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Summary. The article contains part 3 of the set of papers con-
cerning the theory of algebraic structures, based on the book [11] pp.
13-15 (pages 6-8 for English edition).

First the basic structure (F, 0, 1, T) is defined, where T is a ternary
operation on F (three-argument operations have been introduced in the
article [9]). Following it, the basic axioms of a Ternary Field are displayed,
the mode is defined and its existence proved. The basic properties of a
Ternary Field are also contemplated there.

MML Identifier: ALGSTR 3.

The articles [13], [12], [3], [4], [1], [2], [6], [5], [7], [8], [10], and [9] provide the
notation and terminology for this paper. We consider ternary field structures
which are systems

〈a carrier, a zero, a unity, a operation〉,
where the carrier is a non-empty set, the zero is an element of the carrier, the
unity is an element of the carrier, and the operation is a ternary operation on
the carrier.

In the sequel F denotes a ternary field structure. Let us consider F . A scalar
of F is an element of the carrier of F .

In the sequel a, b, c are scalars of F . Let us consider F , a, b, c. The functor

T(a, b, c) yields a scalar of F and is defined by:

(Def.1) T(a, b, c) = (the operation of F )(a, b, c).

Let us consider F . The functor 0F yielding a scalar of F is defined as follows:

(Def.2) 0F = the zero of F .

Let us consider F . The functor 1F yields a scalar of F and is defined by:

(Def.3) 1F = the unity of F .

The ternary operation T � on
�

is defined as follows:
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(Def.4) for all real numbers a, b, c holds T � (a, b, c) = a · b + c.

The ternary field structure
�

t is defined by:

(Def.5)
�
t = 〈

�
, 0, 1,T � 〉.

Let a, b, c be scalars of
�
t. The functor Te(a, b, c) yields a scalar of

�
t and

is defined by:

(Def.6) Te(a, b, c) = (the operation of
�
t)(a, b, c).

We now state several propositions:

(1) For every scalar a of
�
t holds a is a real number.

(2) For every real number a holds a is a scalar of
�

t.

(3) For all real numbers u, u′, v, v′ such that u 6= u′ there exists a real
number x such that u · x + v = u′ · x + v′.

(5)2 For all scalars u, a, v of
�
t and for all real numbers z, x, y such that

u = z and a = x and v = y holds T(u, a, v) = z · x + y.

(6) 0 = 0 �
t
.

(7) 1 = 1 �
t
.

A ternary field structure is called a ternary field if:

(Def.7) (i) 0it 6= 1it,
(ii) for every scalar a of it holds T(a, 1it, 0it) = a,
(iii) for every scalar a of it holds T(1it, a, 0it) = a,
(iv) for all scalars a, b of it holds T(a, 0it, b) = b,
(v) for all scalars a, b of it holds T(0it, a, b) = b,
(vi) for every scalars u, a, b of it there exists a scalar v of it such that

T(u, a, v) = b,
(vii) for all scalars u, a, v, v′ of it such that T(u, a, v) = T(u, a, v′) holds

v = v′,
(viii) for all scalars a, a′ of it such that a 6= a′ for every scalars b, b′ of it

there exist scalars u, v of it such that T(u, a, v) = b and T(u, a′, v) = b′,
(ix) for all scalars u, u′ of it such that u 6= u′ for every scalars v, v′ of it

there exists a scalar a of it such that T(u, a, v) = T(u′, a, v′),
(x) for all scalars a, a′, u, u′, v, v′ of it such that T(u, a, v) = T(u′, a, v′)

and T(u, a′, v) = T(u′, a′, v′) holds a = a′ or u = u′.

We adopt the following convention: F is a ternary field and a, a′, b, c, x, x′,
u, u′, v, v′ are scalars of F . We now state several propositions:

(8) If a 6= a′ and T(u, a, v) = T(u′, a, v′) and T(u, a′, v) = T(u′, a′, v′), then
u = u′ and v = v′.

(9) For every a, b, c there exists x such that T(a, b, x) = c.

(10) If T(a, b, x) = T(a, b, x′), then x = x′.

(11) If a 6= 0F , then for every b, c there exists x such that T(a, x, b) = c.

(12) If a 6= 0F and T(a, x, b) = T(a, x′, b), then x = x′.

(13) If a 6= 0F , then for every b, c there exists x such that T(x, a, b) = c.

2The proposition (4) was either repeated or obvious.
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(14) If a 6= 0F and T(x, a, b) = T(x′, a, b), then x = x′.
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