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Summary. In the article the following concepts were introduced:
the set of integers (Z) and its elements (integers), congruences (i1 =
i2(mod i3)), the ceiling and floor functors ([z] and |z]), also the fraction
part of a real number (frac), the integer division (<) and remainder of in-
teger division (mod). The following schemes were also included: the sep-
aration scheme (SepInt), the schemes of integer induction (Int_Ind_Down,
Int_Ind_Up, Int_Ind_Full), the minimum (Int_Min) and maximum (Int_Maxz)
schemes (the existence of minimum and maximum integers enjoying a
given property).

MML Identifier: INT_1.

The papers [2], and [1] provide the notation and terminology for this paper.
For simplicity we follow a convention: x is arbitrary, k, ni, no denote natural
numbers, r, r1, 9 denote real numbers, and D denotes a non-empty set. The
following propositions are true:

(1) (r+mr)—re=(r—r2)+r.

(2) (=r)+re=r2—r.

(3) r = ((—7"2) —I-Tl) +ryand r; = r9 + ((—7"2) +T1) and r1 = ro+ (7“1 — 7‘2)
and ry = (rg + 1) — ro.

(4)  (r1—r2)+re=ryand (r1 +r2) —ra =r1.

(5) r1 <wryif and only if r; < ry or r; =rs.

The non-empty set Z is defined by:

x € 7 if and only if there exists k such that x = k or z = —k.

One can prove the following proposition

(6) For every x holds = € D if and only if there exists k such that x = k or
x=—kif and only if D = 7.

A real number is called an integer if:

it is an element of 7.

The following propositions are true:
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r is an integer if and only if r is an element of 7.
r is an integer if and only if there exists k such that r =k or r = —k.

Ne)

If x is a natural number, then z is an integer.
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(10) 0 is an integer and 1 is an integer.
(11) Ifzx e Z,thenzeR
(12) =z is an integer if and only if x € Z.
(13)  x is an integer if and only if x is an element of Z.
(14) NC 1.
(15) ZCR.

In the sequel iy, i1, i2, i3, 14, i5 are integers. Let i1, io be integers. Then
11 + 1o is an integer. Then 47 - io is an integer.

Let 79 be an integer. Then —i( is an integer.

Let i1, io be integers. Then i; — 79 is an integer.

Let n be a natural number. Then —n is an integer. Let i; be an integer.
Then n + ¢; is an integer. Then n -4 is an integer. Then n — i; is an integer.

Let i1 be an integer, and let n be a natural number. Then 71 4+n is an integer.
Then ¢1 - n is an integer. Then ¢; — n is an integer.

Let us consider nq, ng. Then nqy — no is an integer.
We now state a number of propositions:

—_
=2

If 0 < ip, then ig is a natural number.

—_
N

If r is an integer, then r 4 1 is an integer and r — 1 is an integer.

—_
&3

If 49 < 41, then i1 — 9 is a natural number.

19 If i1 + k =i or k + i1 = i9, then i1 < is.
20 If ig < i1, then ig + 1 <47 and 1 + iy < 77.
21 If 41 < 0, then i1 < —1.
i1 -1 =1ifand only if i, =1 and i3 =1 or 4y = —1 and iy = —1.
23 i1 -19 = —1if and only if 4 = —1 and .9 =1 or i1 = 1 and is = —1.
24 If i() 75 0, then il 75 il + io.
25 11 <11+ 1.
26 11— 1 <.
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For no i holds for every i1 holds ig < iy.
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For no i holds for every i; holds i1 < ig.

In the article we present several logical schemes. The scheme Seplnt deals
with a unary predicate P, and states that:

there exists a subset X of Z such that for every integer x holds x € X if and
only if P[x]
for all values of the parameter.

The scheme Int_Ind_Up concerns an integer A, and a unary predicate P, and
states that:

for every i such that A < iy holds Plig]
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provided the following conditions are fulfilled:
o P[A],
e for every is such that A < iy holds if Plig], then P[iz + 1].
The scheme Int_Ind_Down deals with an integer A, and a unary predicate P,
and states that:
for every i such that ig < .A holds Plig]
provided the parameters fulfill the following conditions:
o P[A],
e for every is such that io < A holds if Plis], then P[ig — 1].
The scheme Int_Ind_Full deals with an integer A, and a unary predicate P,
and states that:
for every io holds P[ig]
provided the following requirements are fulfilled:
o PlA],
e for every iy such that P[is] holds Plis — 1] and Pliy + 1].
The scheme Int_Min concerns an integer A, and a unary predicate P, and
states that:
there exists i¢ such that P[ig] and for every ¢; such that P[i1] holds ig < iy
provided the following conditions are satisfied:
e for every iy such that P[i;] holds A < iy,
e there exists i1 such that P[iy].
The scheme Int_Max deals with an integer A, and a unary predicate P, and
states that:
there exists ig such that Pl[ig] and for every i1 such that P[i1] holds i1 < g
provided the parameters satisfy the following conditions:
e for every i; such that P[i1] holds i1 < A,
e there exists i1 such that P[iy].
Let us consider r. Then sgnr is an integer.
We now state two propositions:
(29) sgnr=1orsgnr=—1orsgnr=0.
(30) |r|=ror|r|=—r.
Let us consider iyg. Then |ip| is an integer.
Let i1, ig, i3 be integers. The predicate i1 = io(modi3) is defined by:
there exists i4 such that ig-44 = i1 — i9.
We now state a number of propositions:
(31) i1 =iz2(modis) if and only if there exists an integer i4 such that i3-iqy =
i1 — i9.
32
33
3
3
36
37

i1 = i1 (mod i9).
If 15 = 0, then iy = i3(mod i) and iy = i3 (modiy).

=~

If i3 = 1, then iy = ig(modis).

ot
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) If i3 =ig(modis), then is =i (modis).

) If iy =ig(modis) and iy = ig(modis), then i1 = ig(modis).
)

o~~~ o~~~

If i1 = ig2(modis) and i3 = ig(mod is), then iy + i3 = is + i4(mod i5).

503



504

MicHAL J. TRYBULEC

(38) If i3 =ig(modis) and i3 = ig(modis), then iy — i3 = i — ig(mod is).
(39) If i1 =is(modis) and i3 = i4(mod is), then iy - iz = is - ig(mod i5).
(40) 11+ 10 = ’i3(m0d i5) if and only if i1 = i3 — ig(HlOd i5).

(41)  If 44 - i5 = i3, then if i1 = is(modi3), then i; = is(modiy).

(42) i1 =ig(modis) if and only if 41 + i5 = i2(mod i5).

(43) i1 =ig(modis) if and only if 41 — i5 = i2(mod i5).

(44) I <randr—1<ij and ip <7 and r — 1 < iy, then i; = is.

(45) Ifr <igand iy <r+1and r <iyand is < r+ 1, then i; = is.

Let us consider r. The functor [r] yielding an integer, is defined as follows:
|r] <randr—1<|r].
The following propositions are true:

(46) ip <randr—1 <ip if and only if |r| = 4.
(47)  |r] = r if and only if r is an integer.

(48)  |r] < rif and only if r is not an integer.
(49) |r] <.

(50) |r]—1<rand|r| <r+1.

(51) L?’J + i = U“ + ioJ.

(52) r<|r]+1.

Let us consider r. The functor [r] yields an integer and is defined as follows:
r<|[r]and [r] <r+1.

We now state a number of propositions:

r <ip and ig < r+ 1 if and only if [r] = ip.

[r] = r if and only if r is an integer.

v Ot Ot
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r < [r] if and only if r is not an integer.
r<[r].

r—1<[r]landr<[r]+1.

[r] +io = [r +io].

|7| = [r] if and only if r is an integer.

v Or Ot
o N O

60 |r| < [r] if and only if r is not an integer.
61 Ir] < [r

62) |[r]]= W

63) [lr]] =[]

64) [[r]]=[r].

65) [lr]]1=Ir].
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|7] = [r] if and only if |7] + 1 # [r].
Let us consider r. The functor fracr yielding a real number, is defined by:
fracr =r — |r].
One can prove the following propositions:

(67) fracr=r—|r].
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(68) r=|r]+ fracr.
(69) fracr <1 and 0 < fracr.
(70)  [fracr] =0.
(71)  fracr = 0 if and only if r is an integer.
(72) 0 < fracr if and only if r is not an integer.
Let i1, i2 be integers. The functor 7; <1z yields an integer and is defined by:
11+ 1o = L%J .
One can prove the following proposition
(73) i1 +ig = [2].
Let i1, i3 be integers. The functor i1 mod iy yielding an integer, is defined as
follows:
11 mod 19 =11 — (il - ’i2) - 19.
Next we state a proposition
(74) 11 mod 19 = 11 — (il - ig) - 19.
Let i1, io be integers. The predicate i1 | io is defined as follows:
there exists i3 such that io = i1 - i3.
The following proposition is true
(75) i1 | 42 if and only if there exists i3 such that iy - i3 = is.
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