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Summary. Part one is a supplement to papers [1], [2], and [3]. It
deals with concepts of selector functions, atomic, negative, conjunctive
formulas and etc., subformulas, free variables, satisfiability and models
(it is shown that axioms of the predicate and the quantifier calculus are
satisfied in an arbitrary set). In part two there are introduced notions of
variables occurring in a formula and replacing of variables in a formula.

MML Identifier: ZF_LANG1.

The terminology and notation used in this paper have been introduced in the
following articles: [9], [8], [5], [6], [4], [7], [1], and [2]. For simplicity we adopt
the following rules: p, p1, p2, q, 7, F', G, G1, G, H, Hy, Hy will be ZF-formulae,
T, T1, T2, Y, Y1, Y2, 2, 21, 22, S, t will be variables, a will be arbitrary, and X
will be a set. Next we state a number of propositions:
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Var(z=y) = x and Vars(z=y) = y.

Var(zey) = x and Vary(zey) = y.

Arg(—p) = p.

LeftArg(p A q) = p and RightArg(p A q) = q.
LeftArg(p V q) = p and RightArg(p V q) = q.
Antecedent(p = ¢) = p and Consequent(p = ¢q) = q.
LeftSide(p < ¢q) = p and RightSide(p < q) = q.
Bound(V;p) = = and Scope(V;p) = p.
Bound(3;p) = = and Scope(3;p) = p.
pVqg=-p=q.

If V,yp =V.q, then x = z and V,p = q.
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If 3, yp = d.q, then x = z and dyp = q.

V4 is universal and Bound(V, 4p) =  and Scope(V, yp) = Vyp.

3.0 is existential and Bound(3,,,p) = x and Scope(3; yp) = Iyp.

Va,y,2P = Va(Vy(V2p)) and Vay.p = Vo (V.p).

If Vi, 4191 = Vs yep2, then 21 = x5 and y1 = y2 and p1 = pa.

If Vo 1,201 = Vao o 20D2, then 21 = 22 and y; = y2 and 21 = 22 and
p1 = p2.

If Vg p = Viq, then x =t and V, .p = q.

If Vg0 =Visq, then x =t and y = s and V,p = q.

If 35, y1P1 = Jup,40P2, then 21 = x2 and y; = y2 and p1 = po.

Juy,2P = Jo(3y(3:p)) and Jpy2p = Fpy(32p).

If 34, 01,2021 = i yo,20D2, then 21 = 9 and y; = y2 and 2; = 22 and
p1 = p2.

If 3, y..p = 34q, then x =t and 3, .p = q.

If 3, 4.0 = 3i5q, then x =t and y = s and J.,p = q.

Vz.y,2p is universal and Bound(V, , .p) =  and Scope(V, y .p) =V, .p.

344,20 is existential and Bound(3, . .p) = = and Scope(3z,y,.p) = Iy.2p-

If H is disjunctive, then LeftArg(H) = Arg(LeftArg(Arg(H))).

If H is disjunctive, then RightArg(H) = Arg(RightArg(Arg(H))).

If H is conditional, then Antecedent(H) = LeftArg(Arg(H)).

If H is conditional, then Consequent(H ) = Arg(RightArg(Arg(H))).

If H is biconditional, then LeftSide(H) = Antecedent(LeftArg(H)) and
LeftSide(H) = Consequent(RightArg(H)).

If H is biconditional, then RightSide(H) = Consequent(LeftArg(H))
and RightSide(H) = Antecedent(RightArg(H)).

If H is existential, then Bound(H) = Bound(Arg(H)) and Scope(H) =
Arg(Scope(Arg(H))).

Arg(FV@G) = =FA—=G and Antecedent(FVG) = —F and Consequent(F'V
G) =G.

Arg(F = G) = F AN —G.

LeftArg(F < G) = F = G and RightArg(F < G) =G = F.

Arg(3,H) =V,—H.

If H is disjunctive, then H is conditional and H is negative and Arg(H)

is conjunctive and LeftArg(Arg(H)) is negative and RightArg(Arg(H)) is
negative.

If H is conditional, then H is negative and Arg(H) is conjunctive and
RightArg(Arg(H)) is negative.

If H is biconditional, then H is conjunctive and LeftArg(H) is condi-
tional and RightArg(H) is conditional.
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(41) If H is existential, then H is negative and Arg(H) is universal and
Scope(Arg(H)) is negative.

(42) It is not true that: H is an equality and H is a membership or H is
negative or H is conjunctive or H is universal and it is not true that: H is
a membership and H is negative or H is conjunctive or H is universal and
it is not true that: H is negative and H is conjunctive or H is universal
and it is not true that: H is conjunctive and H is universal.

(43) If F is a subformula of G, then len F' < len G.

(44)  Suppose F' is a proper subformula of G and G is a subformula of H
or I is a subformula of G and G is a proper subformula of H or F' is
a subformula of G and G is an immediate constituent of H or F' is an
immediate constituent of G and G is a subformula of H or F'is a proper
subformula of G and G is an immediate constituent of H or F is an
immediate constituent of G and G is a proper subformula of H. Then F
is a proper subformula of H.

(45)  H is not a proper subformula of H.

(46)  H is not an immediate constituent of H.

(47) It is not true that: G is a proper subformula of H and H is a subformula
of G.

(48) It is not true that: G is a proper subformula of H and H is a proper
subformula of G.

(49) It is not true that: G is a subformula of H and H is an immediate
constituent of G.

(50)  Itisnot true that: G is a proper subformula of H and H is an immediate
constituent of G.

(51) If =F is a subformula of H, then F is a proper subformula of H.

(52) If FAG is asubformula of H, then F' is a proper subformula of H and
G is a proper subformula of H.

(53) If V,H is a subformula of F', then H is a proper subformula of F.

(54) F A—G is a proper subformula of F' = G and F is a proper subformula
of F' = G and —G is a proper subformula of F' = G and G is a proper
subformula of F' = G.

(55) = FA-G is a proper subformula of F'\VG and —F' is a proper subformula
of F'V G and =G is a proper subformula of F'V G and F is a proper
subformula of F'V G and G is a proper subformula of F'V G.

(56) V,—H is a proper subformula of 3, H and —H is a proper subformula
of 4. H.

(57) G is a subformula of H if and only if G € Subformulae H.

(58) If G € Subformulae H, then Subformulae G C Subformulae H.

(59) H € Subformulae H.

(60)  Subformulae F' = G = (Subformulae F' U Subformulae G) U {-G, F' A

-G, F = G}.
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(61)  Subformulae F'VG = (Subformulae FF'USubformulae G)U{—G,—F,—~F A
~G,FV G).
(62)  Subformulae F' < G = (Subformulae F' U Subformulae G) U {=G, F' A
-G, F = G,~F,GN-F,G= F,F & G}.
Free(z=y) = {z,y}.
Free(zey) = {x,y}.

DD DO
T =~ W

Free(—p) = Freep.

(@)
(=)

q) = Free p U Freeq.

p) = Freep\ {z}.

Free(p A
Ve
pV q) = Freep U Free q.
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q) = Freep U Freeq.
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q) = Free p U Freeq.

p) = Freep \ {z}.
Free(V, ,p) = Freep \ {z,y}.
Free(Vy,y .p) = Freep \ {z, v, 2}.
Free(3;,,p) = Freep \ {z,y}.
Free(3,,y..p) = Freep \ {z,y, z}.

The scheme ZF_Induction deals with a unary predicate P, and states that:

for every H holds P[H]
provided the parameter satisfies the following conditions:

e for all 1, x9 holds P[z1=x2] and Plxjexs],

e for every H such that P[H]| holds P[-H],

o for all Hy, Hy such that P[H;] and P[H2] holds P[H; A Hy],

e for all H, x such that P[H| holds P[V,H].

For simplicity we adopt the following rules: M, E will denote non-empty
families of sets, e will denote an element of E, m, m’ will denote elements of
M, f, g will denote functions from VAR into E, and v, v’ will denote functions
from VAR into M. Let us consider E, f, x, e. The functor f(%) yields a function
from VAR into F and is defined by:

Free

N
—_

Free

4NN N
SN

(Def.1)  (f(%))(x) = e and for every y such that (f(%))(y) # f(y) holds x = y.

The following proposition is true
(76) g = f(%) if and only if g(x) = e and for every y such that g(y) # f(y)
holds =z = y.
Let D, Dy, Dy be non-empty sets, and let f be a function from D into D;.
Let us assume that Dy C Dy. The functor D[f] yields a function from D into
D5 and is defined as follows:

(Def2)  Dalf] = f.

Next we state several propositions:

(77)  For all non-empty sets D, D1, Do and for every function f from D into
Dy such that D; C Dy holds Ds[f] = f.

(78)  (0(Z)(Z) = () and o(35) = v.
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(19) 1oy, then (o(2))() = (0(L))(E).

(80) M,v =V, H if and only if for every m holds M,v(.-) = H.

(81) M,v =V, H if and only if M,v() = V. H.

(82) M,v = 3. H if and only if there exists m such that M,v(:7) = H.

(83) M,v =3, H if and only if M,v() = 3.H.

(84)  For all v, v' such that for every z such that « € Free H holds v'(z) =

v(z) holds if M,v = H, then M,v' = H.
(85)  Free H is finite.

In the sequel ¢, j will denote natural numbers. The following propositions
are true:

(86) If z; = xj, then i = j.
87)  There exists ¢ such that =z = z;.

(

(88)  x is a natural number and x € N.

(89) M,v | x=x.

(90) M E z=x.

(91) M, v [~ xex.

(92) M }~ zex and M = —zxex.

(93) M = z=y if and only if = y or there exists a such that {a} = M.

(94) M |= —xey if and only if z = y or for every X such that X € M holds
XNnM=0.

(95) If H is an equality, then M,v = H if and only if v(Vari(H)) =
v(Vara(H)).

(96) If H is a membership, then M,v = H if and only if v(Var;(H)) €
v(Vara(H)).

(97) If H is negative, then M,v = H if and only if M,v = Arg(H).
(98) If H is conjunctive, then M,v = H if and only if M,v |= LeftArg(H)
and M,v = RightArg(H).
(99) If H is universal, then M,v | H if and only if for every m holds
M,U(Bo%d(m) = Scope(H).
(100)  If H is disjunctive, then M,v = H if and only if M, v = LeftArg(H) or
M, v |= RightArg(H).
(101) If H is conditional, then M,v = H if and only if if
M ,v = Antecedent(H),
then M, v = Consequent(H ).
(102) If H is biconditional, then M,v = H if and only if M,v = LeftSide(H)
if and only if M,v = RightSide(H).
(103) If H is existential, then M,v = H if and only if there exists m such
that M,U(BO%CM{)) = Scope(H).
(104) M = 3, H if and only if for every v there exists m such that M,v(-) =
H.
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(105) If M = H, then M =3,H.
(106) M [=H if and only if M =V, H.
(107) It M | H, then M =3, H.
(108) M |=H if and only if M =V, , . H.
(109) If M | H, then M |= 3, H.
(110) MooE@Peqd=>pP=qgadME(Peq=((p=q).
(111) MooE@P<eq=(¢=p and M| (p&q) = (¢=p).
(112) ME@E=q9=((¢=r)=(p=r)).
(113) It M,vEp=qand M,v|=q=r, then M,v Ep=r.
(114) IfMEp=gqand M | q=r,then M Ep=r.
(115) Mo E{p@=>¢9A(g=>r)=pPp=>randME{pP=>q9A(qg=>1)=

(p=r).

(116) M,vfEp= (¢=p)and M Fp= (¢ = p).

(117) MuykE@E=@=r)=((=9=@=r)and M@= (¢=
r)=(p=4q) = (p=r)).

(118) M,vEpAgq=pand M EpAqg=p.

(119) M,vEpAgq=qand M EpAqg=q.

(120) M,vEpAgq=qgApand M =pAqg=qAp.

(121) M,oEp=pApand M E=p=pAp.

(122) MouoE@E=q9=(p=>r)=pP=qAr)and M E(p=q) = (p=

r)= (p=qAT)).

(123) M,vEp=pVgand M Ep=pVq.

(124) MwEgq=pVgand M Eq=pVyq.

(125) M,vEpVg=qVpand M =pVqg=qVp.

(126) M,vEp=pVpand M =Ep=pVp.

(127) Moo E@=r)=(¢=r)=(Ve=>r)and M =(p=r)= ((¢=

r)= (pVqg=r)).

(128) M,oE(@E=r)A(g=7r)= (pVg=r)and M = (p=r)A(¢=71)=>
(pVg=r).

(129) M,vE(p= —~q) = (¢= —p) and M |= (p = ~q) = (¢ = —p).

(130) M,vE-p=(p=q) and M F-p= (p = q).

(131) MovE@=g¢gAp=-g)=-pand M| (p=q)A(p= —q) = p.
(132) If M,v Ep= qand M,v |= p, then M,v | q.

(133) If M Ep= qand M [ p, then M = q.

(134) M,vE-(pAg)= -pV-gand M |F=(pAg) = —pV q.

(135) M,vE-pV-g=~(pAg)and M = —pV =g= =(pAq).

(136) M,vE=(pVqg) = -pA-gand M | —=(pVq) = -pA—q.

(137) M,vlE-pA=qg= =(pVgq) and M | —pA-=qg= =(pVq).

(138) M = (V.H) = H.
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(139) M &= H = (3,H).

(140)  If = ¢ Free Hy, then M |= (V,H; = Hs) = (Hy = (V;Ha)).
(141) If x ¢ Free Hy and M |= Hy = Ho, then M = H; = (V. Ha2).
(142)  If x ¢ Free Hy, then M = (V. H1 = Ha) = ((3.H1) = Ha).
(143) If x ¢ Free Hy and M |= Hy = Ha, then M |= (3,H;) = Ho.
(144) If M ': H = (vag), then M ': Hy, = H>.

(145) If M |= (3,H)) = Ha, then M |= Hy = Ho.

(146)  WEFF C 2ENNT

Let us consider H. The functor Varg yields a set and is defined by:
(Det.3)  Varg =rngH \ {0,1,2,3,4}.

We now state a number of propositions:

(147)  Varg =rngH \ {0,1,2,3,4}.

(148) x#0and z # 1 and z # 2 and = # 3 and x # 4.
(149)  z ¢ {0,1,2,3,4}.

(150) If a € Vary, then a #0 and a # 1 and a # 2 and a # 3 and a # 4.
(151)  Varg_, = {z,y}.

(152)  Varge, = {z,y}.

(153)  Var_pyg = Varg.

(154)  Vary,amg, = Varg, U Vargy,.

(155)  Vary, g = Varg U {z}.

(156)  Varpg,vm, = Varg, U Varg,.

(157)  Varg,—p, = Vargy, U Varg,.

(158)  Varpg,em, = Vargy, U Varg,.

(159)  Varg, gy = Varg U {z}.

(160)  Vary, ,g = Varyg U {z,y}.

(161)  Varg, g = Vary U {z,y}.

(162)  Vary, ,.g = Vary U {z,y, z}.

(163)  Varg, ,.g = Varg U {z,y, z}.

(164) Free H C Vary.

Let us consider H. Then Vary is a non-empty subset of VAR.
Let us consider H, x, y. The functor H (%) yields a function and is defined
by:
(Def.4)  dom(H(])) = dom H and for every a such that a € dom H holds if

H(a) =z, then (H(}))(a) =y but if H(a) # x, then (H({))(a) = H(a).

One can prove the following propositions:
(165)  For every function f holds f = H(Z) if and only if dom f = dom H and

v
for every a such that a € dom H holds if H(a) = z, then f(a) =y but if
H(a) # z, then f(a) = H(a).
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(166) mlsz(Z—;) = z1=2 if and only if x1 # y; and z2 # y; and z; = 21 and
zg =x9 or x1 = y1 and w9 # yp and z1 = yo and 29 = x9 or 1 # Yy and

T9 =1y1 and z1 = x1 and 23 = yo or 1 = y; and z9 = y; and z; = yo and

22 = Y2
(167)  There exist 21, 2o such that l’lziﬂg(%) = 21=29.
(168) mler(Z—;) = z1€29 if and only if z1 # y; and z9 # y; and z; = z1 and

zg =x9 or x1 = y1 and w9 # y; and z1 = yo and 29 = x9 or 1 # y; and
T9 =y1 and z1 = x1 and 23 = yo or 1 = y1 and z9 = y1 and z; = yo and
22 = Y2.
(169)  There exist 21, 22 such that xlezng(%) = 21€2.
(170)  —F = (-H)(3) if and only if F' = H ().
(171) H(%) € WFF.
Let us consider H, z, y. Then H(3) is a ZF-formula.
The following propositions are true:

172) Gy NGy = (Hy A Hp)(3) if and only if Gy = Hy(F) and Go = Ha().
173)  If z # @, then V.G = (V.H)({) if and only if G = H({).

174)  ¥,G = (Y. H)(Z) if and only if G = H().

175)  G1V Gy = (H1V Hy)(§) if and only if G1 = H:(}) and G2 = Ha(3).
176)  Gi= G = (Hy = H>)(}) if and only if Gy = Hy(§) and G2 = Ha().
177)  Gi1 e G2 = (Hy < H3)(7) if and only if G1 = H1(]) and G2 = Ha(%).

—
EN|
o

If 2 # @, then 3,G = (3.H)(7) if and only if G = H(3).
3G = (3.H)(3) if and only if G = H().
H is an equality if and only if H (%) is an equality.

— =
co o
)

H is a membership if and only if H (%) is a membership.
H is negative if and only if H (%) is negative.

—
(0]
[\)

H is conjunctive if and only if H(%) is conjunctive.
H is universal if and only if H(7) is universal.

If H is negative, then Arg(H(f)) = Arg(H)(3).

N TN N N N N N N N N N N N N /N
= —
oo 0o ~J
=~ W Nej

N e e e e e e e N N T N N N N

—
0]
(@)

186)  If H is conjunctive, then LeftArg(H(])) = LeftArg(H)(3) and
RightArg(H (7)) = RightArg(H)(7).

(187)  If H is universal, then Scope(H (3)) = Scope(H)() but if Bound(H) =
x, then Bound(H({)) = y but if Bound(H) # =, then Bound(H(})) =
Bound(H).

(188)  H is disjunctive if and only if H() is disjunctive.

(189)  H is conditional if and only if H(%) is conditional.

(190)  If H is biconditional, then H(%) is biconditional.

(191)  H is existential if and only if H (5) is existential.
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(192) If H is disjunctive, then LeftArg(H (
RightArg(H (7)) = RightArg(H)(7).

(193)  If H is conditional, then Antecedent(H (7)) = Antecedent(H)(7) and
Consequent(H (7)) = Consequent(H)(%).

(194)  If H is biconditional, then LeftSide(H (7)) = LeftSide(H)(}) and
RightSide(H (})) = RightSide(H)($).

(195)  If H is existential, then Scope(H ()) = Scope(H)(§) but if Bound(H) =

) = LeftArg(H)(%) and

<8

x, then Bound(H({)) = y but if Bound(H) # =, then Bound(H(%)) =
Bound(H).

(196) If z ¢ Vary, then H(]) = H.

(197) H(%)=H.

(198) If x # y, then = ¢ VarH(%).

(199) 1If x € Vary, then y € VarH(%).

(200)  If z #y, then (H(3))() = H(3).

(201) VarH(%) C (Varg \ {z}) U {y}.
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