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Summary. Some preliminary facts concerning completeness and
decidability problems for the Lambek calculus [13] are proved as well as
some theses and derived rules of the calculus itself.

MML Identifier: PRELAMB.

The articles [16], [7], [9], [10], [18], [6], [8], [12], [17], [15], [14], [5], [1], [11], [2],
[3], and [4] provide the terminology and notation for this paper. We consider
structures of the type algebra which are systems
(types, a left quotient, a right quotient, a inner product),
where the types constitute a non-empty set and the left quotient, the right
quotient, the inner product are a binary operation on the types.
Let s be a structure of the type algebra. A type of s is an element of the
types of s.
We adopt the following rules: s will denote a structure of the type algebra,
T, X, Y will denote finite sequences of elements of the types of s, and x, y, z
will denote types of s. We now define three new functors. Let us consider s, z,
y. The functor z \ y yields a type of s and is defined by:
(Def.1) '\ y = (the left quotient of s)(z, y).
The functor x/y yields a type of s and is defined as follows:
(Def.2)  x/y = (the right quotient of s)(z, y).
The functor z - y yields a type of s and is defined by:
(Def.3)  x-y = (the inner product of s)(x, y).

Let T7 be a tree, and let v be an element of T;. The branch degree of v is
defined by:

(Def.4)  thebranch degree of v = card succv.
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Let us consider s. A preproof of s is a tree decorated by [ | (the types of s)*,
the types of s{, NJ.
In the sequel T3 is a preproof of s. Let us consider s, T1, and let v be an
element of domT}. We say that v is correct if and only if:
(Def.5) (i)  thebranch degree of v = 0 and there exists = such that T4 (v); =
((z),z) if T1(v)2 =0,
(ii)  thebranch degree of v = 1 and there exist T, x, y such that T7(v); =
(T,z/y) and T (v~ (0))1 = (T~ (y),z) if T1(v)2 =1,
(iii)  thebranch degree of v = 1 and there exist T, x, y such that Ty(v); =
(T,y\ z) and Ty (v~ (0))1 = ((y) ~ T,x) if T1(v)2 = 2,
(iv)  thebranch degree of v = 2 and there exist 7', X, Y, z, y, z such that
Ti(v)1 = (X (z/y)"T"Y,z) and T1 (v~ (0))1 = (T,y) and T1 (v~ (1)1 =
(X7 (2) " Y, 2) if Th(v)2 =3,
(v)  thebranch degree of v = 2 and there exist 7', X, Y, x, y, z such that
Ty(0)1 = (X T~(y\2)"Y, 2) and Ty (v~ (0))1 = (T, ) and T (v ~ (1)); =
(X7 (2) " Y, 2) if Th(v)2 =4,
(vi)  thebranch degree of v = 1 and there exist X, z, y, Y such that T} (v); =
(X~ (z-y)~Y.2) and Ti(v ™ (0)1 = (X " (z) " (y) " Y,2) if T1(v)2 =5
(vii)  thebranch degree of v = 2 and there exist X, Y, x, y such that T4 (v); =
(X~ Y,z -y) and T(0" ()1 = (X,2) and Ty(v~ (1)1 = (V,y) if
Ti(v)2 = 6,
(viii)  thebranch degree of v = 2 and there exist T, X, Y, y, z such that
Ti(v)1 = (X" T"Y,2) and T1(v"(0))1 = (T,y) and Ti(v " (1)1 =
(X~ (y) " Y, 2) if Ty (v)g =T.
We now define three new attributes. Let us consider s. A type of s is left if:
(Def.6)  there exist x, y such that it = = \ y.
A type of s is right if:
(Def.7)  there exist x, y such that it = z/y.
A type of s is middle if:
(Def.8)  there exist x, y such that it =z - y.

—

Let us consider s. A type of s is primitive if:
(Def.9)  neither it is left nor it is right nor it is middle.

Let us consider s, and let T7 be a tree decorated by the types of s, and let us
consider x. We say that T} represents x if and only if the conditions (Def.10) is
satisfied.

(Def.10) (i) domT is finite,
(ii)  for every element v of dom7) holds thebranch degree ofv = 0 or
the branch degree of v = 2 but if the branch degree of v = 0, then T (v)
is primitive but if the branch degree of v = 2, then there exist y, z such
that Ty (v) = y/z or T1(v) =y \ z or T1(v) =y -z but T1(v "~ (0)) = y and
Ti(v™ (1)) =z

A structure of the type algebra is free if:
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(Def.11)  for no type x of it holds = is left right or x is left middle or z is right
middle and for every type x of it there exists a tree T} decorated by the
types of it such that for every tree Ty decorated by the types of it holds
T5 represents x if and only if 77 = T5.

Let us consider s, x. Let us assume that s is free. The representation of x
yields a tree decorated by the types of s and is defined by:

(Def.12)  for every tree T; decorated by the types of s holds T} represents z if
and only if the representation of x = T4.

Let us consider s, and let f be a finite sequence of elements of the types of
s, and let ¢ be a type of s. Then (f,t) is an element of [ (the types of s)*, the
types of s].
Let us consider s. A preproof of s is called a proof of s if:
(Def.13)  domit is a finite tree and for every element v of dom it holds v is correct.

In the sequel p is a proof of s and v is an element of domp. The following
propositions are true:

(1)  If thebranch degree of v = 1, then v ~ (0) € dom p.

(2) If thebranch degree of v = 2, then v ~ (0) € domp and v~ (1) € domp.

(3) If p(v)2 = 0, then there exists x such that p(v)1 = ((z), x).

(4) If p(v)2 = 1, then there exists an element w of dom p and there exist 7T,
x, y such that w = v~ (0) and p(v)1 = (T, x/y) and p(w)1 = (T~ (y), x).

(5) If p(v)2 = 2, then there exists an element w of dom p and there exist T,
x, y such that w = v~ (0) and p(v); = (T,y\z) and p(w)1 = ((y) "~ T, z).

(6) Suppose p(v)g = 3. Then there exist elements w, u of domp and there
exist T, X, Y, x, y, z such that w =v ~ (0) and u = v~ (1) and p(v); =
(X~ (2/y) " T"Y,z) and p(w)y = (T,y) and p(u)r = (X~ (z) 7Y, 2).

(7)  Suppose p(v)2 = 4. Then there exist elements w, u of dom p and there
exist T, X, Y, x, y, z such that w = v~ (0) and u = v ~ (1) and p(v); =
(X T (y\z) Y, 2) and p(w)1 = (T,y) and p(u)1 = (X " (z) " Y, z).

(8)  Suppose p(v)g = 5. Then there exists an element w of dom p and there
exist X, z, y, Y such that w = v~ (0) and p(v)1 = (X ~(x-y) " Y, z) and
pw)r =(X"(z) " (y) " Y, 2).

(9)  Suppose p(v)2 = 6. Then there exist elements w, u of dom p and there
exist X, Y, z, y such that w = v~ (0) and v = v~ (1) and p(v); =
(X Y,z y) and p(w)1 = (X,z) and p(u)1 = (V,y).

(10)  Suppose p(v)g = 7. Then there exist elements w, u of domp and
there exist T, X, Y, y, z such that w = v~ (0) and v = v~ (1) and
p(v)1 = (X ~T~Y,2) and p(w)y = (T, ) and p(u)1 = (X ~ (4) ~ ¥;2).
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(vi)  p(v) 5, or
(vii)  p(v)2 =6, or
(viii)  p(v)g =T.
We now define two new constructions. Let us consider s. A preproof of s is
cut-free if:
(Def.14)  for every element v of dom it holds it(v)g # 7.
The size w.r.t. s yielding a function from the types of s into N is defined by:
(Def.15)  for every x holds
(thesize w.r.t. s)(z) = card dom(the representation of x).

2
2

Let D be a non-empty set, and let T' be a finite sequence of elements of D,
and let f be a function from D into N. Then f-T is a finite sequence of elements
of R.

Let D be a non-empty set, and let f be a function from D into N, and let d
be an element of D. Then f(d) is a natural number.

Let us consider s, and let p be a proof of s. Let us assume that s is free. The
cut degree of p yields a natural number and is defined by:
(Def.16) (i)  there exist 7', X, Y, y, z such that p(e); = (X - T "~ Y,z) and
p((0))1 = (T,y) and p((1))1 = (X ~ (y) " Y, z) and thecut degree of p =
(thesize w.r.t. s)(y) + (thesize w.r.t. s)(z) + Y ((thesize w.r.t.s)- (X ~T"
Y))ifp(e)2 =7,
(ii) thecut degree of p = 0, otherwise.

We adopt the following convention: A denotes an non-empty set and a, a1,
as, b denote elements of A*. Let us consider s, A. A function from the types of
s into 24" is said to be a model of s if it satisfies the condition (Def.17).

(Def.17)  Given z, y. Then
(i) it(z-y)={a~b:acit(zx)ANbecit(y)},
(i) it(e/y) = {ar: Aylb € itly) = a1~ b€ it(@)]),
(i) it(y \ ) = {ag : \ylb € it(y) = b~ ag € it(x)]}.
We consider type structures which are systems
(structures of the type algebra; a derivability),
where the derivability is a non-empty relation between
(the types of the structure of the type algebra)*
and the types of the structure of the type algebra.
In the sequel s will denote a type structure and z will denote a type of s.
Let us consider s, and let f be a finite sequence of elements of the types of s,
and let us consider z. The predicate f — x is defined by:
(Def.18)  (f,z) € the derivability of s.
A type structure is called a calculus of syntactic types if it satisfies the
conditions (Def.19).

(Def.19) (i)  For every type x of it holds (z) — =,
(ii)  for every finite sequence T' of elements of the types of it and for all
types x, y of it such that 7'~ (y) — = holds T' — z/y,
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(iii)  for every finite sequence T' of elements of the types of it and for all
types x, y of it such that (y) ~ T — z holds T' — y \ z,

(iv) for all finite sequences T', X, Y of elements of the types of it and for
all types z, y, z of it such that T — y and X ~ (x) ° Y — 2z holds
X~ (z/y)y " T"Y — z,

(v)  for all finite sequences T', X, Y of elements of the types of it and for
all types z, y, z of it such that T — y and X ~ (z) ° Y — 2z holds
X "Ty\z)"Y — z,

(vi)  for all finite sequences X, Y of elements of the types of it and for all
types x, y, z of it such that X~ (x)~(y)"Y — z holds X~ (z-y)"Y — 2z,

(vii)  for all finite sequences X, Y of elements of the types of it and for all
types x, y of it such that X — z and Y — gy holds X °Y — z - y.

In the sequel s will be a calculus of syntactic types and x, y, z will be types
of s. The following propositions are true:

) (x/y) " (y) — wand (y) " (y\z) — 2.
) (@) —y/(x\y) and (z) — y/z\y.
) (z/y) — x/z/(y/2).
) w\z) —z\y\(z\z).
) If (x) — y, then (x/z) — y/z and (z\ ) — 2\ y.
17)  If (x) — y, then (z/y) — z/z and (y \ z) — =\ 2.
) W/(/z\y) —y/a
) If(z) — y, then €(the types of s) — y/z and € (the types of s) — T \ Y-
) E(the types of s) — /T and E(the types of 5) — L \z.
) E€(the types of 5) — Y/ ( \y)/z and € (the types of ) — 2\ (¥/2 \ y).
) Efine types of ) — ©/2/(/2)/(/4) and (e types ot ) — ¥\ 7\ (2 \
y\(z\z)).
(23) If €(the types of s) — 7 T then €(the types of s) — y/(y/z) and
€(the types of s) — L \y\y.
24) (=/(y/y)) — =
Let us consider s, x, y. The predicate x «+— y is defined as follows:
(Def.20)  (x) — y and (y) — x.

Next we state several propositions:

(25) =+ x.

(26) z/y «—z/(z/y\ ).

27)  z/(z-y) — z/y/=

(28)  (z-(y/2) — (z-y)/z

(29) (x) — (z-y)/y and (z) — y\y- =
(30) z-y-ze—z- (y-2).
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