
FORMALIZED MATHEMATICS

Vol.1, No.4, September–October 1990
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Summary. Some operations on the set of n-tuples of real numbers
are introduced. Addition, difference of such n-tuples, complement of a
n-tuple and multiplication of these by real numbers are defined. In these
definitions more general properties of binary operations applied to finite
sequences from [3] are used. Then the fact that certain properties are
satisfied by those operations is demonstrated directly from [3]. Moreover
some properties can be recognized as being those of real vector space.
Multiplication of n-tuples of real numbers and square power of n-tuple
of real numbers using for notation of some properties of finite sums and
products of real numbers are defined, followed by definitions of the finite
sum and product of n-tuples of real numbers using notions and proper-
ties introduced in [7]. A number of propositions and theorems on sum
and product of finite sequences of real numbers are proved. As a addi-
tional properties there are proved some properties of real numbers and
set representations of binary operations on real numbers.

MML Identifier: RVSUM 1.

The papers [8], [12], [5], [6], [1], [2], [13], [10], [9], [11], [4], [3], and [7] provide
the terminology and notation for this paper. For simplicity we follow the rules:
i, j, k are natural numbers, r, r′, r1, r2, r3 are real numbers, x is an element
of � , F , F1, F2 are finite sequences of elements of � , and R, R1, R2, R3 are
elements of � i . Next we state the proposition

(1) −(r1 + r2) = (−r1) + (−r2).

Let us consider x. The functor @x yields a real number and is defined by:
@x = x.

The following propositions are true:

(2) @x = x.
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(3) 0 is a unity w.r.t. + � .

(4) 1+ � = 0.

(5) + � has a unity.

(6) + � is commutative.

(7) + � is associative.

The binary operation − � on � is defined as follows:
− � = + � ◦ (id � ,− � ).

We now state two propositions:

(8) − � = + � ◦ (id � ,− � ).

(9) − � (r1, r2) = r1 − r2.

The unary operation sqr � on � is defined as follows:
for every r holds sqr � (r) = r2.

The following propositions are true:

(10) For every unary operation u on � holds u = sqr � if and only if for every
r holds u(r) = r2.

(11) · � is commutative.

(12) · � is associative.

(13) 1 is a unity w.r.t. · � .

(14) 1· � = 1.

(15) · � has a unity.

(16) · � is distributive w.r.t. + � .

(17) sqr � is distributive w.r.t. · � .

Let us consider x. The functor ·x� yielding a unary operation on � is defined
by:

·x� = · � ◦(x, id � ).

Next we state several propositions:

(18) ·x� = · � ◦(x, id � ).

(19) ·r� (x) = r · x.

(20) ·r� is distributive w.r.t. + � .

(21) − � is an inverse operation w.r.t. + � .

(22) + � has an inverse operation.

(23) The inverse operation w.r.t.+ � = − � .

(24) − � is distributive w.r.t. + � .

Let us consider F1, F2. The functor F1 + F2 yields a finite sequence of
elements of � and is defined by:

F1 + F2 = + � ◦(F1, F2).

We now state two propositions:

(25) F1 + F2 = + � ◦(F1, F2).

(26) If i ∈ Seg(len(F1 + F2)) and r1 = F1(i) and r2 = F2(i), then (F1 +
F2)(i) = r1 + r2.



The Sum and Product of Finite Sequences of . . . 663

Let us consider i, R1, R2. Then R1 + R2 is an element of � i .

We now state several propositions:

(27) If j ∈ Seg i and r1 = R1(j) and r2 = R2(j), then (R1 +R2)(j) = r1 +r2.

(28) ε � + F = ε � and F + ε � = ε � .

(29) 〈r1〉 + 〈r2〉 = 〈r1 + r2〉.

(30) (i 7−→ r1) + (i 7−→ r2) = i 7−→ r1 + r2.

(31) R1 + R2 = R2 + R1.

(32) R1 + (R2 + R3) = (R1 + R2) + R3.

(33) R + (i 7−→ (0qua a real number)) = R and
R = (i 7−→ (0qua a real number)) + R.

Let us consider F . The functor −F yields a finite sequence of elements of �
and is defined as follows:

−F = − � · F .

We now state two propositions:

(34) −F = − � · F .

(35) If i ∈ Seg(len(−F )) and r = F (i), then (−F )(i) = −r.

Let us consider i, R. Then −R is an element of � i .

The following propositions are true:

(36) If j ∈ Seg i and r = R(j), then (−R)(j) = −r.

(37) −ε � = ε � .

(38) −〈r〉 = 〈−r〉.

(39) −(i 7−→ r) = i 7−→ −r.

(40) R + (−R) = i 7−→ 0 and (−R) + R = i 7−→ 0.

(41) If R1 + R2 = i 7−→ 0, then R1 = −R2 and R2 = −R1.

(42) −(−R) = R.

(43) If −R1 = −R2, then R1 = R2.

(44) If R1 + R = R2 + R or R1 + R = R + R2, then R1 = R2.

(45) −(R1 + R2) = (−R1) + (−R2).

Let us consider F1, F2. The functor F1 − F2 yielding a finite sequence of
elements of � is defined as follows:

F1 − F2 = − � ◦(F1, F2).

The following two propositions are true:

(46) F1 − F2 = − � ◦(F1, F2).

(47) If i ∈ Seg(len(F1 − F2)) and r1 = F1(i) and r2 = F2(i), then (F1 −
F2)(i) = r1 − r2.

Let us consider i, R1, R2. Then R1 − R2 is an element of � i .

One can prove the following propositions:

(48) If j ∈ Seg i and r1 = R1(j) and r2 = R2(j), then (R1−R2)(j) = r1−r2.

(49) ε � − F = ε � and F − ε � = ε � .

(50) 〈r1〉 − 〈r2〉 = 〈r1 − r2〉.
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(51) (i 7−→ r1) − (i 7−→ r2) = i 7−→ r1 − r2.

(52) R1 − R2 = R1 + (−R2).

(53) R − (i 7−→ (0qua a real number)) = R.

(54) (i 7−→ (0qua a real number)) − R = −R.

(55) R1 − (−R2) = R1 + R2.

(56) −(R1 − R2) = R2 − R1.

(57) −(R1 − R2) = (−R1) + R2.

(58) R − R = i 7−→ 0.

(59) If R1 − R2 = i 7−→ 0, then R1 = R2.

(60) (R1 − R2) − R3 = R1 − (R2 + R3).

(61) R1 + (R2 − R3) = (R1 + R2) − R3.

(62) R1 − (R2 − R3) = (R1 − R2) + R3.

(63) R1 = (R1 + R) − R.

(64) R1 = (R1 − R) + R.

Let us consider r, F . The functor r · F yields a finite sequence of elements
of � and is defined by:

r · F = ·r� ·F .

We now state two propositions:

(65) r · F = ·r� ·F .

(66) If i ∈ Seg(len(r · F )) and r′ = F (i), then (r · F )(i) = r · r′.

Let us consider i, r, R. Then r · R is an element of � i .

Next we state a number of propositions:

(67) If j ∈ Seg i and r′ = R(j), then (r · R)(j) = r · r′.

(68) r · ε � = ε � .

(69) r · 〈r1〉 = 〈r · r1〉.

(70) r1 · (i 7−→ r2) = i 7−→ r1 · r2.

(71) (r1 · r2) · R = r1 · (r2 · R).

(72) (r1 + r2) · R = r1 · R + r2 · R.

(73) r · (R1 + R2) = r · R1 + r · R2.

(74) 1 · R = R.

(75) 0 · R = i 7−→ 0.

(76) (−1) · R = −R.

Let us consider F . The functor 2F yielding a finite sequence of elements of
� is defined as follows:

2F = sqr � ·F .

Next we state two propositions:

(77) 2F = sqr � ·F .

(78) If i ∈ Seg(len(2F )) and r = F (i), then 2F (i) = r2.
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Let us consider i, R. Then 2R is an element of � i .

Next we state several propositions:

(79) If j ∈ Seg i and r = R(j), then 2R(j) = r2.

(80) 2ε � = ε � .
(81) 2〈r〉 = 〈r2〉.

(82) 2(i 7−→ r) = i 7−→ r2.

(83) 2(−R) = 2R.

(84) 2(r · R) = r2 · 2R.

Let us consider F1, F2. The functor F1•F2 yields a finite sequence of elements
of � and is defined by:

F1 • F2 = · � ◦(F1, F2).

One can prove the following two propositions:

(85) F1 • F2 = · � ◦(F1, F2).

(86) If i ∈ Seg(len(F1 •F2)) and r1 = F1(i) and r2 = F2(i), then F1 •F2(i) =
r1 · r2.

Let us consider i, R1, R2. Then R1 • R2 is an element of � i .

The following propositions are true:

(87) If j ∈ Seg i and r1 = R1(j) and r2 = R2(j), then R1 • R2(j) = r1 · r2.

(88) ε � • F = ε � and F • ε � = ε � .
(89) 〈r1〉 • 〈r2〉 = 〈r1 · r2〉.

(90) R1 • R2 = R2 • R1.

(91) R1 • (R2 • R3) = (R1 • R2) • R3.

(92) (i 7−→ r) • R = r · R and R • (i 7−→ r) = r · R.

(93) (i 7−→ r1) • (i 7−→ r2) = i 7−→ r1 · r2.

(94) r · R1 • R2 = (r · R1) • R2.

(95) r · R1 • R2 = (r · R1) • R2 and r · R1 • R2 = R1 • (r · R2).

(96) r · R = (i 7−→ r) • R.

(97) 2R = R • R.

(98) 2(R1 + R2) = (2R1 + 2 · R1 • R2) + 2R2.

(99) 2(R1 − R2) = (2R1 − 2 · R1 • R2) + 2R2.

(100) 2(R1 • R2) = (2R1) • (2R2).

Let F be a finite sequence of elements of � . The functor
∑

F yields a real
number and is defined by:

∑
F = + ��� F .

One can prove the following propositions:

(101)
∑

F = + �	� F .

(102)
∑

ε � = 0.

(103)
∑
〈r〉 = r.

(104)
∑

(F � 〈r〉) =
∑

F + r.
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(105)
∑

(F1 � F2) =
∑

F1 +
∑

F2.

(106)
∑

(〈r〉 � F ) = r +
∑

F .

(107)
∑
〈r1, r2〉 = r1 + r2.

(108)
∑
〈r1, r2, r3〉 = (r1 + r2) + r3.

(109) For every element R of � 0 holds
∑

R = 0.

(110)
∑

(i 7−→ r) = i · r.

(111)
∑

(i 7−→ (0qua a real number)) = 0.

(112) If for all j, r1, r2 such that j ∈ Seg i and r1 = R1(j) and r2 = R2(j)
holds r1 ≤ r2, then

∑
R1 ≤

∑
R2.

(113) Suppose for all j, r1, r2 such that j ∈ Seg i and r1 = R1(j) and r2 =
R2(j) holds r1 ≤ r2 and there exist j, r1, r2 such that j ∈ Seg i and
r1 = R1(j) and r2 = R2(j) and r1 < r2. Then

∑
R1 <

∑
R2.

(114) If for all i, r such that i ∈ Seg(len F ) and r = F (i) holds 0 ≤ r, then
0 ≤

∑
F .

(115) If for all i, r such that i ∈ Seg(len F ) and r = F (i) holds 0 ≤ r and
there exist i, r such that i ∈ Seg(len F ) and r = F (i) and 0 < r, then
0 <

∑
F .

(116) 0 ≤
∑

(2F ).

(117)
∑

(r · F ) = r ·
∑

F .

(118)
∑

(−F ) = −
∑

F .

(119)
∑

(R1 + R2) =
∑

R1 +
∑

R2.

(120)
∑

(R1 − R2) =
∑

R1 −
∑

R2.

(121) If
∑

(2R) = 0, then R = i 7−→ 0.

(122) (
∑

(R1 • R2))2 ≤
∑

(2R1) ·
∑

(2R2).

Let F be a finite sequence of elements of � . The functor
∏

F yields a real
number and is defined as follows:

∏
F = · ��� F .

Next we state a number of propositions:

(123)
∏

F = · ��� F .

(124)
∏

ε � = 1.

(125)
∏
〈r〉 = r.

(126)
∏

(F � 〈r〉) =
∏

F · r.

(127)
∏

(F1 � F2) =
∏

F1 ·
∏

F2.

(128)
∏

(〈r〉 � F ) = r ·
∏

F .

(129)
∏
〈r1, r2〉 = r1 · r2.

(130)
∏
〈r1, r2, r3〉 = (r1 · r2) · r3.

(131) For every element R of � 0 holds
∏

R = 1.

(132)
∏

(i 7−→ (1qua a real number)) = 1.

(133) There exists k such that k ∈ Seg(len F ) and F (k) = 0 if and only if
∏

F = 0.
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(134)
∏

(i + j 7−→ r) =
∏

(i 7−→ r) ·
∏

(j 7−→ r).

(135)
∏

(i · j 7−→ r) =
∏

(j 7−→
∏

(i 7−→ r)).

(136)
∏

(i 7−→ r1 · r2) =
∏

(i 7−→ r1) ·
∏

(i 7−→ r2).

(137)
∏

(R1 • R2) =
∏

R1 ·
∏

R2.

(138)
∏

(r · R) =
∏

(i 7−→ r) ·
∏

R.

(139)
∏

(2R) = (
∏

R)2.
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