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Summary. In the article the development of the first order lan-
guage defined in [5] is continued. The following connectives are intro-
duced: implication (⇒), disjunction (∨), and equivalence (⇔). We intro-
duce also the existential quantifier (∃) and FALSUM. Some theorems on
disjunctive, conditional, biconditional and existential formulae are proved
and their selector functors are introduced. The second part of the arti-
cle deals with notions of subformula, proper subformula and immediate
constituent of a QC-formula.

MML Identifier: QC LANG2.

The papers [7], [6], [3], [4], [1], [2], and [5] provide the terminology and notation
for this paper. We adopt the following convention: x, y, z will be bound variables
and p, q, p1, p2, q1 will be elements of WFF. One can prove the following
propositions:

(1) If ¬p = ¬q, then p = q.

(2) Arg(¬p) = p.

(3) If p ∧ q = p1 ∧ q1, then p = p1 and q = q1.

(4) If p is conjunctive, then p = LeftArg(p) ∧ RightArg(p).

(5) LeftArg(p ∧ q) = p and RightArg(p ∧ q) = q.

(6) If ∀xp = ∀yq, then x = y and p = q.

(7) If p is universal, then p = ∀Bound(p) Scope(p).

(8) Bound(∀xp) = x and Scope(∀xp) = p.

We now define three new functors. The formula FALSUM is defined as
follows:

FALSUM = ¬VERUM.
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Let p, q be elements of WFF. The functor p ⇒ q yields a formula and is defined
by:

p ⇒ q = ¬(p ∧ ¬q).
The functor p ∨ q yields a formula and is defined as follows:

p ∨ q = ¬(¬p ∧ ¬q).

Let p, q be elements of WFF. The functor p ⇔ q yielding a formula, is
defined as follows:

p ⇔ q = (p ⇒ q) ∧ (q ⇒ p).

Let x be a bound variable, and let p be an element of WFF. The functor
∃xp yielding a formula, is defined as follows:

∃xp = ¬(∀x¬p).

The following propositions are true:

(9) FALSUM = ¬VERUM.

(10) p ⇒ q = ¬(p ∧ ¬q).

(11) p ∨ q = ¬(¬p ∧ ¬q).

(12) p ⇔ q = (p ⇒ q) ∧ (q ⇒ p).

(13) FALSUM is negative and Arg(FALSUM) = VERUM.

(14) p ∨ q = ¬p ⇒ q.

(15) ∃xp = ¬(∀x¬p).

(16) If p ∨ q = p1 ∨ q1, then p = p1 and q = q1.

(17) If p ⇒ q = p1 ⇒ q1, then p = p1 and q = q1.

(18) If p ⇔ q = p1 ⇔ q1, then p = p1 and q = q1.

(19) If ∃xp = ∃yq, then x = y and p = q.

We now define two new functors. Let x, y be bound variables, and let p be
an element of WFF. The functor ∀x,yp yielding a formula, is defined by:

∀x,yp = ∀x(∀yp).
The functor ∃x,yp yields a formula and is defined by:

∃x,yp = ∃x(∃yp).

Next we state several propositions:

(20) ∀x,yp = ∀x(∀yp) and ∃x,yp = ∃x(∃yp).

(21) For all bound variables x1, x2, y1, y2 such that ∀x1,y1
p1 = ∀x2,y2

p2 holds
x1 = x2 and y1 = y2 and p1 = p2.

(22) If ∀x,yp = ∀zq, then x = z and ∀yp = q.

(23) For all bound variables x1, x2, y1, y2 such that ∃x1,y1
p1 = ∃x2,y2

p2 holds
x1 = x2 and y1 = y2 and p1 = p2.

(24) If ∃x,yp = ∃zq, then x = z and ∃yp = q.

(25) ∀x,yp is universal and Bound(∀x,yp) = x and Scope(∀x,yp) = ∀yp.

We now define two new functors. Let x, y, z be bound variables, and let p

be an element of WFF. The functor ∀x,y,zp yields a formula and is defined by:
∀x,y,zp = ∀x(∀y,zp).

The functor ∃x,y,zp yields a formula and is defined by:
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∃x,y,zp = ∃x(∃y,zp).

The following propositions are true:

(26) ∀x,y,zp = ∀x(∀y,zp) and ∃x,y,zp = ∃x(∃y,zp).

(27) For all bound variables x1, x2, y1, y2, z1, z2 such that ∀x1,y1,z1
p1 =

∀x2,y2,z2
p2 holds x1 = x2 and y1 = y2 and z1 = z2 and p1 = p2.

In the sequel s, t will be bound variables. We now state several propositions:

(28) If ∀x,y,zp = ∀tq, then x = t and ∀y,zp = q.

(29) If ∀x,y,zp = ∀t,sq, then x = t and y = s and ∀zp = q.

(30) For all bound variables x1, x2, y1, y2, z1, z2 such that ∃x1,y1,z1
p1 =

∃x2,y2,z2
p2 holds x1 = x2 and y1 = y2 and z1 = z2 and p1 = p2.

(31) If ∃x,y,zp = ∃tq, then x = t and ∃y,zp = q.

(32) If ∃x,y,zp = ∃t,sq, then x = t and y = s and ∃zp = q.

(33) ∀x,y,zp is universal and Bound(∀x,y,zp) = x and Scope(∀x,y,zp) = ∀y,zp.

We now define four new predicates. Let H be an element of WFF. We say
that H is disjunctive if and only if:

there exist elements p, q of WFF such that H = p ∨ q.
We say that H is conditional if and only if:

there exist elements p, q of WFF such that H = p ⇒ q.
We say that H is biconditional if and only if:

there exist elements p, q of WFF such that H = p ⇔ q.
We say that H is existential if and only if:

there exists a bound variable x and there exists an element p of WFF such
that H = ∃xp.

We now state several propositions:

(34) For every element H of WFF holds H is disjunctive if and only if there
exist elements p, q of WFF such that H = p ∨ q.

(35) For every element H of WFF holds H is conditional if and only if there
exist elements p, q of WFF such that H = p ⇒ q.

(36) For every element H of WFF holds H is biconditional if and only if
there exist elements p, q of WFF such that H = p ⇔ q.

(37) For every element H of WFF holds H is existential if and only if there
exists a bound variable x and there exists an element p of WFF such that
H = ∃xp.

(38) ∃x,yp is existential and ∃x,y,zp is existential.

We now define four new functors. Let H be an element of WFF. The functor
LeftDisj(H) yields a formula and is defined by:

LeftDisj(H) = Arg(LeftArg(Arg(H))).
The functor RightDisj(H) yielding a formula, is defined as follows:

RightDisj(H) = Arg(RightArg(Arg(H))).
The functor Antecedent(H) yields a formula and is defined by:

Antecedent(H) = LeftArg(Arg(H)).
The functor Consequent(H) yields a formula and is defined by:
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Consequent(H) = Arg(RightArg(Arg(H))).

We now define two new functors. Let H be an element of WFF. The functor
LeftSide(H) yields a formula and is defined by:

LeftSide(H) = Antecedent(LeftArg(H)).

The functor RightSide(H) yielding a formula, is defined as follows:

RightSide(H) = Consequent(LeftArg(H)).

The following propositions are true:

(39) For every element H of WFF holds

LeftDisj(H) = Arg(LeftArg(Arg(H))) .

(40) For every element H of WFF holds

RightDisj(H) = Arg(RightArg(Arg(H))) .

(41) For every element H of WFF holds Antecedent(H) = LeftArg(Arg(H)).

(42) For every element H of WFF holds

Consequent(H) = Arg(RightArg(Arg(H))) .

(43) For every element H of WFF holds

LeftSide(H) = Antecedent(LeftArg(H)) .

(44) For every element H of WFF holds

RightSide(H) = Consequent(LeftArg(H)) .

In the sequel F , G, H will be elements of WFF. We now state a number of
propositions:

(45) LeftDisj(F ∨ G) = F and RightDisj(F ∨ G) = G and Arg(F ∨ G) =
¬F ∧ ¬G.

(46) Antecedent(F ⇒ G) = F and Consequent(F ⇒ G) = G and Arg(F ⇒
G) = F ∧ ¬G.

(47) LeftSide(F ⇔ G) = F and RightSide(F ⇔ G) = G and LeftArg(F ⇔
G) = F ⇒ G and RightArg(F ⇔ G) = G ⇒ F .

(48) Arg(∃xH) = ∀x¬H.

(49) If H is disjunctive, then H is conditional and H is negative and Arg(H)
is conjunctive and LeftArg(Arg(H)) is negative and RightArg(Arg(H)) is
negative.

(50) If H is conditional, then H is negative and Arg(H) is conjunctive and
RightArg(Arg(H)) is negative.

(51) If H is biconditional, then H is conjunctive and LeftArg(H) is condi-
tional and RightArg(H) is conditional.

(52) If H is existential, then H is negative and Arg(H) is universal and
Scope(Arg(H)) is negative.

(53) If H is disjunctive, then H = LeftDisj(H) ∨ RightDisj(H).

(54) If H is conditional, then H = Antecedent(H) ⇒ Consequent(H).

(55) If H is biconditional, then H = LeftSide(H) ⇔ RightSide(H).

(56) If H is existential, then H = ∃Bound(Arg(H)) Arg(Scope(Arg(H))).
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Let G, H be elements of WFF. We say that G is an immediate constituent
of H if and only if:

H = ¬G or there exists an element F of WFF such that H = G ∧ F or
H = F ∧ G or there exists a bound variable x such that H = ∀xG.

For simplicity we adopt the following convention: x is a bound variable, k, n

are natural numbers, P is a k-ary predicate symbol, and V is a list of variables
of the length k. One can prove the following propositions:

(57) G is an immediate constituent of H if and only if H = ¬G or there
exists F such that H = G ∧ F or H = F ∧ G or there exists x such that
H = ∀xG.

(58) H is not an immediate constituent of VERUM.

(59) H is not an immediate constituent of P [V ].

(60) F is an immediate constituent of ¬H if and only if F = H.

(61) H is an immediate constituent of FALSUM if and only if H = VERUM.

(62) F is an immediate constituent of G∧H if and only if F = G or F = H.

(63) F is an immediate constituent of ∀xH if and only if F = H.

(64) If H is atomic, then F is not an immediate constituent of H.

(65) If H is negative, then F is an immediate constituent of H if and only
if F = Arg(H).

(66) If H is conjunctive, then F is an immediate constituent of H if and
only if F = LeftArg(H) or F = RightArg(H).

(67) If H is universal, then F is an immediate constituent of H if and only
if F = Scope(H).

In the sequel L denotes a finite sequence. Let us consider G, H. We say that
G is a subformula of H if and only if:

there exist n, L such that 1 ≤ n and len L = n and L(1) = G and L(n) = H

and for every k such that 1 ≤ k and k < n there exist elements G1, H1 of WFF
such that L(k) = G1 and L(k + 1) = H1 and G1 is an immediate constituent of
H1.

We now state two propositions:

(68) G is a subformula of H if and only if there exist n, L such that 1 ≤ n

and len L = n and L(1) = G and L(n) = H and for every k such that
1 ≤ k and k < n there exist elements G1, H1 of WFF such that L(k) = G1

and L(k + 1) = H1 and G1 is an immediate constituent of H1.

(69) H is a subformula of H.

Let us consider H, F . We say that H is a proper subformula of F if and
only if:

H is a subformula of F and H 6= F .

One can prove the following propositions:

(70) H is a proper subformula of F if and only if H is a subformula of F

and H 6= F .

(71) If H is an immediate constituent of F , then len(@H) < len(@F ).



456 Grzegorz Bancerek

(72) If H is an immediate constituent of F , then H is a subformula of F .

(73) If H is an immediate constituent of F , then H is a proper subformula
of F .

(74) If H is a proper subformula of F , then len(@H) < len(@F ).

(75) If H is a proper subformula of F , then there exists G such that G is an
immediate constituent of F .

(76) If F is a proper subformula of G and G is a proper subformula of H,
then F is a proper subformula of H.

(77) If F is a subformula of G and G is a subformula of H, then F is a
subformula of H.

(78) If G is a subformula of H and H is a subformula of G, then G = H.

(79) It is not true that: G is a proper subformula of H and H is a subformula
of G.

(80) It is not true that: G is a proper subformula of H and H is a proper
subformula of G.

(81) It is not true that: G is a subformula of H and H is an immediate
constituent of G.

(82) It is not true that: G is a proper subformula of H and H is an immediate
constituent of G.

(83) Suppose F is a proper subformula of G and G is a subformula of H

or F is a subformula of G and G is a proper subformula of H or F is
a subformula of G and G is an immediate constituent of H or F is an
immediate constituent of G and G is a subformula of H or F is a proper
subformula of G and G is an immediate constituent of H or F is an
immediate constituent of G and G is a proper subformula of H. Then F

is a proper subformula of H.

(84) F is not a proper subformula of VERUM.

(85) F is not a proper subformula of P [V ].

(86) F is a subformula of H if and only if F is a proper subformula of ¬H.

(87) If ¬F is a subformula of H, then F is a proper subformula of H.

(88) F is a proper subformula of FALSUM if and only if F is a subformula
of VERUM.

(89) F is a subformula of G or F is a subformula of H if and only if F is a
proper subformula of G ∧ H.

(90) If F ∧G is a subformula of H, then F is a proper subformula of H and
G is a proper subformula of H.

(91) F is a subformula of H if and only if F is a proper subformula of ∀xH.

(92) If ∀xH is a subformula of F , then H is a proper subformula of F .

(93) F ∧¬G is a proper subformula of F ⇒ G and F is a proper subformula
of F ⇒ G and ¬G is a proper subformula of F ⇒ G and G is a proper
subformula of F ⇒ G.
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(94) ¬F ∧¬G is a proper subformula of F ∨G and ¬F is a proper subformula
of F ∨ G and ¬G is a proper subformula of F ∨ G and F is a proper
subformula of F ∨ G and G is a proper subformula of F ∨ G.

(95) If H is atomic, then F is not a proper subformula of H.

(96) If H is negative, then Arg(H) is a proper subformula of H.

(97) If H is conjunctive, then LeftArg(H) is a proper subformula of H and
RightArg(H) is a proper subformula of H.

(98) If H is universal, then Scope(H) is a proper subformula of H.

(99) H is a subformula of VERUM if and only if H = VERUM.

(100) H is a subformula of P [V ] if and only if H = P [V ].

(101) H is a subformula of FALSUM if and only if H = FALSUM or H =
VERUM.

Let us consider H. The functor SubformulaeH yields a set and is defined
by:

for arbitrary a holds a ∈ SubformulaeH if and only if there exists F such
that F = a and F is a subformula of H.

Next we state a number of propositions:

(102) For arbitrary a holds a ∈ SubformulaeH if and only if there exists F

such that F = a and F is a subformula of H.

(103) If G ∈ Subformulae H, then G is a subformula of H.

(104) If F is a subformula of H, then SubformulaeF ⊆ SubformulaeH.

(105) If G ∈ Subformulae H, then Subformulae G ⊆ Subformulae H.

(106) H ∈ SubformulaeH.

(107) Subformulae VERUM = {VERUM}.

(108) Subformulae(P [V ]) = {P [V ]}.

(109) Subformulae FALSUM = {VERUM, FALSUM}.

(110) Subformulae¬H = SubformulaeH ∪ {¬H}.

(111) SubformulaeH ∧ F = (Subformulae H ∪ SubformulaeF ) ∪ {H ∧ F}.

(112) Subformulae∀xH = SubformulaeH ∪ {∀xH}.

(113) SubformulaeF ⇒ G = (Subformulae F ∪ SubformulaeG) ∪ {¬G,F ∧
¬G,F ⇒ G}.

(114) SubformulaeF ∨G = (Subformulae F ∪SubformulaeG)∪{¬G,¬F,¬F ∧
¬G,F ∨ G}.

(115) SubformulaeF ⇔ G = (Subformulae F ∪ SubformulaeG) ∪ {¬G,F ∧
¬G,F ⇒ G,¬F,G ∧ ¬F,G ⇒ F,F ⇔ G}.

(116) H = VERUM or H is atomic if and only if Subformulae H = {H}.

(117) If H is negative, then Subformulae H = Subformulae Arg(H) ∪ {H}.

(118) If H is conjunctive, then SubformulaeH = (Subformulae LeftArg(H) ∪
Subformulae RightArg(H)) ∪ {H}.

(119) If H is universal, then Subformulae H = Subformulae Scope(H)∪ {H}.
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(120) If H is an immediate constituent of G or H is a proper subformula
of G or H is a subformula of G but G ∈ SubformulaeF , then H ∈
SubformulaeF .
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