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Summary. Some consequences of the reflection theorem are dis-
cussed. To formulate them the notions of elementary equivalence and
subsystems, and of models for a set of formulae are introduced. Besides,
the concept of cofinality of a ordinal number with second one is used.
The consequences of the reflection theorem (it is sometimes called the
Scott-Scarpellini lemma) are: (i) If A is a transfinite sequence as in
the reflection theorem (see [9]) and A = Ugeon Ag, then there is an in-
creasing and continuous mapping ¢ from On into On such that for every
critical number x the set A, is an elementary subsystem of A (A. < A).
(ii) There is an increasing continuous mapping ¢ : On — On such that
R, < V for each of its critical numbers s (V is the universal class and
On is the class of all ordinals belonging to V). (iii) There are ordinal
numbers « cofinal with w for which R, are models of ZF set theory. (iv)
For each set X from universe V' there is a model of ZF M which belongs
to V and has X as an element.

MML Identifier: ZFREFLE1.

The articles [18], [14], [15], [19], [17], [s], [13], (5], (6], [1], [11], [4}, (2}, [7], [12],
[16], [3], [10], and [9] provide the terminology and notation for this paper. We
follow a convention: H, S will be ZF-formulae, X, Y will be sets, and e, v will
be arbitrary. Let M be a non-empty family of sets, and let F' be a subset of
WEFF. The predicate M |= F' is defined by:

(Def.1)  for every H such that H € F holds M | H.
We now define two new predicates. Let M;, Ms be non-empty families of
sets. The predicate My = My is defined as follows:
(Def.2)  for every H such that Free H = () holds M; = H if and only if My = H.

Let us notice that this predicate is reflexive and symmetric. The predicate
M7 < M,y is defined as follows:
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(Def.3) M C Mj and for every H and for every function v from VAR into M;
holds M;,v |= H if and only if Ma, Ma[v] = H.

Let us observe that the predicate introduced above is reflexive.
The set Axyp is defined by:

(Def.4) e € Axyp if and only if e € WFF but e = the axiom of extensionality or
e = the axiom of pairs or e = the axiom of unions or e = the axiom of infinity
or e = theaxiom of powersets or there exists H such that {zg,z1,22}
misses Free H and e = the axiom of substitution for H.

Let us note that it makes sense to consider the following constant. Then
Axyyp is a subset of WFF.

Let D be a non-empty set. Then () is a subset of D.

For simplicity we follow a convention: M, My, Ms will be non-empty families
of sets, f will be a function, F, Fy, F5 will be subsets of WFF, W will be a
universal class, a, b will be ordinals of W, A, B, C will be ordinal numbers,
L will be a transfinite sequence of non-empty sets from W, and py, 21 will be
transfinite sequences of ordinals of W. We now state a number of propositions:

1) M E Dwrr.
) If Iy C Fy andM):Fg,thenM):Fl.
) IfM):FlandM):Fg,thenM):Flqu.
4) If M is a model of ZF, then M = Axzp.
) If M = Axzp and M is transitive, then M is a model of ZF.
) There exists S such that Free S = () and for every M holds M | S if
and only if M = H.
(7) My = M, if and only if for every H holds M; | H if and only if
M, = H.
(8) Mj = M> if and only if for every F holds M; |= F if and only if My = F.
(9) If My < My, then My = M.
(10)  If My is a model of ZF and M; = My and Ms is transitive, then Mj is
a model of ZF.

In this article we present several logical schemes. The scheme NonUnigBound-
Func deals with a set A, a set B, and a binary predicate P, and states that:

there exists a function f such that dom f = A and rng f C B and for every
e such that e € A holds Ple, f(e)]
provided the following requirement is met:

e for every e such that e € A there exists u such that v € B and

Ple, ul.

The scheme NonUniqFuncEzr deals with a set A, and a binary predicate P,
and states that:

there exists a function f such that dom f = A and for every e such that
e € A holds Ple, f(e)]
provided the following condition is met:

e for every e such that e € A there exists u such that Ple, u].
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The following propositions are true:
11) IfXCWand X < W, then X € W.
) Ifdom f €W and g f C W, then rng f € W.
13) IfX~Y or X =V, then 2¥ ~ 2" and 2¥ =2V
) Let D be anon-empty set. Let Py be a function from D into (On W)OnW.
Suppose D < W and for every x1 such that x; € rng P} holds z; is
increasing and xp is continuous. Then there exists p; such that py is
increasing and p; is continuous and p; (0w ) = Oy and for every a holds
pi1(succa) = sup({p1(a)Uuncurry P;°[ D, {succa} ]) and for every a such
that a # Oy and a is a limit ordinal number holds p;(a) = sup(p: | a).
(15)  For every sequence p; of ordinal numbers such that p; is increasing
holds C + p; is increasing.
(16)  For every sequence x; of ordinal numbers holds (C+xz1) | A=C+x; |
A.
(17)  For every sequence p; of ordinal numbers such that p; is increasing and
p1 is continuous holds C' + p; is continuous.

Let A, B be ordinal numbers. We say that A is cofinal with B if and only if:
(Def.5)  there exists a sequence z; of ordinal numbers such that domz; = B
and rngxy C A and =z is increasing and A = sup x7.
Let us notice that the predicate defined above is reflexive.

In the sequel ps will be a sequence of ordinal numbers. We now state a
number of propositions:

(18)  If py is increasing and A C B and B € dom po, then pa(A) C pa(B).
If e € rng ps, then e is an ordinal number.

(19)

(20)  rngps C supps.

(21) If Ais cofinal with B and B is cofinal with C, then A is cofinal with C'.
(22) If A is cofinal with B, then B C A.

(23) If A is cofinal with B and B is cofinal with A, then A = B.

(24) If dompy # 0 and dom py is a limit ordinal number and ps is increasing

and A is the limit of po, then A is cofinal with dom po.
(25)  succ A is cofinal with 1.
(26) If A is cofinal with succ B, then there exists C' such that A = succC.

(27) If A is cofinal with B, then A is a limit ordinal number if and only if B
is a limit ordinal number.

(28) If A is cofinal with O, then A = 0.

(29)  OnW is not cofinal with a.

(30) If we W and p; is increasing and p; is continuous, then there exists b
such that a € b and p;(b) = b.

(31) If w € W and p; is increasing and p; is continuous, then there exists a
such that b € a and p;1(a) = a and a is cofinal with w.
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(32) Suppose w € W and for all a, b such that a € b holds L(a) C L(b)
and for every a such that a # 0 and a is a limit ordinal number holds
L(a) = U(L | a). Then there exists p; such that p; is increasing and
p1 is continuous and for every a such that pi(a) = a and 0 # a holds
L(a) <UL.

(33) R,eW.

(34) If a # 0, then R, is a non-empty set from W.

(35) If w € W, then there exists p; such that p; is increasing and p; is
continuous and for all a, M such that pi(a) = a and 0 # a and M = R,
holds M < W.

(36) If w € W, then there exist b, M such that a € b and M = Ry, and
M<W.

(37) If w € W, then there exist a, M such that a is cofinal with w and
M=R, and M < W.

(38)  Suppose w € W and for all a, b such that a € b holds L(a) C L(b)
and for every a such that a # 0 and « is a limit ordinal number holds
L(a) = U(L | a). Then there exists p; such that p; is increasing and
p1 is continuous and for every a such that pi(a) = a and 0 # a holds
L(a)=UL.

(39) If w € W, then there exists p; such that p; is increasing and p; is
continuous and for all a, M such that pi(a) = a and 0 # a and M = R,

holds M = W.
(40) If w € W, then there exist b, M such that a € b and M = Ry, and
M=W.

(41) If w € W, then there exist a, M such that a is cofinal with w and
M=R,and M =W.

(42) If w € W, then there exist a, M such that a is cofinal with w and
M =R, and M is a model of ZF.

(43) If w € W and X € W, then there exists M such that X € M and
M € W and M is a model of ZF.
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