Finite Sums of Vectors in Left Module over Associative Ring ¹

Michał Muzalewski Warsaw University Białystok

Wojciech Skaba University of Toruń

Summary. Definition of a finite sequence of the vectors of Left Module over Associative Ring and some theorems concerning these sums. Written as a generalization of the article [11].

MML Identifier: LMOD_1.

The terminology and notation used here have been introduced in the following papers: [10], [3], [2], [4], [6], [12], [9], [5], [1], [7], and [8]. For simplicity we adopt the following convention: x is arbitrary, R is an associative ring, a is a scalar of R, V is a left module over R, and v, v_1 , v_2 , w, u are vectors of V. Let us consider R, V, x. The predicate $x \in V$ is defined by:

(Def.1) $x \in \text{the carrier of the carrier of } V$.

The following two propositions are true:

- (1) $x \in V$ if and only if $x \in$ the carrier of the carrier of V.
- (2) $v \in V$.

We adopt the following convention: F, G, H will denote finite sequences of elements of the carrier of the carrier of V, f will denote a function from \mathbb{N} into the carrier of the carrier of V, and i, j, k, n will denote natural numbers. Let us consider R, V, F. The functor $\sum F$ yielding a vector of V is defined by:

(Def.2) there exists f such that $\sum F = f(\ln F)$ and $f(0) = \Theta_V$ and for all j, v such that $j < \ln F$ and v = F(j+1) holds f(j+1) = f(j) + v.

One can prove the following propositions:

(3) If there exists f such that $u = f(\ln F)$ and $f(0) = \Theta_V$ and for all j, v such that $j < \ln F$ and v = F(j+1) holds f(j+1) = f(j) + v, then $u = \sum F$.

¹Supported by RPBP.III-24.C6

- (4) There exists f such that $\sum F = f(\ln F)$ and $f(0) = \Theta_V$ and for all j, v such that $j < \ln F$ and v = F(j+1) holds f(j+1) = f(j) + v.
- (5) If $k \in \operatorname{Seg} n$ and $\operatorname{len} F = n$, then F(k) is a vector of V.
- (6) If len F = len G + 1 and $G = F \upharpoonright \text{Seg len } G$ and v = F(len F), then $\sum F = \sum G + v$.
- (7) $\sum (F \cap G) = \sum F + \sum G$.
- (8) If len F = len G and len F = len H and for every k such that $k \in \text{Seg len } F$ holds $H(k) = \pi_k F + \pi_k G$, then $\sum H = \sum F + \sum G$.
- (9) If len F = len G and for all k, v such that $k \in \text{Seg len } F$ and v = G(k) holds $F(k) = a \cdot v$, then $\sum F = a \cdot \sum G$.
- (10) If len F = len G and for every k such that $k \in \text{Seg len } F$ holds $G(k) = a \cdot \pi_k F$, then $\sum G = a \cdot \sum F$.
- (11) If len F = len G and for all k, v such that $k \in \text{Seg len } F$ and v = G(k) holds F(k) = -v, then $\sum F = -\sum G$.
- (12) If len F = len G and for every k such that $k \in \text{Seg len } F$ holds $G(k) = -\pi_k F$, then $\sum G = -\sum F$.
- (13) If len F = len G and len F = len H and for every k such that $k \in \text{Seg len } F$ holds $H(k) = \pi_k F \pi_k G$, then $\sum H = \sum F \sum G$.
- (14) If rng $F = \operatorname{rng} G$ and F is one-to-one and G is one-to-one, then $\sum F = \sum G$.
- (15) For all F, G and for every permutation f of dom F such that len F = len G and for every i such that $i \in \text{dom } G$ holds G(i) = F(f(i)) holds $\sum F = \sum G$.
- (16) For every permutation f of dom F such that $G = F \cdot f$ holds $\sum F = \sum G$.
- (17) $\sum \varepsilon_{\text{the carrier of the carrier of }V} = \Theta_V.$
- (18) $\sum \langle v \rangle = v$.
- (19) $\sum \langle v, u \rangle = v + u$.
- (20) $\sum \langle v, u, w \rangle = v + u + w.$
- (21) $a \cdot \sum \varepsilon_{\text{the carrier of the carrier of } V} = \Theta_V.$
- $(22) a \cdot \sum \langle v \rangle = a \cdot v.$
- (23) $a \cdot \sum \langle v, u \rangle = a \cdot v + a \cdot u.$
- (24) $a \cdot \sum \langle v, u, w \rangle = a \cdot v + a \cdot u + a \cdot w.$
- (25) $-\sum \varepsilon_{\text{the carrier of the carrier of }V} = \Theta_V.$
- $(26) -\sum \langle v \rangle = -v.$
- $(27) -\sum \langle v, u \rangle = (-v) u.$
- $(28) -\sum \langle v, u, w \rangle = (-v) u w.$
- (29) $\sum \langle v, w \rangle = \sum \langle w, v \rangle$.
- (30) $\sum \langle v, w \rangle = \sum \langle v \rangle + \sum \langle w \rangle.$
- (31) $\sum \langle \Theta_V, \Theta_V \rangle = \Theta_V$.
- (32) $\sum \langle \Theta_V, v \rangle = v \text{ and } \sum \langle v, \Theta_V \rangle = v.$

- (33) $\sum \langle v, -v \rangle = \Theta_V \text{ and } \sum \langle -v, v \rangle = \Theta_V.$
 - We now state a number of propositions:
- (34) $\sum \langle v, -w \rangle = v w$ and $\sum \langle -w, v \rangle = v w$.
- (35) $\sum \langle -v, -w \rangle = -(v+w)$ and $\sum \langle -w, -v \rangle = -(v+w)$.
- (36) $\sum \langle u, v, w \rangle = \sum \langle u \rangle + \sum \langle v \rangle + \sum \langle w \rangle.$
- (37) $\sum \langle u, v, w \rangle = \sum \langle u, v \rangle + w.$
- (38) $\sum \langle u, v, w \rangle = \sum \langle v, w \rangle + u.$
- (39) $\sum \langle u, v, w \rangle = \sum \langle u, w \rangle + v.$
- (40) $\sum \langle u, v, w \rangle = \sum \langle u, w, v \rangle.$
- (41) $\sum \langle u, v, w \rangle = \sum \langle v, u, w \rangle.$
- $(42) \qquad \sum \langle u, v, w \rangle = \sum \langle v, w, u \rangle.$
- $(43) \qquad \sum \langle u, v, w \rangle = \sum \langle w, u, v \rangle.$
- $(45) \quad \sum \langle \Theta_V, \Theta_V, \Theta_V \rangle = \Theta_V.$
- (46) $\sum \langle \Theta_V, \Theta_V, v \rangle = v \text{ and } \sum \langle \Theta_V, v, \Theta_V \rangle = v \text{ and } \sum \langle v, \Theta_V, \Theta_V \rangle = v.$
- (47) $\sum \langle \Theta_V, u, v \rangle = u + v \text{ and } \sum \langle u, v, \Theta_V \rangle = u + v \text{ and } \sum \langle u, \Theta_V, v \rangle = u + v.$
- (48) If len F = 0, then $\sum F = \Theta_V$.
- (49) If len F = 1, then $\sum F = F(1)$.
- (50) If len F = 2 and $v_1 = F(1)$ and $v_2 = F(2)$, then $\sum F = v_1 + v_2$.
- (51) If len F = 3 and $v_1 = F(1)$ and $v_2 = F(2)$ and v = F(3), then $\sum F = v_1 + v_2 + v$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [7] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [8] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97–104, 1991.
- [9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [11] Wojciech A. Trybulec. Finite sums of vectors in vector space. Formalized Mathematics, 1(5):851–854, 1990.

[12] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.

 $Received\ October\ 22,\ 1990$