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Summary. In this article we present the logical structure given
by four axioms of Mackey [3] in the set of propositions of Quantum Me-
chanics. The equivalence relation (PropRel(Q)) in the set of propositions
(Prop Q) for given Quantum Mechanics Q is considered. The main text
for this article is [6] where the structure of quotient space and the prop-
erties of equivalence relations, classes and partitions are studied.

MML Identifier: QMAX 1.

The articles [10], [1], [4], [2], [9], [8], [7], [5], and [6] provide the notation and
terminology for this paper. In the sequel x will be arbitrary, X will be a non-
empty set, and X1 will be a set. Let us consider X, and let S be a σ-field of
subsets of X. The functor probabilities S yields a non-empty set and is defined
by:

x ∈ probabilities S if and only if x is a probability on S.

We now state a proposition

(1) For every σ-field S of subsets of X holds x ∈ probabilities S if and only
if x is a probability on S.

We consider quantum mechanics structures which are systems
〈 observables, states, a probability 〉
where the observables, the states are non-empty sets and the probability is

a function from [: the observables, the states :] into probabilities the Borel sets. In
the sequel Q denotes a quantum mechanics structure. We now define two new
functors. Let us consider Q. The functor Obs Q yields a non-empty set and is
defined by:

Obs Q = the observables of Q.
The functor Sts Q yields a non-empty set and is defined by:

Sts Q = the states of Q.

The following propositions are true:
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(2) Obs Q = the observables of Q.

(3) Sts Q = the states of Q.

We adopt the following convention: A1, A2 will denote elements of Obs Q, s,
s1, s2 will denote elements of Sts Q, and E will denote an event of the Borel sets.
Let us consider Q, A1, s. The functor Meas(A1, s) yielding a probability on the
Borel sets, is defined as follows:

Meas(A1, s) = (the probability of Q)(〈〈A1, s〉〉).

One can prove the following proposition

(4) Meas(A1, s) = (the probability of Q)(〈〈A1, s〉〉).

A quantum mechanics structure is said to be a quantum mechanics if:
(i) for all elements A1, A2 of Obs it such that for every element s of Sts it

holds Meas(A1, s) = Meas(A2, s) holds A1 = A2,
(ii) for all elements s1, s2 of Sts it such that for every element A of Obs it
holds Meas(A, s1) = Meas(A, s2) holds s1 = s2,
(iii) for every elements s1, s2 of Sts it there exists an element s of Sts it such
that for every element A of Obs it and for every E there exists a real number
t such that 0 ≤ t and t ≤ 1 and Meas(A, s)(E) = t · Meas(A, s1)(E) + (1 − t) ·
Meas(A, s2)(E).

Next we state a proposition

(5) Q is a quantum mechanics if and only if the following conditions are
satisfied:

(i) for all A1, A2 such that for every s holds Meas(A1, s) = Meas(A2, s)
holds A1 = A2,

(ii) for all s1, s2 such that for every A1 holds Meas(A1, s1) = Meas(A1, s2)
holds s1 = s2,

(iii) for every s1, s2 there exists s such that for every A1, E there exists
a real number t such that 0 ≤ t and t ≤ 1 and Meas(A1, s)(E) = t ·
Meas(A1, s1)(E) + (1 − t) · Meas(A1, s2)(E).

We follow the rules: Q denotes a quantum mechanics, A, A1, A2 denote
elements of Obs Q, and s, s1, s2 denote elements of Sts Q. We now state three
propositions:

(6) If for every s holds Meas(A1, s) = Meas(A2, s), then A1 = A2.

(7) If for every A holds Meas(A, s1) = Meas(A, s2), then s1 = s2.

(8) For every s1, s2 there exists s such that for every A, E there exists
a real number t such that 0 ≤ t and t ≤ 1 and Meas(A, s)(E) = t ·
Meas(A, s1)(E) + (1 − t) · Meas(A, s2)(E).

We consider POI structures which are systems
〈 a carrier, an ordering, an involution 〉
where the carrier is a set, the ordering is a relation on the carrier, and the

involution is a function from the carrier into the carrier. In the sequel x1 will
denote an element of X1, Ord will denote a relation on X1, and Inv will denote
a function from X1 into X1. Let us consider X1. A POI structure is said to be
a poset with involution over X1 if:
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the carrier of it = X1.

One can prove the following proposition

(9) For every poset W with involution over X1 holds the carrier of W = X1.

Let us consider X1, Ord, Inv. The functor LOG(Ord, Inv) yielding a poset
with involution over X1, is defined by:

LOG(Ord, Inv) = 〈X1, Ord, Inv〉.

Next we state a proposition

(10) LOG(Ord, Inv) = 〈X1, Ord, Inv〉.

Let us consider X1, Inv. We say that Inv is an involution in X1 if and only
if:

Inv(Inv(x1)) = x1.

We now state a proposition

(11) Inv is an involution in X1 if and only if for every x1 holds
Inv(Inv(x1)) = x1 .

Let us consider X1, and let W be a poset with involution over X1. We say
that W is a quantum logic on X1 if and only if:

there exists a relation Ord on X1 and there exists a function Inv from X1

into X1 such that W = LOG(Ord, Inv) and Ord partially orders X1 and Inv is
an involution in X1 and for all elements x, y of X1 such that 〈〈x, y〉〉 ∈ Ord holds
〈〈Inv(y), Inv(x)〉〉 ∈ Ord.

Next we state a proposition

(12) Let W be a poset with involution over X1. Then W is a quantum logic
on X1 if and only if there exists a relation Ord on X1 and there exists a
function Inv from X1 into X1 such that W = LOG(Ord, Inv) and Ord

partially orders X1 and Inv is an involution in X1 and for all elements x,
y of X1 such that 〈〈x, y〉〉 ∈ Ord holds 〈〈Inv(y), Inv(x)〉〉 ∈ Ord.

Let us consider Q. The functor Prop Q yielding a non-empty set, is defined
by:

Prop Q = [: Obs Q, the Borel sets :].

The following proposition is true

(13) Prop Q = [: Obs Q, the Borel sets :].

In the sequel p, q, r, p1, q1 are elements of Prop Q. Let us consider Q, p.
Then p1 is an element of Obs Q. Then p2 is an event of the Borel sets.

The following propositions are true:

(14) p = 〈〈p1, p2〉〉.

(15) (Ec)c = E.

(16) For every E such that E = p2
c holds

Meas(p1, s)(p2) = 1 − Meas(p1, s)(E) .

Let us consider Q, p. The functor ¬p yields an element of Prop Q and is
defined as follows:

¬p = 〈〈p1, p2
c〉〉.
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The following proposition is true

(17) ¬p = 〈〈p1, p2
c〉〉.

Let us consider Q, p, q. The predicate p ⊢ q is defined by:
for every s holds Meas(p1, s)(p2) ≤ Meas(q1, s)(q2).

We now state a proposition

(18) p ⊢ q if and only if for every s holds Meas(p1, s)(p2) ≤ Meas(q1, s)(q2).

Let us consider Q, p, q. The predicate p ≡ q is defined as follows:
p ⊢ q and q ⊢ p.

One can prove the following propositions:

(19) p ≡ q if and only if p ⊢ q and q ⊢ p.

(20) p ≡ q if and only if for every s holds Meas(p1, s)(p2) = Meas(q1, s)(q2).

(21) p ⊢ p.

(22) If p ⊢ q and q ⊢ r, then p ⊢ r.

(23) p ≡ p.

(24) If p ≡ q, then q ≡ p.

(25) If p ≡ q and q ≡ r, then p ≡ r.

(26) (¬p)
1

= p1 and (¬p)
2

= p2
c.

(27) ¬(¬p) = p.

(28) If p ⊢ q, then ¬q ⊢ ¬p.

Let us consider Q. The functor PropRel Q yields an equivalence relation of
Prop Q and is defined as follows:

〈〈p, q〉〉 ∈ PropRel Q if and only if p ≡ q.

We now state a proposition

(29) 〈〈p, q〉〉 ∈ PropRel Q if and only if p ≡ q.

In the sequel B, C will denote subsets of Prop Q. Next we state a proposition

(30) For all B, C such that B ∈ Classes(PropRel Q) and
C ∈ Classes(PropRel Q)
for all elements a, b, c, d of Prop Q such that a ∈ B and b ∈ B and c ∈ C

and d ∈ C and a ⊢ c holds b ⊢ d.

Let us consider Q. The functor OrdRel Q yielding a relation on
Classes(PropRel Q) ,
is defined as follows:
〈〈B,C〉〉 ∈ OrdRelQ if and only if B ∈ Classes(PropRel Q) and
C ∈ Classes(PropRel Q)
and for all p, q such that p ∈ B and q ∈ C holds p ⊢ q.

Next we state four propositions:

(31) 〈〈B,C〉〉 ∈ OrdRelQ if and only if B ∈ Classes(PropRel Q) and C ∈
Classes(PropRel Q) and for all p, q such that p ∈ B and q ∈ C holds
p ⊢ q.

(32) p ⊢ q if and only if 〈〈[p]PropRel Q, [q]PropRel Q〉〉 ∈ OrdRel Q.
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(33) For all B, C such that B ∈ Classes(PropRel Q) and
C ∈ Classes(PropRel Q)
for all p1, q1 such that p1 ∈ B and q1 ∈ B and ¬p1 ∈ C holds ¬q1 ∈ C.

(34) For all B, C such that B ∈ Classes(PropRel Q) and
C ∈ Classes(PropRel Q)
for all p, q such that ¬p ∈ C and ¬q ∈ C and p ∈ B holds q ∈ B.

Let us consider Q. The functor InvRel Q yielding a function from
Classes(PropRel Q)
into Classes(PropRel Q), is defined by:
(InvRel Q)([p]PropRel Q) = [¬p]PropRelQ.

One can prove the following two propositions:

(35) (InvRel Q)([p]PropRelQ) = [¬p]PropRel Q.

(36) For every Q holds LOG(OrdRel Q, InvRel Q) is a quantum logic on
Classes(PropRel Q).
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[2] Czes law Byliński. Functions from a set to a set. Formalized Mathematics,
1(1):153–164, 1990.

[3] G.W.Mackey. The Mathematical Foundations of Quantum Mechanics.
North Holland, New York,Amsterdam, 1963.

[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized

Mathematics, 1(1):35–40, 1990.

[5] Andrzej Ne
‘
dzusiak. σ-fields and probability. Formalized Mathematics,

1(2):401–407, 1990.

[6] Konrad Raczkowski and Pawe l Sadowski. Equivalence relations and classes
of abstraction. Formalized Mathematics, 1(3):441–444, 1990.

[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized

Mathematics, 1(1):115–122, 1990.

[8] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized

Mathematics, 1(1):97–105, 1990.

[9] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma.
Formalized Mathematics, 1(2):387–393, 1990.

[10] Zinaida Trybulec and Halina Świe
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