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A First-Order Predicate Calculus

Agata Darmochwal!
Warsaw Uniwersity
Biatystok

Summary. A continuation of [3], with an axiom system of first-
order predicate theory. The consequence Cn of a set of formulas X is
defined as the intersection of all theories containing X and some basic
properties of it has been proved (monotonicity, idempotency, completness
etc.). The notion of a proof of given formula is also introduced and it is
shown that CnX = { p : p has a proof w.r.t. X}. First 14 theorems are
rather simply facts. I just wanted them to be included in the data base.

MML Identifier: CQC_THE1.

The papers [11], [10], [9], [8], [4], [6], [1], [5], [2], [7], and [3] provide the termi-
nology and notation for this paper. In the sequel i, j, n, k, [ will be natural
numbers. One can prove the following propositions:

(1) Ifn <0, then n=0.

2 Ifn<1,thenn=0o0rn=1.

Ifn<2 thenn=0orn=1orn=2.
Ifn<3 thenn=0orn=1orn=2orn=3.
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Ifn<4,thenn=0orn=1orn=2o0orn=3orn=4.
6
7

(

(

(4

(

( Ifn<b5, thenn=0orn=1lorn=2orn=3orn=4orn=>.

( Ifn<6,thenn=0orn=1lorn=2orn=3orn=4orn=>5or

n = 6.

(8) Ifn<T7 thenn=0orn=1lorn=2orn=3orn=4orn=>5or
n=6orn=".

(9) Ifn<8 thenn=0orn=1lorn=2orn=3orn=4orn=>5or
n=6orn=7orn=_8.

(10) Ifn<9,thenn=0orn=1lorn=2orn=3orn=4o0rn=>5or

n=6orn=T7orn=8orn=29.
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Next we state two propositions:
(11) A{k:k<n+1}={i:i<n}U{n+1}.
(12)  For every n holds {k : k < n} is finite.
In the sequel X, Y, Z denote sets. One can prove the following two propo-
sitions:
(13) If X is finite and X C [Y, Z{, then there exist sets A, B such that A
is finite and A C Y and B is finite and B C Z and X C [ A, B].
(14) If X is finite and Z is finite and X C [ 'Y, Z ], then there exists a set A
such that A is finite and ACY and X C [ A, Z .

For simplicity we adopt the following convention: 7', S, X, Y will be subsets
of WFFcqc, p, ¢, 7, t, F will be elements of WFFgqc, s will be a formula,
and z, y will be bound variables. Let us consider T. We say that T' is a theory
if and only if:

(i) VERUM €T,

(i) for all p, ¢, r, s, x, y holds (—-p = p) = p €T and p= (-p=q) € T and
(p=q) = (—(gAr)=-(pAr) eT and pAqg=qgApeTbutif peT and
p=q€T,thengeT and V,p=p €T butif p=q €T and x ¢ snb(p), then
p = Vzq € T but if s(x) € WFFcqc and s(y) € WFFcqce and x ¢ snb(s) and
s(x) € T, then s(y) € T.

Next we state a number of propositions:

(15)  Suppose that

(i) VERUM € T,

(i) forallp, g, r,s,z,yholds (-p=p)=>peT andp=(-p=q) €T
and (p = q) = (-(gAr) = ~(pAr)) e TandpAgq=qgApeT
but if p € T and p = ¢ € T, then ¢ € T and Vyp = p € T but if
p=q €T and x ¢ snb(p), then p = V,q € T but if s(xv) € WFFcqc and
s(y) € WFFcqc and x ¢ snb(s) and s(z) € T', then s(y) € T
Then T is a theory.

(16) If T is a theory, then VERUM € T

(17) If T is a theory, then (-p=p) = peT.

(18) If T is a theory, then p= (—-p=gq) € T.

(19) If T is a theory, then (p = q) = (=(¢Ar) = -(pAr)) €T.

(20) If T is a theory, then pAg=qgApeT.

(21) IfTis atheory and p € T and p = q € T, then g € T.

(22) If T is a theory, then V,p = p € T.

(23) If T is a theory and p = ¢ € T and z ¢ snb(p), then p = V,q € T.
(24) If T is a theory and s(z) € WFFcqc and s(y) € WFFcqce and = ¢

snb(s) and s(x) € T, then s(y) € T.

Let us consider 7', S. Then T'U S is a subset of WFFcqc. Then TN S is a
subset of WFFcqc. Then T\ S is a subset of WFFcqc.

Let us consider p. Then {p} is a subset of WFFcqc.
Next we state the proposition
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(25) If T is a theory and S is a theory, then 7N S is a theory.
Let us consider X. The functor Cn X yielding a subset of WFF cqc is defined
as follows:
t € Cn X if and only if for every T such that T is a theory and X C T holds
teT.
We now state a number of propositions:
(26) Y =CnX if and only if for every ¢ holds ¢ € Y if and only if for every
T such that T is a theory and X C T holdst € T.

(27)  VERUM € Cn X.

(28) (-p=p) =pelCnX.

(29) p=(-p=q) €CnX.

(30) (p=q) = (=(gAr)==(pAr)) € CnX.

(31) pAg=gApeCnX.

(32) IfpeCnX and p=¢e€ CnX, then g € CnX.

(33) Vup=peCnX.

(34) If p=¢q€CnX and x ¢ snb(p), then p = V,q € Cn X.

(35) If s(z) € WFFcqc and s(y) € WFFcqe and = ¢ snb(s) and s(z) €

Cn X, then s(y) € Cn X.

(36) CnX is a theory.

(37) If T'is a theory and X C T, then Cn X C T.
(38) X CCnX.

(39) IfXCY,thenCnX CCnY.

(40) Cn(CnX)=CnX.

(41) T 'is a theory if and only if CnT =T

The non-empty set K is defined by:
K={k:k <09}
Next we state three propositions:
(42) K={k:k<9}.
(43) OcKandleKand2€eKand3 € Kand4 € Kand5 €K and 6 € K
and 7€ K and 8 € K and 9 € K.
(44) K is finite.
In the sequel f, g are finite sequences of elements of | WFFcqc, K. The
following proposition is true
(45)  Suppose 1 <n and n <len f. Then
i) (f(n))y =0, o0r

)
(i) (f(n))g =1, 0r
(i) (f(n))g =2, or
(iv)  (f(n))g =3, or
(v)  (f(n))g =4, or
(vi)  (f(n))g =5, or
(vii)  (f(n))g =6, or
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(vil))  (f(n))g =7, or
(ix)  (f(n))g =8, or

(x)  (f(n))z =9

Let PR be a finite sequence of elements of | WFFcqc, K], and let us consider
n, X. Let us assume that 1 < n and n < len PR. We say that PR(n) is a correct
proof step w.r.t. X if and only if:

(PR(n)); € X if (PR(n))y = 0, (PR(n)); = VERUM if (PR(n))y = 1,
there exists p such that (PR(n)); = (—p = p) = p if (PR(n))9 = 2, there exist
p, ¢ such that (PR(n)); = p = (—p = q) if (PR(n))y = 3, there exist p, ¢,
r such that (PR(n)); = (p = q) = (—(gAr) = ~(pAr)) if (PR(n))y = 4,
there exist p, ¢ such that (PR(n)); = pAq = qApif (PR(n))g = 5, there
exist p,  such that (PR(n)); = Vup = p if (PR(n))y = 6, there exist i, j,
p, ¢ such that 1 <diandi <nand1 < jand j <iandp= (PR(j)); and

= (PR(n)); and (PR(i));y = p = q if (PR(n))y = 7, there exist 4, p, g,
x such that 1 < ¢ and i@ < n and (PR(i)); = p = ¢ and = ¢ snb(p) and
(PR(n)); = p = Yaq if (PR(n))y = 8, there exist 4, x, y, s such that 1 < g
and ¢ < n and s(z) € WFFcqc and s(y) € WEFcqe and x ¢ snb(s) and
s(z) = (PR(i)); and s(y) = (PR(n)); i (PR(n))y = 9.

The following propositions are true:

(46) If1 <nandn <lenf and (f(n))y = 0, then f(n) is a correct proof

step w.r.t. X if and only if (f(n)); € X.

(47) If1 <nandn <lenf and (f(n))y = 1, then f(n) is a correct proof

step w.r.t. X if and only if (f(n)), VERUM

(48) Ifl1 <nandn <lenfand (f(n))y =2, then f(n)is a correct proof step

w.r.t. X if and only if there exists p such that (f(n)); = (-p = p) = p.
(49) Ifl1 <nmandn <lenfand (f(n))y =3, then f(n)is a correct proof step
w.r.t. X if and only if there exist p, ¢ such that (f(n)); =p = (—p = q).
(50) If1 <nandn <lenf and (f(n))y = 4, then f(n) is a correct proof
step w.r.t. X if and only if there exist p, ¢, r such that (f(n)); = (p =
q) = (=g Ar) = ~(pAT)).
(61) Ifl1 <nandn <lenfand (f(n))y =5, then f(n)is a correct proof step
w.r.t. X if and only if there exist p, ¢ such that (f(n)); =pAg=qgAp.
(52) If1 <nandn <lenf and (f(n))y = 6, then f(n) is a correct proof
step w.r.t. X if and only if there exist p, « such that (f(n)); = V.p = p.

(53)  Suppose 1 <n and n < len f and (f(n))y = 7. Then f(n) is a correct

proof step w.r.t. X if and only if there exist 4, j, p, ¢ such that 1 < ¢
and i <nand 1 < jand j < iand p = (f(j)); and ¢ = (f(n)); and
(f@)r=r=q

(54)  Suppose 1 <n and n < len f and (f(n)), = 8. Then f(n) is a correct

proof step w.r.t. X if and only if there exist i, p, ¢, x such that 1 < ¢ and
i <nand (f(i)); =p=qand z ¢ snb(p) and (f(n)); =p = Vaq.

(55)  Suppose 1 <n and n < len f and (f(n))y = 9. Then f(n) is a correct

proof step w.r.t. X if and only if there exist 4, x, y, s such that 1 < ¢
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and ¢ < n and s(z) € WFFcqc and s(y) € WEFcqe and « ¢ snb(s) and
s(x) = (f(i))y and (f(n))y = s(y).
Let us consider X, f. We say that f is a proof w.r.t. X if and only if:

f # € and for every n such that 1 < n and n < len f holds f(n) is a correct
proof step w.r.t. X.

The following propositions are true:

(56)  f is a proof w.r.t. X if and only if f # ¢ and for every n such that
1 <nandn <len f holds f(n) is a correct proof step w.r.t. X.

(57) If fis a proof w.r.t. X, then rng f # (.

(58) If f is a proof w.r.t. X, then 1 <len f.

(59)  Suppose f is a proof w.r.t. X. Then (f(1))y = 0 or (f(1))g =1 or
(f(1)g =2or (f(1))g =3 or (f(1))g =4 or (f(1))g =5 or (f(1))z =6.

(60) If1 <nandn <lenf, then f(n) is a correct proof step w.r.t. X if and
only if f~ g(n) is a correct proof step w.r.t. X.

(61) If 1 <nandn <leng and g(n) is a correct proof step w.r.t. X, then
f " g(n+1len f) is a correct proof step w.r.t. X.

(62) If f is a proof w.r.t. X and g is a proof w.r.t. X, then f ~ g is a proof
w.r.t. X.

(63) If fis a proof w.r.t. X and X C Y, then f is a proof w.r.t. Y.
(64) If fis a proof wr.t. X and 1 <l and [ <len f, then (f(I)); € CnX.

Let us consider f. Let us assume that f # ¢. The functor Effect f yields an
element of WFFcqc and is defined as follows:

Effect f = (f(len f));.
The following propositions are true:
(65) If f # ¢, then Effect f = (f(len f));.
(66) If fis a proof w.r.t. X, then Effect f € Cn X.
(67) X C{F:Vy[ fisaproof wr.t. X AEffect f = FJ}.
(68)  Forevery X such that Y = {p: V[ fisaproof w.r.t. X AEffect f = p|}
holds Y is a theory.

69) For every X holds {p : V[ f is a proof w.r.t. X AEffect f = p|} =
CnX !
nX.

(70)  p € Cn X if and only if there exists f such that f is a proof w.r.t. X
and Effect f = p.

(71) If p € Cn X, then there exists Y such that Y C X and Y is finite and
peCnY.

The subset loqe of WFFcqc is defined by:
Poqe = DwWrFeqce-
We now state the proposition
(72)  Doqe = dwrFeqe-
The subset Taut of WEFcqc is defined as follows:
Taut = Cn0cqc.
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One can prove the following propositions:

(73)  Taut = Cnlcqe.

(74) If T is a theory, then Taut C 7.

(75)  Taut C Cn X.

(76)  Taut is a theory.

(77)  VERUM ¢ Taut.

(78)  (-p=p) = p € Taut.

(79)  p= (—p=q) € Taut.

(80) (p=q)= (=(gAr)=—(pAr)) € Taut.

(81) pAgqg= qAp e Taut.

(82) If p € Taut and p = ¢ € Taut, then ¢ € Taut.

(83)  Vyp = p € Taut.

(84) If p = g € Taut and x ¢ snb(p), then p = V,q € Taut.
(85) If s(z) € WFFcqc and s(y) € WFFcqe and = ¢ snb(s) and s(z) €

Taut, then s(y) € Taut.

Let us consider X, s. The predicate X F s is defined as follows:
seCnX.

Next we state a number of propositions:

(86) Xt sif and only if s € Cn X.

(87) X F VERUM.

(88) Xt (=p=p)=p

(89) Xkp=(w=0q.

(90) XE(@=q = ((egAr)=~(pAT)).

(91) XkEpAg=qAp.

(92) If Xtpand X+ p= ¢, then X I-gq.

(93) X FEV.p=np.

(94) I X+ p= qandx ¢ snb(p), then X I p = V,q.

(95) If s(x) € WFFcqc and s(y) € WEFcqc and ¢ snb(s) and X F s(z),

then X  s(y).
Let us consider s. The predicate | s is defined as follows:
Ocqe F s.
Next we state two propositions:
(96) s if and only if Doqe F s.
(97) F sif and only if s € Taut.

Let us consider s. Let us note that one can characterize the predicate - s by
the following (equivalent) condition: s € Taut.

We now state a number of propositions:
(98) If - p, then X I p.
(99) F VERUM.
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F(=p=p)=p

Fp=(-p=q).

=9 = (mlgAr)=(pAT)).
FpAg=qAp.

If -pandF p=gq, then I q.

FV.p=p.

If - p= q and x ¢ snb(p), then - p = V,q.

If s(x) € WFFcqc and s(y) € WEFcqc and = ¢ snb(s) and F s(x),
then F s(y).
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