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Summary. In the article the following concepts were introduced:
the set of integers (

�
) and its elements (integers), congruences (i1 ≡

i2(mod i3)), the ceiling and floor functors (⌈x⌉ and ⌊x⌋), also the fraction
part of a real number (frac), the integer division (÷) and remainder of in-
teger division (mod). The following schemes were also included: the sep-
aration scheme (SepInt), the schemes of integer induction (Int Ind Down,
Int Ind Up, Int Ind Full), the minimum (Int Min) and maximum (Int Max)
schemes (the existence of minimum and maximum integers enjoying a
given property).

MML Identifier: INT 1.

The papers [2], and [1] provide the notation and terminology for this paper.
For simplicity we follow a convention: x is arbitrary, k, n1, n2 denote natural
numbers, r, r1, r2 denote real numbers, and D denotes a non-empty set. The
following propositions are true:

(1) (r + r1) − r2 = (r − r2) + r1.

(2) (−r1) + r2 = r2 − r1.

(3) r1 = ((−r2)+ r1)+ r2 and r1 = r2 + ((−r2)+ r1) and r1 = r2 + (r1 − r2)
and r1 = (r2 + r1) − r2.

(4) (r1 − r2) + r2 = r1 and (r1 + r2) − r2 = r1.

(5) r1 ≤ r2 if and only if r1 < r2 or r1 = r2.

The non-empty set
�

is defined by:
x ∈

�
if and only if there exists k such that x = k or x = −k.

One can prove the following proposition

(6) For every x holds x ∈ D if and only if there exists k such that x = k or
x = −k if and only if D =

�
.

A real number is called an integer if:
it is an element of

�
.

The following propositions are true:
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(7) r is an integer if and only if r is an element of
�

.

(8) r is an integer if and only if there exists k such that r = k or r = −k.

(9) If x is a natural number, then x is an integer.

(10) 0 is an integer and 1 is an integer.

(11) If x ∈
�

, then x ∈ � .

(12) x is an integer if and only if x ∈
�

.

(13) x is an integer if and only if x is an element of
�

.

(14) � ⊆
�

.

(15)
�
⊆ � .

In the sequel i0, i1, i2, i3, i4, i5 are integers. Let i1, i2 be integers. Then
i1 + i2 is an integer. Then i1 · i2 is an integer.

Let i0 be an integer. Then −i0 is an integer.

Let i1, i2 be integers. Then i1 − i2 is an integer.

Let n be a natural number. Then −n is an integer. Let i1 be an integer.
Then n + i1 is an integer. Then n · i1 is an integer. Then n − i1 is an integer.

Let i1 be an integer, and let n be a natural number. Then i1 +n is an integer.
Then i1 · n is an integer. Then i1 − n is an integer.

Let us consider n1, n2. Then n1 − n2 is an integer.

We now state a number of propositions:

(16) If 0 ≤ i0, then i0 is a natural number.

(17) If r is an integer, then r + 1 is an integer and r − 1 is an integer.

(18) If i2 ≤ i1, then i1 − i2 is a natural number.

(19) If i1 + k = i2 or k + i1 = i2, then i1 ≤ i2.

(20) If i0 < i1, then i0 + 1 ≤ i1 and 1 + i0 ≤ i1.

(21) If i1 < 0, then i1 ≤ −1.

(22) i1 · i2 = 1 if and only if i1 = 1 and i2 = 1 or i1 = −1 and i2 = −1.

(23) i1 · i2 = −1 if and only if i1 = −1 and i2 = 1 or i1 = 1 and i2 = −1.

(24) If i0 6= 0, then i1 6= i1 + i0.

(25) i1 < i1 + 1.

(26) i1 − 1 < i1.

(27) For no i0 holds for every i1 holds i0 < i1.

(28) For no i0 holds for every i1 holds i1 < i0.

In the article we present several logical schemes. The scheme SepInt deals
with a unary predicate P, and states that:

there exists a subset X of
�

such that for every integer x holds x ∈ X if and
only if P[x]
for all values of the parameter.

The scheme Int Ind Up concerns an integer A, and a unary predicate P, and
states that:

for every i0 such that A ≤ i0 holds P[i0]
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provided the following conditions are fulfilled:
• P[A],
• for every i2 such that A ≤ i2 holds if P[i2], then P[i2 + 1].
The scheme Int Ind Down deals with an integer A, and a unary predicate P,

and states that:
for every i0 such that i0 ≤ A holds P[i0]

provided the parameters fulfill the following conditions:
• P[A],
• for every i2 such that i2 ≤ A holds if P[i2], then P[i2 − 1].
The scheme Int Ind Full deals with an integer A, and a unary predicate P,

and states that:
for every i0 holds P[i0]

provided the following requirements are fulfilled:
• P[A],
• for every i2 such that P[i2] holds P[i2 − 1] and P[i2 + 1].
The scheme Int Min concerns an integer A, and a unary predicate P, and

states that:
there exists i0 such that P[i0] and for every i1 such that P[i1] holds i0 ≤ i1

provided the following conditions are satisfied:
• for every i1 such that P[i1] holds A ≤ i1,
• there exists i1 such that P[i1].
The scheme Int Max deals with an integer A, and a unary predicate P, and

states that:
there exists i0 such that P[i0] and for every i1 such that P[i1] holds i1 ≤ i0

provided the parameters satisfy the following conditions:
• for every i1 such that P[i1] holds i1 ≤ A,
• there exists i1 such that P[i1].
Let us consider r. Then sgn r is an integer.

We now state two propositions:

(29) sgn r = 1 or sgn r = −1 or sgn r = 0.

(30) |r| = r or |r| = −r.

Let us consider i0. Then |i0| is an integer.

Let i1, i2, i3 be integers. The predicate i1 ≡ i2(mod i3) is defined by:
there exists i4 such that i3 · i4 = i1 − i2.

We now state a number of propositions:

(31) i1 ≡ i2(mod i3) if and only if there exists an integer i4 such that i3 · i4 =
i1 − i2.

(32) i1 ≡ i1(mod i2).

(33) If i2 = 0, then i1 ≡ i2(mod i1) and i2 ≡ i1(mod i1).

(34) If i3 = 1, then i1 ≡ i2(mod i3).

(35) If i1 ≡ i2(mod i3), then i2 ≡ i1(mod i3).

(36) If i1 ≡ i2(mod i5) and i2 ≡ i3(mod i5), then i1 ≡ i3(mod i5).

(37) If i1 ≡ i2(mod i5) and i3 ≡ i4(mod i5), then i1 + i3 ≡ i2 + i4(mod i5).
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(38) If i1 ≡ i2(mod i5) and i3 ≡ i4(mod i5), then i1 − i3 ≡ i2 − i4(mod i5).

(39) If i1 ≡ i2(mod i5) and i3 ≡ i4(mod i5), then i1 · i3 ≡ i2 · i4(mod i5).

(40) i1 + i2 ≡ i3(mod i5) if and only if i1 ≡ i3 − i2(mod i5).

(41) If i4 · i5 = i3, then if i1 ≡ i2(mod i3), then i1 ≡ i2(mod i4).

(42) i1 ≡ i2(mod i5) if and only if i1 + i5 ≡ i2(mod i5).

(43) i1 ≡ i2(mod i5) if and only if i1 − i5 ≡ i2(mod i5).

(44) If i1 ≤ r and r − 1 < i1 and i2 ≤ r and r − 1 < i2, then i1 = i2.

(45) If r ≤ i1 and i1 < r + 1 and r ≤ i2 and i2 < r + 1, then i1 = i2.

Let us consider r. The functor ⌊r⌋ yielding an integer, is defined as follows:
⌊r⌋ ≤ r and r − 1 < ⌊r⌋.

The following propositions are true:

(46) i0 ≤ r and r − 1 < i0 if and only if ⌊r⌋ = i0.

(47) ⌊r⌋ = r if and only if r is an integer.

(48) ⌊r⌋ < r if and only if r is not an integer.

(49) ⌊r⌋ ≤ r.

(50) ⌊r⌋ − 1 < r and ⌊r⌋ < r + 1.

(51) ⌊r⌋ + i0 = ⌊r + i0⌋.

(52) r ≤ ⌊r⌋ + 1.

Let us consider r. The functor ⌈r⌉ yields an integer and is defined as follows:
r ≤ ⌈r⌉ and ⌈r⌉ < r + 1.

We now state a number of propositions:

(53) r ≤ i0 and i0 < r + 1 if and only if ⌈r⌉ = i0.

(54) ⌈r⌉ = r if and only if r is an integer.

(55) r < ⌈r⌉ if and only if r is not an integer.

(56) r ≤ ⌈r⌉.

(57) r − 1 < ⌈r⌉ and r < ⌈r⌉ + 1.

(58) ⌈r⌉ + i0 = ⌈r + i0⌉.

(59) ⌊r⌋ = ⌈r⌉ if and only if r is an integer.

(60) ⌊r⌋ < ⌈r⌉ if and only if r is not an integer.

(61) ⌊r⌋ ≤ ⌈r⌉.

(62) ⌊⌈r⌉⌋ = ⌈r⌉.

(63) ⌊⌊r⌋⌋ = ⌊r⌋.

(64) ⌈⌈r⌉⌉ = ⌈r⌉.

(65) ⌈⌊r⌋⌉ = ⌊r⌋.

(66) ⌊r⌋ = ⌈r⌉ if and only if ⌊r⌋ + 1 6= ⌈r⌉.

Let us consider r. The functor frac r yielding a real number, is defined by:
frac r = r − ⌊r⌋.

One can prove the following propositions:

(67) frac r = r − ⌊r⌋.
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(68) r = ⌊r⌋ + frac r.

(69) frac r < 1 and 0 ≤ frac r.

(70) ⌊frac r⌋ = 0.

(71) frac r = 0 if and only if r is an integer.

(72) 0 < frac r if and only if r is not an integer.

Let i1, i2 be integers. The functor i1 ÷ i2 yields an integer and is defined by:
i1 ÷ i2 = ⌊ i1

i2
⌋.

One can prove the following proposition

(73) i1 ÷ i2 = ⌊ i1

i2
⌋.

Let i1, i2 be integers. The functor i1 mod i2 yielding an integer, is defined as
follows:

i1 mod i2 = i1 − (i1 ÷ i2) · i2.

Next we state a proposition

(74) i1 mod i2 = i1 − (i1 ÷ i2) · i2.

Let i1, i2 be integers. The predicate i1 | i2 is defined as follows:
there exists i3 such that i2 = i1 · i3.

The following proposition is true

(75) i1 | i2 if and only if there exists i3 such that i1 · i3 = i2.
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