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Summary. A continuation of [16] and [13]. We prove a few the-
orems about real functions monotonic and continuous on interval, on
halfline and on the set of real numbers and continuity of the inverse func-
tion. At the begining of the paper we show some facts about topological
properties of the set of real numbers, halflines and intervals which rather
belong to [17]

MML Identifier: FCONT 3.

The notation and terminology used in this paper are introduced in the following
articles: [18], [5], [1], [2], [3], [20], [12], [6], [8], [15], [14], [4], [19], [9], [10], [17],
[11], [16], and [7]. For simplicity we follow the rules: X will denote a set, x0, r,
r1, g, p will denote real numbers, n will denote a natural number, a will denote
a sequence of real numbers, and f will denote a partial function from � to � .
Next we state several propositions:

(1) Ω 
 is closed.

(2) ∅ 
 is open.

(3) ∅ 
 is closed.

(4) Ω 
 is open.

(5) [r,+∞[ is closed.

(6) ]−∞, r] is closed.

(7) ]r,+∞[ is open.

(8) ]−∞, r[ is open.

Let us consider r. Then ]r,+∞[ is a real open subset. Then HL(r) is a real
open subset.

Let us consider p, g. Then ]p, g[ is a real open subset.

Next we state a number of propositions:

(9) 0 < r and g ∈ ]x0 − r, x0 + r[ if and only if there exists r1 such that
g = x0 + r1 and |r1| < r.
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(10) 0 < r and g ∈ ]x0 − r, x0 + r[ if and only if g − x0 ∈ ]−r, r[.

(11) ]−∞, p] = {p} ∪ ]−∞, p[.

(12) [p,+∞[ = {p} ∪ ]p,+∞[.

(13) If for every n holds a(n) = x0−
p

n+1
, then a is convergent and lim a = x0.

(14) If for every n holds a(n) = x0+
p

n+1
, then a is convergent and lim a = x0.

(15) If f is continuous in x0 and f(x0) 6= r and there exists a neighbourhood
N of x0 such that N ⊆ dom f , then there exists a neighbourhood N of
x0 such that N ⊆ dom f and for every g such that g ∈ N holds f(g) 6= r.

(16) If f is increasing on X or f is decreasing on X, then f
�
X is one-to-one.

(17) If f is increasing on X, then (f
�
X)−1 is increasing on f ◦ X.

(18) If f is decreasing on X, then (f
�
X)−1 is decreasing on f ◦ X.

(19) If X ⊆ dom f and f is monotone on X and there exists p such that
f ◦ X = ]−∞, p[, then f is continuous on X.

(20) If X ⊆ dom f and f is monotone on X and there exists p such that
f ◦ X = ]p,+∞[, then f is continuous on X.

(21) If X ⊆ dom f and f is monotone on X and there exists p such that
f ◦ X = ]−∞, p], then f is continuous on X.

(22) If X ⊆ dom f and f is monotone on X and there exists p such that
f ◦ X = [p,+∞[, then f is continuous on X.

(23) If X ⊆ dom f and f is monotone on X and there exist p, g such that
f ◦ X = ]p, g[, then f is continuous on X.

(24) If X ⊆ dom f and f is monotone on X and f ◦ X = � , then f is
continuous on X.

(25) If f is increasing on ]p, g[ or f is decreasing on ]p, g[ but ]p, g[ ⊆ dom f ,
then (f

�
]p, g[)−1 is continuous on f ◦ ]p, g[.

(26) If f is increasing on ]−∞, p[ or f is decreasing on ]−∞, p[ but ]−∞, p[ ⊆
dom f , then (f

�
]−∞, p[)−1 is continuous on f ◦ ]−∞, p[.

(27) If f is increasing on ]p,+∞[ or f is decreasing on ]p,+∞[ but ]p,+∞[ ⊆
dom f , then (f

�
]p,+∞[)−1 is continuous on f ◦ ]p,+∞[.

(28) If f is increasing on ]−∞, p] or f is decreasing on ]−∞, p] but ]−∞, p] ⊆
dom f , then (f

�
]−∞, p])−1 is continuous on f ◦ ]−∞, p].

(29) If f is increasing on [p,+∞[ or f is decreasing on [p,+∞[ but [p,+∞[ ⊆
dom f , then (f

�
[p,+∞[)−1 is continuous on f ◦ [p,+∞[.

(30) If f is increasing on Ω 
 or f is decreasing on Ω 
 but f is total, then
f−1 is continuous on rng f .

(31) If f is continuous on ]p, g[ but f is increasing on ]p, g[ or f is decreasing
on ]p, g[, then rng(f

�
]p, g[) is open.

(32) If f is continuous on ]−∞, p[ but f is increasing on ]−∞, p[ or f is
decreasing on ]−∞, p[, then rng(f

�
]−∞, p[) is open.

(33) If f is continuous on ]p,+∞[ but f is increasing on ]p,+∞[ or f is
decreasing on ]p,+∞[, then rng(f

�
]p,+∞[) is open.
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(34) If f is continuous on Ω 
 but f is increasing on Ω 
 or f is decreasing on
Ω 
 , then rng f is open.
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