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Summary. A continuation of [3], with an axiom system of first-
order predicate theory. The consequence Cn of a set of formulas X is
defined as the intersection of all theories containing X and some basic
properties of it has been proved (monotonicity, idempotency, completness
etc.). The notion of a proof of given formula is also introduced and it is
shown that CnX = { p : p has a proof w.r.t. X}. First 14 theorems are
rather simply facts. I just wanted them to be included in the data base.

MML Identifier: CQC THE1.

The papers [11], [10], [9], [8], [4], [6], [1], [5], [2], [7], and [3] provide the termi-
nology and notation for this paper. In the sequel i, j, n, k, l will be natural
numbers. One can prove the following propositions:

(1) If n ≤ 0, then n = 0.

(2) If n ≤ 1, then n = 0 or n = 1.

(3) If n ≤ 2, then n = 0 or n = 1 or n = 2.

(4) If n ≤ 3, then n = 0 or n = 1 or n = 2 or n = 3.

(5) If n ≤ 4, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4.

(6) If n ≤ 5, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5.

(7) If n ≤ 6, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6.

(8) If n ≤ 7, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6 or n = 7.

(9) If n ≤ 8, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6 or n = 7 or n = 8.

(10) If n ≤ 9, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6 or n = 7 or n = 8 or n = 9.
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Next we state two propositions:

(11) {k : k ≤ n + 1} = {i : i ≤ n} ∪ {n + 1}.

(12) For every n holds {k : k ≤ n} is finite.

In the sequel X, Y , Z denote sets. One can prove the following two propo-
sitions:

(13) If X is finite and X ⊆ [: Y, Z :], then there exist sets A, B such that A
is finite and A ⊆ Y and B is finite and B ⊆ Z and X ⊆ [: A, B :].

(14) If X is finite and Z is finite and X ⊆ [: Y, Z :], then there exists a set A
such that A is finite and A ⊆ Y and X ⊆ [: A, Z :].

For simplicity we adopt the following convention: T , S, X, Y will be subsets
of WFFCQC, p, q, r, t, F will be elements of WFFCQC, s will be a formula,
and x, y will be bound variables. Let us consider T . We say that T is a theory
if and only if:
(i) VERUM ∈ T ,
(ii) for all p, q, r, s, x, y holds (¬p ⇒ p) ⇒ p ∈ T and p ⇒ (¬p ⇒ q) ∈ T and
(p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)) ∈ T and p ∧ q ⇒ q ∧ p ∈ T but if p ∈ T and
p ⇒ q ∈ T , then q ∈ T and ∀xp ⇒ p ∈ T but if p ⇒ q ∈ T and x /∈ snb(p), then
p ⇒ ∀xq ∈ T but if s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and
s(x) ∈ T , then s(y) ∈ T .

Next we state a number of propositions:

(15) Suppose that
(i) VERUM ∈ T ,

(ii) for all p, q, r, s, x, y holds (¬p ⇒ p) ⇒ p ∈ T and p ⇒ (¬p ⇒ q) ∈ T
and (p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)) ∈ T and p ∧ q ⇒ q ∧ p ∈ T
but if p ∈ T and p ⇒ q ∈ T , then q ∈ T and ∀xp ⇒ p ∈ T but if
p ⇒ q ∈ T and x /∈ snb(p), then p ⇒ ∀xq ∈ T but if s(x) ∈ WFFCQC and
s(y) ∈ WFFCQC and x /∈ snb(s) and s(x) ∈ T , then s(y) ∈ T .
Then T is a theory.

(16) If T is a theory, then VERUM ∈ T .

(17) If T is a theory, then (¬p ⇒ p) ⇒ p ∈ T .

(18) If T is a theory, then p ⇒ (¬p ⇒ q) ∈ T .

(19) If T is a theory, then (p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)) ∈ T .

(20) If T is a theory, then p ∧ q ⇒ q ∧ p ∈ T .

(21) If T is a theory and p ∈ T and p ⇒ q ∈ T , then q ∈ T .

(22) If T is a theory, then ∀xp ⇒ p ∈ T .

(23) If T is a theory and p ⇒ q ∈ T and x /∈ snb(p), then p ⇒ ∀xq ∈ T .

(24) If T is a theory and s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈
snb(s) and s(x) ∈ T , then s(y) ∈ T .

Let us consider T , S. Then T ∪ S is a subset of WFFCQC. Then T ∩ S is a
subset of WFFCQC. Then T \ S is a subset of WFFCQC.

Let us consider p. Then {p} is a subset of WFFCQC.

Next we state the proposition
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(25) If T is a theory and S is a theory, then T ∩ S is a theory.

Let us consider X. The functor Cn X yielding a subset of WFFCQC is defined
as follows:

t ∈ Cn X if and only if for every T such that T is a theory and X ⊆ T holds
t ∈ T .

We now state a number of propositions:

(26) Y = Cn X if and only if for every t holds t ∈ Y if and only if for every
T such that T is a theory and X ⊆ T holds t ∈ T .

(27) VERUM ∈ Cn X.

(28) (¬p ⇒ p) ⇒ p ∈ Cn X.

(29) p ⇒ (¬p ⇒ q) ∈ Cn X.

(30) (p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)) ∈ Cn X.

(31) p ∧ q ⇒ q ∧ p ∈ Cn X.

(32) If p ∈ Cn X and p ⇒ q ∈ Cn X, then q ∈ Cn X.

(33) ∀xp ⇒ p ∈ Cn X.

(34) If p ⇒ q ∈ Cn X and x /∈ snb(p), then p ⇒ ∀xq ∈ Cn X.

(35) If s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and s(x) ∈
Cn X, then s(y) ∈ Cn X.

(36) Cn X is a theory.

(37) If T is a theory and X ⊆ T , then Cn X ⊆ T .

(38) X ⊆ Cn X.

(39) If X ⊆ Y , then Cn X ⊆ Cn Y .

(40) Cn(Cn X) = Cn X.

(41) T is a theory if and only if Cn T = T .

The non-empty set � is defined by:
� = {k : k ≤ 9}.

Next we state three propositions:

(42) � = {k : k ≤ 9}.

(43) 0 ∈ � and 1 ∈ � and 2 ∈ � and 3 ∈ � and 4 ∈ � and 5 ∈ � and 6 ∈ �
and 7 ∈ � and 8 ∈ � and 9 ∈ � .

(44) � is finite.

In the sequel f , g are finite sequences of elements of [: WFFCQC, � :]. The
following proposition is true

(45) Suppose 1 ≤ n and n ≤ len f . Then
(i) (f(n))

2
= 0, or

(ii) (f(n))
2

= 1, or
(iii) (f(n))

2
= 2, or

(iv) (f(n))
2

= 3, or
(v) (f(n))

2
= 4, or

(vi) (f(n))
2

= 5, or
(vii) (f(n))

2
= 6, or
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(viii) (f(n))
2

= 7, or
(ix) (f(n))

2
= 8, or

(x) (f(n))
2

= 9.

Let PR be a finite sequence of elements of [: WFFCQC, � :], and let us consider
n, X. Let us assume that 1 ≤ n and n ≤ len PR. We say that PR(n) is a correct
proof step w.r.t. X if and only if:

(PR(n))
1
∈ X if (PR(n))

2
= 0, (PR(n))

1
= VERUM if (PR(n))

2
= 1,

there exists p such that (PR(n))
1

= (¬p ⇒ p) ⇒ p if (PR(n))
2

= 2, there exist
p, q such that (PR(n))

1
= p ⇒ (¬p ⇒ q) if (PR(n))

2
= 3, there exist p, q,

r such that (PR(n))
1

= (p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)) if (PR(n))
2

= 4,
there exist p, q such that (PR(n))

1
= p ∧ q ⇒ q ∧ p if (PR(n))

2
= 5, there

exist p, x such that (PR(n))
1

= ∀xp ⇒ p if (PR(n))
2

= 6, there exist i, j,
p, q such that 1 ≤ i and i < n and 1 ≤ j and j < i and p = (PR(j))

1
and

q = (PR(n))
1

and (PR(i))
1

= p ⇒ q if (PR(n))
2

= 7, there exist i, p, q,
x such that 1 ≤ i and i < n and (PR(i))

1
= p ⇒ q and x /∈ snb(p) and

(PR(n))
1

= p ⇒ ∀xq if (PR(n))
2

= 8, there exist i, x, y, s such that 1 ≤ i
and i < n and s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and
s(x) = (PR(i))

1
and s(y) = (PR(n))

1
if (PR(n))

2
= 9.

The following propositions are true:

(46) If 1 ≤ n and n ≤ len f and (f(n))
2

= 0, then f(n) is a correct proof
step w.r.t. X if and only if (f(n))

1
∈ X.

(47) If 1 ≤ n and n ≤ len f and (f(n))
2

= 1, then f(n) is a correct proof
step w.r.t. X if and only if (f(n))

1
= VERUM.

(48) If 1 ≤ n and n ≤ len f and (f(n))
2

= 2, then f(n) is a correct proof step
w.r.t. X if and only if there exists p such that (f(n))

1
= (¬p ⇒ p) ⇒ p.

(49) If 1 ≤ n and n ≤ len f and (f(n))
2

= 3, then f(n) is a correct proof step
w.r.t. X if and only if there exist p, q such that (f(n))

1
= p ⇒ (¬p ⇒ q).

(50) If 1 ≤ n and n ≤ len f and (f(n))
2

= 4, then f(n) is a correct proof
step w.r.t. X if and only if there exist p, q, r such that (f(n))

1
= (p ⇒

q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)).

(51) If 1 ≤ n and n ≤ len f and (f(n))
2

= 5, then f(n) is a correct proof step
w.r.t. X if and only if there exist p, q such that (f(n))

1
= p ∧ q ⇒ q ∧ p.

(52) If 1 ≤ n and n ≤ len f and (f(n))
2

= 6, then f(n) is a correct proof
step w.r.t. X if and only if there exist p, x such that (f(n))

1
= ∀xp ⇒ p.

(53) Suppose 1 ≤ n and n ≤ len f and (f(n))
2

= 7. Then f(n) is a correct
proof step w.r.t. X if and only if there exist i, j, p, q such that 1 ≤ i
and i < n and 1 ≤ j and j < i and p = (f(j))

1
and q = (f(n))

1
and

(f(i))
1

= p ⇒ q.

(54) Suppose 1 ≤ n and n ≤ len f and (f(n))
2

= 8. Then f(n) is a correct
proof step w.r.t. X if and only if there exist i, p, q, x such that 1 ≤ i and
i < n and (f(i))

1
= p ⇒ q and x /∈ snb(p) and (f(n))

1
= p ⇒ ∀xq.

(55) Suppose 1 ≤ n and n ≤ len f and (f(n))
2

= 9. Then f(n) is a correct
proof step w.r.t. X if and only if there exist i, x, y, s such that 1 ≤ i
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and i < n and s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and
s(x) = (f(i))

1
and (f(n))

1
= s(y).

Let us consider X, f . We say that f is a proof w.r.t. X if and only if:
f 6= ε and for every n such that 1 ≤ n and n ≤ len f holds f(n) is a correct

proof step w.r.t. X.

The following propositions are true:

(56) f is a proof w.r.t. X if and only if f 6= ε and for every n such that
1 ≤ n and n ≤ len f holds f(n) is a correct proof step w.r.t. X.

(57) If f is a proof w.r.t. X, then rng f 6= ∅.

(58) If f is a proof w.r.t. X, then 1 ≤ len f .

(59) Suppose f is a proof w.r.t. X. Then (f(1))
2

= 0 or (f(1))
2

= 1 or
(f(1))

2
= 2 or (f(1))

2
= 3 or (f(1))

2
= 4 or (f(1))

2
= 5 or (f(1))

2
= 6.

(60) If 1 ≤ n and n ≤ len f , then f(n) is a correct proof step w.r.t. X if and
only if f � g(n) is a correct proof step w.r.t. X.

(61) If 1 ≤ n and n ≤ len g and g(n) is a correct proof step w.r.t. X, then
f � g(n + len f) is a correct proof step w.r.t. X.

(62) If f is a proof w.r.t. X and g is a proof w.r.t. X, then f � g is a proof
w.r.t. X.

(63) If f is a proof w.r.t. X and X ⊆ Y , then f is a proof w.r.t. Y .

(64) If f is a proof w.r.t. X and 1 ≤ l and l ≤ len f , then (f(l))
1
∈ Cn X.

Let us consider f . Let us assume that f 6= ε. The functor Effect f yields an
element of WFFCQC and is defined as follows:

Effect f = (f(len f))
1
.

The following propositions are true:

(65) If f 6= ε, then Effect f = (f(len f))
1
.

(66) If f is a proof w.r.t. X, then Effect f ∈ Cn X.

(67) X ⊆ {F :
∨

f [ f is a proof w.r.t. X ∧Effect f = F ]}.

(68) For every X such that Y = {p :
∨

f [ f is a proof w.r.t. X ∧Effect f = p]}
holds Y is a theory.

(69) For every X holds {p :
∨

f [ f is a proof w.r.t. X ∧Effect f = p]} =
Cn X.

(70) p ∈ Cn X if and only if there exists f such that f is a proof w.r.t. X
and Effect f = p.

(71) If p ∈ Cn X, then there exists Y such that Y ⊆ X and Y is finite and
p ∈ Cn Y .

The subset ∅CQC of WFFCQC is defined by:
∅CQC = ∅WFFCQC

.

We now state the proposition

(72) ∅CQC = ∅WFFCQC
.

The subset Taut of WFFCQC is defined as follows:
Taut = Cn ∅CQC.
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One can prove the following propositions:

(73) Taut = Cn ∅CQC.

(74) If T is a theory, then Taut ⊆ T .

(75) Taut ⊆ Cn X.

(76) Taut is a theory.

(77) VERUM ∈ Taut.

(78) (¬p ⇒ p) ⇒ p ∈ Taut.

(79) p ⇒ (¬p ⇒ q) ∈ Taut.

(80) (p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)) ∈ Taut.

(81) p ∧ q ⇒ q ∧ p ∈ Taut.

(82) If p ∈ Taut and p ⇒ q ∈ Taut, then q ∈ Taut.

(83) ∀xp ⇒ p ∈ Taut.

(84) If p ⇒ q ∈ Taut and x /∈ snb(p), then p ⇒ ∀xq ∈ Taut.

(85) If s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and s(x) ∈
Taut, then s(y) ∈ Taut.

Let us consider X, s. The predicate X ⊢ s is defined as follows:
s ∈ Cn X.

Next we state a number of propositions:

(86) X ⊢ s if and only if s ∈ Cn X.

(87) X ⊢ VERUM.

(88) X ⊢ (¬p ⇒ p) ⇒ p.

(89) X ⊢ p ⇒ (¬p ⇒ q).

(90) X ⊢ (p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)).

(91) X ⊢ p ∧ q ⇒ q ∧ p.

(92) If X ⊢ p and X ⊢ p ⇒ q, then X ⊢ q.

(93) X ⊢ ∀xp ⇒ p.

(94) If X ⊢ p ⇒ q and x /∈ snb(p), then X ⊢ p ⇒ ∀xq.

(95) If s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and X ⊢ s(x),
then X ⊢ s(y).

Let us consider s. The predicate ⊢ s is defined as follows:
∅CQC ⊢ s.

Next we state two propositions:

(96) ⊢ s if and only if ∅CQC ⊢ s.

(97) ⊢ s if and only if s ∈ Taut.

Let us consider s. Let us note that one can characterize the predicate ⊢ s by
the following (equivalent) condition: s ∈ Taut.

We now state a number of propositions:

(98) If ⊢ p, then X ⊢ p.

(99) ⊢ VERUM.
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(100) ⊢ (¬p ⇒ p) ⇒ p.

(101) ⊢ p ⇒ (¬p ⇒ q).

(102) ⊢ (p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)).

(103) ⊢ p ∧ q ⇒ q ∧ p.

(104) If ⊢ p and ⊢ p ⇒ q, then ⊢ q.

(105) ⊢ ∀xp ⇒ p.

(106) If ⊢ p ⇒ q and x /∈ snb(p), then ⊢ p ⇒ ∀xq.

(107) If s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and ⊢ s(x),
then ⊢ s(y).
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