty set D such that D is closed holds IT ⊆ D.

(21) WFF is closed.

A formula is an element of WFF.

The following proposition is true

(22) For every element x of WFF holds x is a formula.

The arguments of the notions defined below are the following: P which is a
predicate symbol; l which is a finite sequence of elements of Var. Let us assume
that Arity(P ) = len l. The functor P � l yields an element of WFF and is defined
by:

P � l = 〈P 〉 � l.

We now state a proposition
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(23) For every natural number k for every k-ary predicate symbol p for every
list of variables ll of the length k holds p � ll = 〈p〉 � ll.

Let p be an element of WFF. The functor @p yields a finite sequence of
elements of [: � , � :] and is defined by:

@p = p.

One can prove the following proposition

(24) For every element p of WFF holds @p = p.

We now define three new functors. The constant VERUM is a formula and is
defined by:

VERUM = 〈〈〈0, 0〉〉〉.
Let p be an element of WFF. The functor ¬p yielding a formula, is defined by:

¬p = 〈〈〈1, 0〉〉〉 � @p.
Let q be an element of WFF. The functor p ∧ q yields a formula and is defined
by:

p ∧ q = (〈〈〈2, 0〉〉〉 � @p) � @q.

We now state three propositions:

(25) VERUM = 〈〈〈0, 0〉〉〉.

(26) For every element p of WFF holds ¬p = 〈〈〈1, 0〉〉〉 � @p.

(27) For all elements p, q of WFF holds p ∧ q = (〈〈〈2, 0〉〉〉 � @p) � @q.

The arguments of the notions defined below are the following: x which is a
bound variable; p which is an element of WFF. The functor ∀xp yields a formula
and is defined by:

∀xp = (〈〈〈3, 0〉〉〉 � 〈x〉) � @p.

The following proposition is true

(28) For every bound variable x for every element p of WFF holds ∀xp =
(〈〈〈3, 0〉〉〉 � 〈x〉) � @p.

The scheme QC Ind deals with a unary predicate P and states that:
for every element F of WFF holds P[F ]

provided the parameter satisfies the following conditions:
• for every natural number k for every k-ary predicate symbol P for

every list of variables ll of the length k holds P[P � ll],
• P[VERUM],
• for every element p of WFF such that P[p] holds P[¬p],
• for all elements p, q of WFF such that P[p] and P[q] holds P[p ∧ q],
• for every bound variable x for every element p of WFF such that

P[p] holds P[∀xp].
We now define four new predicates. Let F be an element of WFF. The

predicate F is atomic is defined by:
there exists k being a natural number such that there exists p being a k-ary

predicate symbol such that there exists ll being a list of variables of the length k

such that F = p � ll.
The predicate F is negative is defined by:

there exists p being an element of WFF such that F = ¬p.
The predicate F is conjunctive is defined by:



A First Order Language 307

there exist p, q being elements of WFF such that F = p ∧ q.

The predicate F is universal is defined by:
there exists x being a bound variable such that there exists p being an element

of WFF such that F = ∀xp.

We now state several propositions:

(29) For every element F of WFF holds F is atomic if and only if there exists
k being a natural number such that there exists p being a k-ary predicate
symbol such that there exists ll being a list of variables of the length k

such that F = p � ll.

(30) For every element F of WFF holds F is negative if and only if there
exists p being an element of WFF such that F = ¬p.

(31) For every element F of WFF holds F is conjunctive if and only if there
exist p, q being elements of WFF such that F = p ∧ q.

(32) For every element F of WFF holds F is universal if and only if there
exists x being a bound variable such that there exists p being an element
of WFF such that F = ∀xp.

(33) For every element F of WFF holds F = VERUM or F is atomic or F is
negative or F is conjunctive or F is universal.

(34) For every element F of WFF holds 1 ≤ len(@F ).

One can prove the following proposition

(35) For every natural number k for every k-ary predicate symbol P holds
Arity(P ) = k.

In the sequel F , G are elements of WFF and s is a finite sequence. The
following two propositions are true:

(36) (i) If (@F (1))
1

= 0, then F = VERUM,

(ii) if (@F (1))
1

= 1, then F is negative,
(iii) if (@F (1))

1
= 2, then F is conjunctive,

(iv) if (@F (1))
1

= 3, then F is universal,
(v) if there exists k being a natural number such that @F (1) is a k-ary

predicate symbol, then F is atomic.

(37) If @F = @G � s, then @F = @G.

Let F be an element of WFF satisfying the condition: F is atomic. The
functor PredSym(F ) yielding a predicate symbol, is defined by:

there exists k being a natural number such that there exists ll being a list of
variables of the length k such that there exists P being a k-ary predicate symbol
such that PredSym(F ) = P and F = P � ll.

Let F be an element of WFF satisfying the condition: F is atomic. The
functor Args(F ) yielding a finite sequence of elements of Var, is defined by:

there exists k being a natural number such that there exists P being a k-ary
predicate symbol such that there exists ll being a list of variables of the length k

such that Args(F ) = ll and F = P � ll.

Next we state two propositions:
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(38) For every element F of WFF such that F is atomic for every predicate
symbol IT holds IT = PredSym(F ) if and only if there exists k being a
natural number such that there exists ll being a list of variables of the
length k such that there exists P being a k-ary predicate symbol such that
IT = P and F = P � ll.

(39) For every element F of WFF such that F is atomic for every finite
sequence IT of elements of Var holds IT = Args(F ) if and only if there
exists k being a natural number such that there exists P being a k-ary
predicate symbol such that there exists ll being a list of variables of the
length k such that IT = ll and F = P � ll.

Let F be an element of WFF satisfying the condition: F is negative. The
functor Arg(F ) yields a formula and is defined by:

F = ¬Arg(F ).

The following proposition is true

(40) For every element F of WFF such that F is negative for every formula
IT holds IT = Arg(F ) if and only if F = ¬IT .

Let F be an element of WFF satisfying the condition: F is conjunctive. The
functor LeftArg(F ) yielding a formula, is defined by:

there exists q being an element of WFF such that F = LeftArg(F ) ∧ q.

Let F be an element of WFF satisfying the condition: F is conjunctive. The
functor RightArg(F ) yields a formula and is defined by:

there exists p being an element of WFF such that F = p ∧ RightArg(F ).

Next we state two propositions:

(41) For every element F of WFF such that F is conjunctive for every formula
IT holds IT = LeftArg(F ) if and only if there exists q being an element
of WFF such that F = IT ∧ q.

(42) For every element F of WFF such that F is conjunctive for every formula
IT holds IT = RightArg(F ) if and only if there exists p being an element
of WFF such that F = p ∧ IT .

We now define two new functors. Let F be an element of WFF satisfying the
condition: F is universal. The functor Bound(F ) yields a bound variable and is
defined by:

there exists p being an element of WFF such that F = ∀Bound(F )p.
The functor Scope(F ) yielding a formula, is defined by:

there exists x being a bound variable such that F = ∀x Scope(F ).

One can prove the following propositions:

(43) For every element F of WFF such that F is universal for every bound
variable IT holds IT = Bound(F ) if and only if there exists p being an
element of WFF such that F = ∀ITp.

(44) For every element F of WFF such that F is universal for every formula
IT holds IT = Scope(F ) if and only if there exists x being a bound variable
such that F = ∀xIT .

In the sequel p will be an element of WFF. We now state three propositions:
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(45) If p is negative, then len(@ Arg(p)) < len(@p).

(46) If p is conjunctive, then len(@ LeftArg(p)) < len(@p) and
len(@ RightArg(p)) < len(@p) .

(47) If p is universal, then len(@ Scope(p)) < len(@p).

The scheme QC Ind2 concerns a unary predicate P and states that:
for every element p of WFF holds P[p]

provided the parameter satisfies the following condition:
• for every element p of WFF holds if p is atomic, then P[p] but

P[VERUM] but if p is negative and P[Arg(p)], then P[p] but if p

is conjunctive and P[LeftArg(p)] and P[RightArg(p)], then P[p] but
if p is universal and P[Scope(p)], then P[p].

In the sequel F will denote an element of WFF. The following propositions
are true:

(48) For every natural number k for every k-ary predicate symbol P holds
P1 6= 0 and P1 6= 1 and P1 6= 2 and P1 6= 3.

(49) (i) (@ VERUM(1))
1

= 0,
(ii) if F is atomic, then there exists k being a natural number such that

@F (1) is a k-ary predicate symbol,
(iii) if F is negative, then (@F (1))

1
= 1,

(iv) if F is conjunctive, then (@F (1))
1

= 2,
(v) if F is universal, then (@F (1))

1
= 3.

(50) If F is atomic, then (@F (1))
1
6= 0 and (@F (1))

1
6= 1 and (@F (1))

1
6= 2

and (@F (1))
1
6= 3.

In the sequel p denotes an element of WFF. The following proposition is true

(51) (i) Neither VERUM is atomic nor VERUM is negative nor VERUM is
conjunctive nor VERUM is universal,

(ii) for no p holds p is atomic and p is negative or p is atomic and p is
conjunctive or p is atomic and p is universal or p is negative and p is
conjunctive or p is negative and p is universal or p is conjunctive and p is
universal.

The scheme QC Func Ex concerns a constant A that is a non-empty set, a
constant B that is an element of A, a unary functor F yielding an element of
A, a unary functor G yielding an element of A, a binary functor H yielding an
element of A and a binary functor I yielding an element of A and states that:

there exists F being a function from WFF into A such that for every element p

of WFF for all elements d1, d2 of A holds if p = VERUM, then F (p) = B but if p

is atomic, then F (p) = F(p) but if p is negative and d1 = F (Arg(p)), then F (p) =
G(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and d2 = F (RightArg(p)),
then F (p) = H(d1, d2) but if p is universal and d1 = F (Scope(p)), then F (p) =
I(p, d1).
for all values of the parameters.

In the sequel k denotes a natural number. Let ll be a finite sequence of
elements of Var. The functor snb(ll) yields an element of 2BoundVar qua a non-
empty set and is defined by:
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snb(ll) = {ll(k) : 1 ≤ k ∧ k ≤ len ll ∧ ll(k) ∈ BoundVar}.

The following proposition is true

(52) For every finite sequence ll of elements of Var holds snb(ll) = {ll(k) :
1 ≤ k ∧ k ≤ len ll ∧ ll(k) ∈ BoundVar}.

Let x be an element of 2BoundVar qua a non-empty set. The functor @x yields
an element of 2BoundVar and is defined by:

@x = x.

Next we state a proposition

(53) For every element x of 2BoundVar qua a non-empty set holds @x = x.

Let x be an element of 2BoundVar. The functor @x yields an element of
2BoundVar qua a non-empty set and is defined by:

@x = x.

One can prove the following proposition

(54) For every element x of 2BoundVar holds @x = x.

Let b be a bound variable. Then {b} is an element of 2BoundVar.

Let X, Y be elements of 2BoundVar. Then X ∪ Y is an element of 2BoundVar.
Then X \ Y is an element of 2BoundVar.

In the sequel k denotes a natural number. Let p be a formula. The functor
snb(p) yields an element of 2BoundVar and is defined by:

there exists F being a function from

WFF

into 2BoundVar such that snb(p) = F (p) and for every element p of WFF
holds F (VERUM) = ∅ but if p is atomic, then F (p) = {Args(p)(k) : 1 ≤ k ∧ k ≤
len Args(p)∧Args(p)(k) ∈ BoundVar} but if p is negative, then F (p) = F (Arg(p))
but if p is conjunctive, then F (p) = @(F (LeftArg(p))) ∪ @(F (RightArg(p))) but
if p is universal, then F (p) = @(F (Scope(p))) \ {Bound(p)}.

We now state a proposition

(55) Let p be a formula. Let IT be an element of 2BoundVar. Then IT = snb(p)
if and only if there exists F being a function from WFF into 2BoundVar such
that IT = F (p) and for every element p of WFF holds F (VERUM) = ∅
but if p is atomic, then F (p) = {Args(p)(k) : 1 ≤ k ∧ k ≤ len Args(p) ∧
Args(p)(k) ∈ BoundVar} but if p is negative, then F (p) = F (Arg(p)) but if
p is conjunctive, then F (p) = @(F (LeftArg(p))) ∪ @(F (RightArg(p))) but
if p is universal, then F (p) = @(F (Scope(p))) \ {Bound(p)}.

Let p be a formula. The predicate p is closed is defined by:

snb(p) = ∅.

One can prove the following proposition

(56) For every formula p holds p is closed if and only if snb(p) = ∅.



A First Order Language 311

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. For-

malized Mathematics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural num-
bers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
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