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Summary. Some operations on the set of n-tuples of real numbers
are introduced. Addition, difference of such n-tuples, complement of a
n-tuple and multiplication of these by real numbers are defined. In these
definitions more general properties of binary operations applied to finite
sequences from [3] are used. Then the fact that certain properties are
satisfied by those operations is demonstrated directly from [3]. Moreover
some properties can be recognized as being those of real vector space.
Multiplication of n-tuples of real numbers and square power of n-tuple
of real numbers using for notation of some properties of finite sums and
products of real numbers are defined, followed by definitions of the finite
sum and product of n-tuples of real numbers using notions and proper-
ties introduced in [7]. A number of propositions and theorems on sum
and product of finite sequences of real numbers are proved. As a addi-
tional properties there are proved some properties of real numbers and
set representations of binary operations on real numbers.

MML Identifier: RVSUM_1.

The papers [8], [12], [5], [6], [1], [2], [13], [10], [9], [11], [4], [3], and [7] provide
the terminology and notation for this paper. For simplicity we follow the rules:
i, j, k are natural numbers, r, v/, r1, r9, r3 are real numbers, x is an element
of R, F, I, F, are finite sequences of elements of R, and R, R, Ry, R3 are
elements of R*. Next we state the proposition

(1) —(r1+r2) =(=r1)+(-72).

Let us consider . The functor Qx yields a real number and is defined by:

Qr = x.

The following propositions are true:

(2) Qx=ux.
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0 is a unity w.r.t. +g.
1+, =0.

5 4+ has a unity.
6
7
The binary operation —i on R is defined as follows:
—r = +r o (idg, —r).

We now state two propositions:

(8) —R = +RO (idR, _[R)-

(9) —R(Tl, 7‘2) =71 —T9.

The unary operation sqrp on R is defined as follows:

for every r holds sqrg (1) = r2.

+r is commutative.

e e e
~— — — ~— —

+r is associative.

The following propositions are true:

(10)  For every unary operation u on R holds u = sqry if and only if for every
7 holds u(r) = 2.

(11) g is commutative.

(12)  -g is associative.

(13)  1is a unity w.r.t. -g.

(14) 1., =1

(15)  -g has a unity.

(16) g is distributive w.r.t. +g.

(17)  sqrg is distributive w.r.t. -g.

Let us consider z. The functor -§ yielding a unary operation on R is defined

& = &°(z,idg).
Next we state several propositions:
18 = g°(z,idR).

X
R
‘R(x)=71- 2.
T
R

~—

[\)
o

N
[N}
D O — T T

is distributive w.r.t. +p.
—g is an inverse operation w.r.t. +g.
+r has an inverse operation.
23
24
Let us consider Fy, F». The functor F; 4+ F5 yields a finite sequence of
elements of R and is defined by:
Fi + F, = +¢°(F, F3).
We now state two propositions:
(25) Fi + :—FRO(Fl, Fg)
(26) If ¢ € Seg(len(Fy + F»)) and m = Fi(i) and ro = Fb(i), then (F} +
Fg)(l) =T + 9.

Theinverse operation w.r.t.+g = —g.

N N N /N /S /S
[SV]
—_

—p is distributive w.r.t. +g.
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Let us consider i, R1, Rys. Then Ry + Rs is an element of R’.
We now state several propositions:
27) If j € Segi and r1 = R;(j) and ro = Ra(j), then (R1+ Ro)(j) = 1+ 2.

(27)

(28) er+ F =cg and F + eg = cp.

(29)  (r1) + (re) = (r1 +r2).

(30)  (ir— 1)+ (i o) =i 11+ 12
(31) Ri1+ Ry =Ry + R;.

(32) R+ (RQ + Rg) = (Rl + RQ) + Rs.

(33) R+ (i — (0 quaareal number)) = R and

R = (i — (0 qua areal number)) + R.
Let us consider F'. The functor —F yields a finite sequence of elements of R
and is defined as follows:
—F=— F.
We now state two propositions:
(34) —F=—g-F.
(35) If i € Seg(len(—F)) and r = F(i), then (—F)(i) = —r.
Let us consider 4, R. Then —R is an element of R.
The following propositions are true:
36) If j € Segi and r = R(j), then (—R)(j) = —r.

(

(37)  —cr =cr.

(38)  —(r) = (=)

(39) —(ir—r)=ir— —r.

(40) R+ (-R)=i+—0and (-R)+ R =i+ 0.

(41) If Ry + Ry =i+ 0, then Ry = —Ry and Ry = —R;.
(42) —(-R)=R.

(43) If —R; = —Ry, then Ry = Rs.

(44) IfRi+R=Ry+ Ror Ry + R= R+ Ry, then Ry = R;.
(45)  —(Ri+ R2) = (—R1) + (—Ra).

Let us consider Fy, Fy. The functor F; — Fy yielding a finite sequence of
elements of R is defined as follows:
Fy — Fy = —°(I1, I3).
The following two propositions are true:
(46) Fy — Fy = —g°(F1, F3).
(47)  If i € Seg(len(Fy — Fy)) and r1 = Fi(i) and ro = F»(i), then (F} —
FQ)(Z) =Ty —Tro.
Let us consider i, Ry, Ry. Then R; — Rs is an element of R?.
One can prove the following propositions:
(48) If j € Segi and 1 = R1(j) and ro = Ra(j), then (R; — R2)(j) = r1 —7o.
(49) er — F =cg and F — g = cp.
(50)  (r1) = (r2) = (r1 —r2).
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(51)  (ir—r1) —(ir—re) =ir— 11— 12
(52) Ry —Ry=R;+(—Ry).

(53) R — (i — (0quaareal number)) = R.
(54) (i — (0Oquaareal number)) — R = —R.
(55) Ry —(—Rg) = Ri+ R.

(56) —(R1 — Rg) = Ry — Ry.

(67)  —(R1— R2) = (—R1) + R».

(58) R—R=1i+—0.

(59) If Ry — Ry =i+— 0, then Ry = Ro.
(60) (R1— Rg) — Rz =Ry — (R2+ R3).
(61) R+ (Rs— R3) = (Ri + Ra) — Rs.
(62) Ry —(Ry—Rs3) = (R1— Ry) + Rs.
(63) Ri=(R+R)-R

(64) Ri=(R—R)+R

Let us consider r, F. The functor r - F' yields a finite sequence of elements
of R and is defined by:
r-F =g F.
We now state two propositions:
(65) r-F=--F.
(66) If i € Seg(len(r - F)) and r' = F(i), then (r- F)(i) =r-r'.
Let us consider i, 7, R. Then r - R is an element of R.
Next we state a number of propositions:
If j € Segi and ' = R(j), then (r- R)(j) =r -7’

o o
%
N—

r-Er = €R.

r(ry) = (r-ry).

(@)
Ne)

(

(68)

(69)

(70) 7 -(ir—r9)=i+——>11-19
(71) (7"1 7“2) R:’Pl'(’I“Q'R).
(72) (ri+ry)-R=mr1-R+ry-R.
(73) T-(R1+R2):T-R1+T~R2.
(74) 1-R=R.

(75) 0-R=i—0

(76) (-1)-R=-R

Let us consider F. The functor 2F yielding a finite sequence of elements of
R is defined as follows:
2F =sqry -F.
Next we state two propositions:
(77)  2F =sqryg -F.
(78)  If i € Seg(len(*F)) and r = F(i), then 2F(i) = r2.
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Let us consider 4, R. Then 2R is an element of R?.
Next we state several propositions:

(79) If j € Segi and 7 = R(j), then 2R(j) = 2.
(80) Zep = cp.

(81)  *(r)=(r?).

(82)  2(i— 1) =i+ 12

(83) 2%(—R)=2R.

(84) 2%(r-R)=12.2R.

Let us consider Fy, Fy. The functor [} e F5 yields a finite sequence of elements

of R and is defined by:
Fl OFQ = 'RO(Fl, Fg).
One can prove the following two propositions:
(85) Fl L] F2 = 'RO(Fl, Fg).

665

(86) Ifi € Seg(len(Fy e Fy)) and r; = Fy(i) and o = F5(i), then Fy @ Fy(i) =

r1-T9.
Let us consider 4, Ry, Ro. Then Ry @ Ry is an element of R’.
The following propositions are true:

(87) If j € Segi and r; = Ry(j) and 2 = Ry(j), then Ry @ Ry(j) =71 - 12.
(88) ecreF =cp and F ecy = cp.

(89)  (r1) e (ra) = (ri-ra).

(90) RyeRy=RyeR.

(91) R;e(Rye R3)=(R;eRy)eRs.

(92) (i’—>T)0R:7"RandR.(i|—>7’):r.R'

(93) (ir—ry)e(i—1r9) =i+——>11-T9.

(94) 7 -RieRy=(r-Ri)eRy.

(95) r-RieRy=(r-Ry)eRyand r-R;eRy=R;e(r-Ry).
(96) r-R=(i——r)eR.

(97) 2R=ReR.

(98) (R1+R2) (?Ry 4 2- Ry @ Ry) + %Ry.

(99) *(Ri—Ry)=(*R1—2- Ri e Ry) +Ry.

(100) *(R 1°R2) (2R1) o (*Ry).

Let F' be a finite sequence of elements of R. The functor > F' yields a real

number and is defined by:
YF=4+r®F.
One can prove the following propositions:
101) Y F=+4g®F.
) Y er=0.
103) > (r)=r.
) S(F () =X F 4,
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105 E(FlAFQ):ZFl—FZFQ.
106 E((T)AF):T+ZF.

107 Z<7‘1,T2> =11+ 7ro.

108)  3(r1,7a,73) = (11 +712) + 13

For every element R of R holds Y>> R = 0.
N(ir—r)=1i-r.

> (i — (0 qua areal number)) = 0.

—_ =
_ =
— O

N TN TN N N N N N
= =
= o
[\V] Ne)
N’ e e e N N N N

If for all j, r1, 7o such that j € Segi and r; = R1(j) and ro = Ra(j)
holds 71 < 73, then > R; < > Rs.

(113)  Suppose for all j, r1, ro such that j € Segi and r; = R1(j) and ro =
Rs(j) holds 71 < 7o and there exist j, 71, ro such that j € Segi and
r1 = R1(j) and 79 = Ry(j) and r; < ro. Then >" Ry < Y Ry.

(114)  If for all 4, r such that ¢ € Seg(len F') and r = F(i) holds 0 < r, then
0< Y F.

(115)  If for all ¢, r such that ¢ € Seg(len F') and r = F(i) holds 0 < r and

there exist ¢, r such that i € Seg(len F') and r = F(i) and 0 < r, then

0< Y F.

(116) 0 < S(°F).

(7)) X(r-F)=r-XF.

(118)  X(-F)=-XF.

(119)  Y(R1+ Ro) =3 R+ 3 Ra.

(120)  3(R1—Ro) =3 R — > Ra.

(121)  If >(3R) =0, then R =i — 0.

(122)  (Z(RieR2)? < Y (CR1) - L (Re).

Let F be a finite sequence of elements of R. The functor [] F' yields a real
number and is defined as follows:

[[F=Rr®F.

Next we state a number of propositions:

[
w
—_

For every element R of R holds [[R = 1.
[1(: — (1 quaareal number)) = 1.

There exists k such that & € Seg(len F') and F(k) = 0 if and only if
[[F =o.

[
w
[\

(123) [[F=w®F

(124) [lep =1

(125)  [I{r) =r

(126) TI(F~{r)) =T1F-»
(127)  [I(F " Fy) =11F - [1 F2
(128) TI((r)~F)=r-TIF
(129) H(’I“l,?"2> =T1°T2

(130) H(’I“l,T‘g,’l“3> = (7“1 . 7‘2) - T3.
(131)

(132)

(133)

—
w
w
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(134) I +jr—r) =l —7) - 11 — 7).
(135)  [I(-j—r) =110 — 1 — 7).

(136)  [1(i — 71 -7r2) = [1(E — 1) - T1(E ¥ r2).
(137)  II(R1e Re) =[] R -] Re.

(138) TI(r-R) =T1G — r)-T1R.

(139) TICR) = (ITR)*
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