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The terminology and notation used here are introduced in the following papers:
[15], [11], [2], [14], [16], [13], [7], [5], [6], [8], [10], [12], [1], [9], [3], [4], and [17].
For simplicity we follow a convention: z, y will be arbitrary, n, m, k will denote
natural numbers, ¢; will denote a tree decorated by [N, Nquaa non-empty
set ], w, s, t will denote finite sequences of elements of N, X will denote a set,
and D will denote a non-empty set. Next we state the proposition

(1) If X is finite, then card X = 2 if and only if there exist x, y such that

X ={z,y} and = # y.

Let Z be a tree. The root of Z yields an element of Z and is defined as

follows:

(Def.1)  the root of Z = e.

Let us consider D, and let T be a tree decorated by D. The root of T yields
an element of D and is defined by:

(Def.2)  the root of T' = T'(the root of domT).

Next we state a number of propositions:
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(n) = (m) if and only if n = m.

w

If n # m, then (n) and (m) ~ s are not comparable.

For every s such that s # € there exist w, n such that s = (n) ~w.
If n # m, then (n) £ (m) ~ s.

If n # m, then (n) £ (m) " s.

(n) £ (m).

If w+# ¢, then s < s~ w.

The elementary tree of 1 = {g, (0)}.

The elementary tree of 2 = {e, (0), (1)}.

For every tree Z and for all n, m such that n < m and (m) € Z holds
(n) € Z.
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(12) Ifw~t<w"s, thent <s.

(13)  t; € N*5[N, N quaa non-empty set .

(14)  For all trees Z, Z; and for every element z of Z holds z € Z(z/Z1).
(15)  For all trees Z, Z1, Z and for every element z of Z such that Z(z/Z;) =

Z(Z/ZQ) holds Z1 = ZQ.

(16)  For all trees Z, Zy, Zy decorated by D and for every element z of dom Z
such that Z(z/Z,) = Z(z/Zs) holds Z; = Zs.

(17)  For all trees Z1, Z5 and for every finite sequence p of elements of N such

that p € Z; for every element v of Z1(p/Z3) and for every element w of
71 such that v = w and w < p holds succv = succw.

(18)  For all trees Z1, Z5 and for every finite sequence p of elements of N such
that p € Z; for every element v of Z1(p/Z2) and for every element w of Z;
such that v = w and p and w are not comparable holds succv = succw.

(19)  For all trees Z3, Zs and for every finite sequence p of elements of N such
that p € Z; for every element v of Z1(p/Z2) and for every element w of
Zs such that v = p = w holds succv ~ succw.

(20)  For every tree Z; and for every finite sequence p of elements of N such
that p € Z; for every element v of Z; and for every element w of Z1 | p
such that v = p ™ w holds succv ~ succw.

(21)  For every tree Z and for every element p of Z such that Z is finite holds
succ p is finite.

(22)  For every tree Z such that Z is finite and the branch degree of the root
of Z=0holds card Z =1 and Z = {e}.

(23)  For every tree Z such that Z is finite and the branch degree of the root
of Z =1 holds succ(the root of Z) = {(0)}.

(24)  For every tree Z such that Z is finite and the branch degree of the root
of Z = 2 holds succ(the root of Z) = {(0), (1)}.

In the sequel s, w’ will be elements of N*. One can prove the following
propositions:
(25)  For every tree Z and for every element o of Z such that o # the root of
Zholds Zlo~{0"s :0"s € Z} and theroot of Z ¢ {0~ w' : 0" w' € Z}.
(26)  For every tree Z and for every element o of Z such that o # the root of
Z and Z is finite holds card(Z | 0) < card Z.

(27)  For every tree Z and for every element z of Z such that succ(the root of
Z) = {z} and Z is finite holds Z = (the elementary tree of 1)({(0)/(Z | 2)).

(28)  For every tree Z decorated by D and for every element z of dom Z such
that succ(the root of dom Z) = {2z} and dom Z is finite holds Z = ( the
elementary tree of 1 — the root of Z)((0)/(Z | 2)).

(29) For every tree Z and for all elements z1, zo of Z such that Z is finite
and 1 = (0) and zo = (1) and succ(the root of Z) = {z1,z2} holds
Z = (the elementary tree of 2)((0)/(Z | z1))((1)/(Z | x2)).



INTRODUCTION TO MODAL PROPOSITIONAL LOGIC 555

(30) Let Z be a tree decorated by D. Then for all elements x1, 9 of dom Z
such that dom Z is finite and x; = (0) and z9 = (1) and succ(the root of
dom Z) = {x1,z2} holds Z = ( the elementary tree of 2 — the root of

Z)(0)/(Z 1 21))((1)/(Z T 22)).

The non-empty set V is defined by:
(Def.3) VvV =1[{3}, N].

A variable is an element of V.

The non-empty set C is defined as follows:
(Defd4) C=1[{0,1,2}, NJ.

A conective is an element of C.

One can prove the following proposition

(31) CcnVv=0.
In the sequel p, ¢ denote variables. Let T be a tree, and let v be an element
of T'. Then the branch degree of v is a natural number.

Let D be a non-empty set. A non-empty set is called a non-empty set of
trees decorated by D if:

(Def.5)  for every x such that = € it holds x is a tree decorated by D.

Let Dy be a non-empty set, and let D be a non-empty set of trees decorated
by Dg. We see that the element of D is a tree decorated by Dy.

The non-empty set WFF of trees decorated by [N, N qua a non-empty set |
is defined by the condition (Def.6).

(Def.6) Let x be a tree decorated by [N, N qua a non-empty set]. Then x €
WFF if and only if the following conditions are satisfied:

(i) domuz is finite,

(ii)  for every element v of domz holds the branch degree of v < 2 but if
the branch degree of v = 0, then z(v) = (0, 0) or there exists k such that
xz(v) = (3, k) but if the branch degree of v = 1, then z(v) = (1, 0) or
x(v) = (1, 1) but if the branch degree of v = 2, then z(v) = (2, 0).

A MP-formula is an element of WFF.

In the sequel A, A1, B, By, C denote MP-formulae. Let us consider A, and

let @ be an element of dom A. Then A | a is a MP-formula.

Let a be an element of C. The functor Arity(a) yielding a natural number is

defined by:
(Def.7)  Arity(a) = ag.
Let D be a non-empty set, and let T', T7 be trees decorated by D, and let
p be a finite sequence of elements of N. Let us assume that p € dom7T. The
functor T'(p < T1) yields a tree decorated by D and is defined by:
(Def.8)  T(p—T1)=T(p/T1).
The following propositions are true:
(32)  (The elementary tree of 1 —— (1, 0))({0)/A) is a MP-formula.
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(33)  (The elementary tree of 1 — (1, 1))((0)/A) is a MP-formula.
(34)  (The elementary tree of 2 — (2, 0))((0)/A)((1)/B) is a MP-formula.

We now define three new functors. Let us consider A. The functor = A yields
a MP-formula and is defined as follows:

(Def.9) —A = ( the elementary tree of 1 —— (1, 0))((0)/A).
The functor OA yields a MP-formula and is defined as follows:
(Def.10) OA = ( the elementary tree of 1 —— (1, 1))((0)/A).

Let us consider B. The functor A A B yielding a MP-formula is defined as
follows:

(Def.11) A A B = ( the elementary tree of 2 — (2, 0))((0)/A)((1)/B).
We now define three new functors. Let us consider A. The functor ¢ A yields
a MP-formula and is defined as follows:
(Def.12) QA =-0-A.

Let us consider B. The functor A V B yields a MP-formula and is defined as
follows:

(Def.13) AV B =-(-AA-B).
The functor A = B yields a MP-formula and is defined by:
(Def.14) A= B=-(AA-B).
The following propositions are true:
(35)  The elementary tree of 0 — (3, n) is a MP-formula.
(36)  The elementary tree of 0 — (0, 0) is a MP-formula.
Let us consider p. The functor ®p yields a MP-formula and is defined by:
(Def.15)  ©p = the elementary tree of 0 — p.

We now state four propositions:
(37)  If ®p =%, then p = ¢.
(38) If -A=-B, then A= B.
(39) If0A=0B, then A= B.
(40) If ANB = A1 A By, then A= A; and B = B;.
The MP-formula VERUM is defined by:
(Def.16)  VERUM = the elementary tree of 0 — (0, 0).

Next we state several propositions:

(41)  carddom A # 0.

(42) If (c@ard domA = 1, then A = VERUM or there exists p such that
A="p.

(43)  If carddom A > 2, then there exists B such that A = =B or A = OB
or there exist B, C such that A =B AC.

(44) carddom A < card dom —A.

(45) carddom A < card dom OA.

(46) carddom A < carddom(A A B) and card dom B < card dom(A A B).



INTRODUCTION TO MODAL PROPOSITIONAL LOGIC 557

We now define four new attributes. A MP-formula is atomic if:

(Def.17)  there exists p such that it = @p.

A MP-formula is negative if:
(Def.18)  there exists A such that it = —A.

A MP-formula is necessitive if:
(Def.19)  there exists A such that it = OA.

A MP-formula is conjunctive if:
(Def.20)  there exist A, B such that it = A A B.

The scheme MP_Ind deals with a unary predicate P, and states that:

for every element A of WFF holds P[A4]
provided the parameter satisfies the following conditions:
P[VERUM],
for every variable p holds P[®p],
for every element A of WFF such that P[A] holds P[-A4],
for every element A of WFF such that P[A] holds P[OA],
for all elements A, B of WFF such that P[A] and P[B] holds
P[A A B].

The following propositions are true:
(47)  For every element A of WFF holds A = VERUM or A is a MP-formula
or A is a MP-formula or A is a MP-formula or A is a MP-formula.

(48) A = VERUM or there exists p such that A = ®p or there exists B such
that A = =B or there exists B such that A = OB or there exist B, C
such that A= BAC.

(49) ©®p# -Aand ®p#0A and ®p # AN B.

(50) —-A#0OBand ~A# BAC.

(61) OA#BAC.

(52) VERUM # ®p and VERUM # =4 and VERUM # 0OA and VERUM #
AN B.

The scheme MP_Func_Ex deals with a non-empty set A, an element B of
A, a unary functor F yielding an element of A, a unary functor G yielding an
element of A, a unary functor H yielding an element of A, and a binary functor
7 yielding an element of A and states that:

there exists a function f from WFF into A such that f(VERUM) = B and
for every variable p holds f(®p) = F(p) and for every element A of WFF and
for every element d of A such that f(A) = d holds f(—=A) = G(d) and for every
element A of WFF and for every element d of A such that f(A) = d holds
f(OA) = H(d) and for all elements A, B of WFF and for all elements d;, da of
A such that dy = f(A) and d2 = f(B) holds f(AA B) =Z(dy,ds)
for all values of the parameters.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.



558

2]
3]
[4]
[5]
(6]
[7]
8]
[9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]

ALICIA DE LA CRUZ

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.

Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
Grzegorz Bancerek. Konig’s lemma. Formalized Mathematics, 2(3):397-402, 1991.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Byliniski. Finite sequences and tuples of elements of a non-empty sets. Formal-
ized Mathematics, 1(3):529-536, 1990.

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

Czestaw Byliniski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97-105, 1990.

Wojciech Zielonka. Preliminaries to the Lambek calculus. Formalized Mathematics,
2(3):413-418, 1991.

Received September 30, 1990



