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Summary. Some consequences of the reflection theorem are dis-
cussed. To formulate them the notions of elementary equivalence and
subsystems, and of models for a set of formulae are introduced. Besides,
the concept of cofinality of a ordinal number with second one is used.
The consequences of the reflection theorem (it is sometimes called the
Scott-Scarpellini lemma) are: (i) If Aξ is a transfinite sequence as in
the reflection theorem (see [9]) and A =

⋃
ξ∈On

Aξ, then there is an in-

creasing and continuous mapping φ from On into On such that for every
critical number κ the set Aκ is an elementary subsystem of A (Aκ ≺ A).
(ii) There is an increasing continuous mapping φ : On → On such that
Rκ ≺ V for each of its critical numbers κ (V is the universal class and
On is the class of all ordinals belonging to V ). (iii) There are ordinal
numbers α cofinal with ω for which Rα are models of ZF set theory. (iv)
For each set X from universe V there is a model of ZF M which belongs
to V and has X as an element.

MML Identifier: ZFREFLE1.

The articles [18], [14], [15], [19], [17], [8], [13], [5], [6], [1], [11], [4], [2], [7], [12],
[16], [3], [10], and [9] provide the terminology and notation for this paper. We
follow a convention: H, S will be ZF-formulae, X, Y will be sets, and e, u will
be arbitrary. Let M be a non-empty family of sets, and let F be a subset of
WFF. The predicate M |= F is defined by:

(Def.1) for every H such that H ∈ F holds M |= H.

We now define two new predicates. Let M1, M2 be non-empty families of
sets. The predicate M1 ≡ M2 is defined as follows:

(Def.2) for every H such that Free H = ∅ holds M1 |= H if and only if M2 |= H.

Let us notice that this predicate is reflexive and symmetric. The predicate
M1 ≺ M2 is defined as follows:
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(Def.3) M1 ⊆ M2 and for every H and for every function v from VAR into M1

holds M1, v |= H if and only if M2,M2[v] |= H.

Let us observe that the predicate introduced above is reflexive.

The set AxZF is defined by:

(Def.4) e ∈ AxZF if and only if e ∈ WFF but e = the axiom of extensionality or
e = the axiom of pairs or e = the axiom of unions or e = the axiom of infinity
or e = the axiom of power sets or there exists H such that {x0, x1, x2}
misses Free H and e = the axiom of substitution for H.

Let us note that it makes sense to consider the following constant. Then
AxZF is a subset of WFF.

Let D be a non-empty set. Then ∅D is a subset of D.

For simplicity we follow a convention: M , M1, M2 will be non-empty families
of sets, f will be a function, F , F1, F2 will be subsets of WFF, W will be a
universal class, a, b will be ordinals of W , A, B, C will be ordinal numbers,
L will be a transfinite sequence of non-empty sets from W , and p1, x1 will be
transfinite sequences of ordinals of W . We now state a number of propositions:

(1) M |= ∅WFF.

(2) If F1 ⊆ F2 and M |= F2, then M |= F1.

(3) If M |= F1 and M |= F2, then M |= F1 ∪ F2.

(4) If M is a model of ZF, then M |= AxZF.

(5) If M |= AxZF and M is transitive, then M is a model of ZF.

(6) There exists S such that Free S = ∅ and for every M holds M |= S if
and only if M |= H.

(7) M1 ≡ M2 if and only if for every H holds M1 |= H if and only if
M2 |= H.

(8) M1 ≡ M2 if and only if for every F holds M1 |= F if and only if M2 |= F .

(9) If M1 ≺ M2, then M1 ≡ M2.

(10) If M1 is a model of ZF and M1 ≡ M2 and M2 is transitive, then M2 is
a model of ZF.

In this article we present several logical schemes. The scheme NonUniqBound-

Func deals with a set A, a set B, and a binary predicate P, and states that:
there exists a function f such that dom f = A and rng f ⊆ B and for every

e such that e ∈ A holds P[e, f(e)]
provided the following requirement is met:

• for every e such that e ∈ A there exists u such that u ∈ B and
P[e, u].

The scheme NonUniqFuncEx deals with a set A, and a binary predicate P,
and states that:

there exists a function f such that dom f = A and for every e such that
e ∈ A holds P[e, f(e)]
provided the following condition is met:

• for every e such that e ∈ A there exists u such that P[e, u].
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The following propositions are true:

(11) If X ⊆ W and X < W , then X ∈ W .

(12) If dom f ∈ W and rng f ⊆ W , then rng f ∈ W .

(13) If X ≈ Y or X = Y , then 2X ≈ 2Y and 2X = 2Y .

(14) Let D be a non-empty set. Let P1 be a function from D into (On W )On W .

Suppose D < W and for every x1 such that x1 ∈ rng P1 holds x1 is
increasing and x1 is continuous. Then there exists p1 such that p1 is
increasing and p1 is continuous and p1(0W ) = 0W and for every a holds
p1(succ a) = sup({p1(a)}∪uncurry P1

◦[: D, {succ a} :]) and for every a such
that a 6= 0W and a is a limit ordinal number holds p1(a) = sup(p1

�
a).

(15) For every sequence p1 of ordinal numbers such that p1 is increasing
holds C + p1 is increasing.

(16) For every sequence x1 of ordinal numbers holds (C +x1)
�
A = C +x1

�
A.

(17) For every sequence p1 of ordinal numbers such that p1 is increasing and
p1 is continuous holds C + p1 is continuous.

Let A, B be ordinal numbers. We say that A is cofinal with B if and only if:

(Def.5) there exists a sequence x1 of ordinal numbers such that dom x1 = B

and rng x1 ⊆ A and x1 is increasing and A = sup x1.

Let us notice that the predicate defined above is reflexive.

In the sequel p2 will be a sequence of ordinal numbers. We now state a
number of propositions:

(18) If p2 is increasing and A ⊆ B and B ∈ dom p2, then p2(A) ⊆ p2(B).

(19) If e ∈ rng p2, then e is an ordinal number.

(20) rng p2 ⊆ sup p2.

(21) If A is cofinal with B and B is cofinal with C, then A is cofinal with C.

(22) If A is cofinal with B, then B ⊆ A.

(23) If A is cofinal with B and B is cofinal with A, then A = B.

(24) If dom p2 6= 0 and dom p2 is a limit ordinal number and p2 is increasing
and A is the limit of p2, then A is cofinal with dom p2.

(25) succ A is cofinal with 1.

(26) If A is cofinal with succ B, then there exists C such that A = succ C.

(27) If A is cofinal with B, then A is a limit ordinal number if and only if B

is a limit ordinal number.

(28) If A is cofinal with 0, then A = 0.

(29) On W is not cofinal with a.

(30) If ω ∈ W and p1 is increasing and p1 is continuous, then there exists b

such that a ∈ b and p1(b) = b.

(31) If ω ∈ W and p1 is increasing and p1 is continuous, then there exists a

such that b ∈ a and p1(a) = a and a is cofinal with ω.
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(32) Suppose ω ∈ W and for all a, b such that a ∈ b holds L(a) ⊆ L(b)
and for every a such that a 6= 0 and a is a limit ordinal number holds
L(a) =

⋃
(L

�
a). Then there exists p1 such that p1 is increasing and

p1 is continuous and for every a such that p1(a) = a and 0 6= a holds
L(a) ≺

⋃
L.

(33) Ra ∈ W .

(34) If a 6= 0, then Ra is a non-empty set from W .

(35) If ω ∈ W , then there exists p1 such that p1 is increasing and p1 is
continuous and for all a, M such that p1(a) = a and 0 6= a and M = Ra

holds M ≺ W .

(36) If ω ∈ W , then there exist b, M such that a ∈ b and M = Rb and
M ≺ W .

(37) If ω ∈ W , then there exist a, M such that a is cofinal with ω and
M = Ra and M ≺ W .

(38) Suppose ω ∈ W and for all a, b such that a ∈ b holds L(a) ⊆ L(b)
and for every a such that a 6= 0 and a is a limit ordinal number holds
L(a) =

⋃
(L

�
a). Then there exists p1 such that p1 is increasing and

p1 is continuous and for every a such that p1(a) = a and 0 6= a holds
L(a) ≡

⋃
L.

(39) If ω ∈ W , then there exists p1 such that p1 is increasing and p1 is
continuous and for all a, M such that p1(a) = a and 0 6= a and M = Ra

holds M ≡ W .

(40) If ω ∈ W , then there exist b, M such that a ∈ b and M = Rb and
M ≡ W .

(41) If ω ∈ W , then there exist a, M such that a is cofinal with ω and
M = Ra and M ≡ W .

(42) If ω ∈ W , then there exist a, M such that a is cofinal with ω and
M = Ra and M is a model of ZF.

(43) If ω ∈ W and X ∈ W , then there exists M such that X ∈ M and
M ∈ W and M is a model of ZF.
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