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Summary. The notion of linear combination of vectors is intro-
duced as a function from the carrier of a vector space to the carrier of the
field. Definition of linear combination of set of vectors is also presented.
We define addition and substraction of combinations and multiplication
of combination by element of the field. Sum of finite set of vectors and
sum of linear combination is defined. We prove theorems that belong
rather to [5].

MML Identifier: VECTSP 6.

The articles [12], [4], [2], [1], [3], [11], [7], [6], [9], [5], [8], and [10] provide the
terminology and notation for this paper. Let D be a non-empty set. Then ∅D

is a subset of D.

For simplicity we adopt the following rules: x will be arbitrary, i will be a
natural number, G1 will be a field, V will be a vector space over G1, u, v, v1,
v2, v3 will be vectors of V , a, b, c will be elements of G1, F , G will be finite
sequences of elements of the carrier of the carrier of V , A, B will be subsets of
V , and f will be a function from the carrier of the carrier of V into the carrier
of G1. Let us consider G1, V . A subset of V is called a finite subset of V if:

(Def.1) it is finite.

We now state the proposition

(1) A is a finite subset of V if and only if A is finite.

In the sequel S, T are finite subsets of V . Let us consider G1, V , S, T . Then
S ∪ T is a finite subset of V . Then S ∩ T is a finite subset of V . Then S \ T is
a finite subset of V . Then S−. T is a finite subset of V .

Let us consider G1, V . The functor 0V yields a finite subset of V and is
defined as follows:

(Def.2) 0V = ∅.

One can prove the following proposition
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(2) 0V = ∅.

Let us consider G1, V , T . The functor
∑

T yields a vector of V and is defined
as follows:

(Def.3) there exists F such that rng F = T and F is one-to-one and
∑

T =
∑

F .

We now state two propositions:

(3) There exists F such that rng F = T and F is one-to-one and
∑

T =
∑

F .

(4) If rng F = T and F is one-to-one and v =
∑

F , then v =
∑

T .

Let us consider G1, V , v. Then {v} is a finite subset of V .

Let us consider G1, V , v1, v2. Then {v1, v2} is a finite subset of V .

Let us consider G1, V , v1, v2, v3. Then {v1, v2, v3} is a finite subset of V .

One can prove the following propositions:

(5)
∑

(0V ) = ΘV .

(6)
∑
{v} = v.

(7) If v1 6= v2, then
∑
{v1, v2} = v1 + v2.

(8) If v1 6= v2 and v2 6= v3 and v1 6= v3, then
∑
{v1, v2, v3} = (v1 + v2) + v3.

(9) If T misses S, then
∑

(T ∪ S) =
∑

T +
∑

S.

(10)
∑

(T ∪ S) = (
∑

T +
∑

S) −
∑

(T ∩ S).

(11)
∑

(T ∩ S) = (
∑

T +
∑

S) −
∑

(T ∪ S).

(12)
∑

(T \ S) =
∑

(T ∪ S) −
∑

S.

(13)
∑

(T \ S) =
∑

T −
∑

(T ∩ S).

(14)
∑

(T−. S) =
∑

(T ∪ S) −
∑

(T ∩ S).

(15)
∑

(T−. S) =
∑

(T \ S) +
∑

(S \ T ).

Let us consider G1, V . An element of (the carrier of
G1)the carrier of the carrier of V

is called a linear combination of V if:

(Def.4) there exists T such that for every v such that v /∈ T holds it(v) = 0G1
.

In the sequel K, L, L1, L2, L3 are linear combinations of V . Next we state
the proposition

(16) There exists T such that for every v such that v /∈ T holds L(v) = 0G1
.

In the sequel E is an element of (the carrier of G1)the carrier of the carrier of V .
We now state the proposition

(17) If there exists T such that for every v such that v /∈ T holds E(v) = 0G1
,

then E is a linear combination of V .

Let us consider G1, V , L. The functor supportL yields a finite subset of V
and is defined as follows:

(Def.5) supportL = {v : L(v) 6= 0G1
}.

The following propositions are true:

(18) supportL = {v : L(v) 6= 0G1
}.
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(19) x ∈ supportL if and only if there exists v such that x = v and L(v) 6=
0G1

.

(20) L(v) = 0G1
if and only if v /∈ supportL.

Let us consider G1, V . The functor 0LCV
yielding a linear combination of V

is defined as follows:

(Def.6) support0LCV
= ∅.

Next we state two propositions:

(21) L = 0LCV
if and only if supportL = ∅.

(22) 0LCV
(v) = 0G1

.

Let us consider G1, V , A. A linear combination of V is said to be a linear
combination of A if:

(Def.7) support it ⊆ A.

One can prove the following proposition

(23) If supportL ⊆ A, then L is a linear combination of A.

In the sequel l denotes a linear combination of A. Next we state several
propositions:

(24) support l ⊆ A.

(25) If A ⊆ B, then l is a linear combination of B.

(26) 0LCV
is a linear combination of A.

(27) For every linear combination l of ∅the carrier of the carrier of V holds l =
0LCV

.

(28) L is a linear combination of supportL.

Let us consider G1, V , F , f . The functor f · F yields a finite sequence of
elements of the carrier of the carrier of V and is defined by:

(Def.8) len(f · F ) = len F and for every i such that i ∈ dom(f · F ) holds
(f · F )(i) = f(πiF ) · πiF .

Next we state several propositions:

(29) len(f · F ) = len F .

(30) For every i such that i ∈ dom(f · F ) holds (f · F )(i) = f(πiF ) · πiF .

(31) If len G = len F and for every i such that i ∈ dom G holds G(i) =
f(πiF ) · πiF , then G = f · F .

(32) If i ∈ dom F and v = F (i), then (f · F )(i) = f(v) · v.

(33) f · εthe carrier of the carrier of V = εthe carrier of the carrier of V .

(34) f · 〈v〉 = 〈f(v) · v〉.

(35) f · 〈v1, v2〉 = 〈f(v1) · v1, f(v2) · v2〉.

(36) f · 〈v1, v2, v3〉 = 〈f(v1) · v1, f(v2) · v2, f(v3) · v3〉.

(37) f · (F � G) = (f · F ) � (f · G).

Let us consider G1, V , L. The functor
∑

L yielding a vector of V is defined
as follows:
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(Def.9) there exists F such that F is one-to-one and rng F = supportL and
∑

L =
∑

(L · F ).

The following propositions are true:

(38) There exists F such that F is one-to-one and rng F = supportL and
∑

L =
∑

(L · F ).

(39) If F is one-to-one and rng F = supportL and u =
∑

(L · F ), then
u =

∑
L.

(40) A 6= ∅ and A is linearly closed if and only if for every l holds
∑

l ∈ A.

(41)
∑

0LCV
= ΘV .

(42) For every linear combination l of ∅the carrier of the carrier of V holds
∑

l =
ΘV .

(43) For every linear combination l of {v} holds
∑

l = l(v) · v.

(44) If v1 6= v2, then for every linear combination l of {v1, v2} holds
∑

l =
l(v1) · v1 + l(v2) · v2.

(45) If supportL = ∅, then
∑

L = ΘV .

(46) If supportL = {v}, then
∑

L = L(v) · v.

(47) If supportL = {v1, v2} and v1 6= v2, then
∑

L = L(v1) · v1 + L(v2) · v2.

Let us consider G1, V , L1, L2. Let us note that one can characterize the
predicate L1 = L2 by the following (equivalent) condition:

(Def.10) for every v holds L1(v) = L2(v).

One can prove the following proposition

(48) If for every v holds L1(v) = L2(v), then L1 = L2.

Let us consider G1, V , L1, L2. The functor L1+L2 yields a linear combination
of V and is defined as follows:

(Def.11) for every v holds (L1 + L2)(v) = L1(v) + L2(v).

Next we state several propositions:

(49) If for every v holds L(v) = L1(v) + L2(v), then L = L1 + L2.

(50) (L1 + L2)(v) = L1(v) + L2(v).

(51) support(L1 + L2) ⊆ supportL1 ∪ supportL2.

(52) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 + L2 is a linear combination of A.

(53) L1 + L2 = L2 + L1.

(54) L1 + (L2 + L3) = (L1 + L2) + L3.

(55) L + 0LCV
= L and 0LCV

+ L = L.

Let us consider G1, V , a, L. The functor a · L yielding a linear combination
of V is defined by:

(Def.12) for every v holds (a · L)(v) = a · L(v).

The following propositions are true:

(56) If for every v holds K(v) = a · L(v), then K = a · L.
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(57) (a · L)(v) = a · L(v).

(58) If a 6= 0G1
, then support(a · L) = supportL.

(59) 0G1
· L = 0LCV

.

(60) If L is a linear combination of A, then a · L is a linear combination of
A.

(61) (a + b) · L = a · L + b · L.

(62) a · (L1 + L2) = a · L1 + a · L2.

(63) a · (b · L) = (a · b) · L.

(64) (1G1
) · L = L.

Let us consider G1, V , L. The functor −L yields a linear combination of V
and is defined by:

(Def.13) −L = (−1G1
) · L.

The following propositions are true:

(65) −L = (−1G1
) · L.

(66) (−L)(v) = −L(v).

(67) If L1 + L2 = 0LCV
, then L2 = −L1.

(68) support(−L) = supportL.

(69) If L is a linear combination of A, then −L is a linear combination of A.

(70) −(−L) = L.

Let us consider G1, V , L1, L2. The functor L1 −L2 yielding a linear combi-
nation of V is defined by:

(Def.14) L1 − L2 = L1 + (−L2).

Next we state a number of propositions:

(71) L1 − L2 = L1 + (−L2).

(72) (L1 − L2)(v) = L1(v) − L2(v).

(73) support(L1 − L2) ⊆ supportL1 ∪ supportL2.

(74) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 − L2 is a linear combination of A.

(75) L − L = 0LCV
.

(76)
∑

(L1 + L2) =
∑

L1 +
∑

L2.

(77)
∑

(a · L) = a ·
∑

L.

(78)
∑

(−L) = −
∑

L.

(79)
∑

(L1 − L2) =
∑

L1 −
∑

L2.

(80) (−1G1
) · a = −a.

(81) −1G1
6= 0G1

.

(82) −a = 0G1
− a.

(83) −a = −(1G1
) · a.

(84) (a − b) · c = a · c − b · c.

(85) If a + b = 0G1
, then b = −a.
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