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The terminology and notation used here are introduced in the following papers:
[15], [11], [2], [14], [16], [13], [7], [5], [6], [8], [10], [12], [1], [9], [3], [4], and [17].
For simplicity we follow a convention: x, y will be arbitrary, n, m, k will denote
natural numbers, t1 will denote a tree decorated by [: � , � qua a non-empty
set :], w, s, t will denote finite sequences of elements of � , X will denote a set,
and D will denote a non-empty set. Next we state the proposition

(1) If X is finite, then card X = 2 if and only if there exist x, y such that
X = {x, y} and x 6= y.

Let Z be a tree. The root of Z yields an element of Z and is defined as
follows:

(Def.1) the root of Z = ε.

Let us consider D, and let T be a tree decorated by D. The root of T yields
an element of D and is defined by:

(Def.2) the root of T = T (the root of domT ).

Next we state a number of propositions:

(2) 〈n〉 = 〈m〉 if and only if n = m.

(3) If n 6= m, then 〈n〉 and 〈m〉 	 s are not comparable.

(4) For every s such that s 6= ε there exist w, n such that s = 〈n〉 	 w.

(5) If n 6= m, then 〈n〉 � 〈m〉 	 s.

(6) If n 6= m, then 〈n〉 � 〈m〉 	 s.

(7) 〈n〉 � 〈m〉.
(8) If w 6= ε, then s ≺ s 	 w.

(9) The elementary tree of 1 = {ε, 〈0〉}.

(10) The elementary tree of 2 = {ε, 〈0〉, 〈1〉}.

(11) For every tree Z and for all n, m such that n ≤ m and 〈m〉 ∈ Z holds
〈n〉 ∈ Z.
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(12) If w 	 t ≺ w 	 s, then t ≺ s.

(13) t1 ∈ � ∗ →̇[: � , � qua a non-empty set :].

(14) For all trees Z, Z1 and for every element z of Z holds z ∈ Z(z/Z1).

(15) For all trees Z, Z1, Z2 and for every element z of Z such that Z(z/Z1) =
Z(z/Z2) holds Z1 = Z2.

(16) For all trees Z, Z1, Z2 decorated by D and for every element z of domZ
such that Z(z/Z1) = Z(z/Z2) holds Z1 = Z2.

(17) For all trees Z1, Z2 and for every finite sequence p of elements of � such
that p ∈ Z1 for every element v of Z1(p/Z2) and for every element w of
Z1 such that v = w and w ≺ p holds succ v = succw.

(18) For all trees Z1, Z2 and for every finite sequence p of elements of � such
that p ∈ Z1 for every element v of Z1(p/Z2) and for every element w of Z1

such that v = w and p and w are not comparable holds succ v = succw.

(19) For all trees Z1, Z2 and for every finite sequence p of elements of � such
that p ∈ Z1 for every element v of Z1(p/Z2) and for every element w of
Z2 such that v = p 	 w holds succ v ≈ succw.

(20) For every tree Z1 and for every finite sequence p of elements of � such
that p ∈ Z1 for every element v of Z1 and for every element w of Z1 � p
such that v = p 	 w holds succ v ≈ succw.

(21) For every tree Z and for every element p of Z such that Z is finite holds
succ p is finite.

(22) For every tree Z such that Z is finite and the branch degree of the root
of Z = 0 holds card Z = 1 and Z = {ε}.

(23) For every tree Z such that Z is finite and the branch degree of the root
of Z = 1 holds succ(the root of Z) = {〈0〉}.

(24) For every tree Z such that Z is finite and the branch degree of the root
of Z = 2 holds succ(the root of Z) = {〈0〉, 〈1〉}.

In the sequel s′, w′ will be elements of � ∗ . One can prove the following
propositions:

(25) For every tree Z and for every element o of Z such that o 6= the root of
Z holds Z � o ≈ {o 	 s′ : o 	 s′ ∈ Z} and the root of Z /∈ {o 	 w′ : o 	 w′ ∈ Z}.

(26) For every tree Z and for every element o of Z such that o 6= the root of
Z and Z is finite holds card(Z � o) < card Z.

(27) For every tree Z and for every element z of Z such that succ(the root of
Z) = {z} and Z is finite holds Z = (the elementary tree of 1)(〈0〉/(Z � z)).

(28) For every tree Z decorated by D and for every element z of domZ such
that succ(the root of domZ) = {z} and domZ is finite holds Z = ( the
elementary tree of 1 7−→ the root of Z)(〈0〉/(Z � z)).

(29) For every tree Z and for all elements x1, x2 of Z such that Z is finite
and x1 = 〈0〉 and x2 = 〈1〉 and succ(the root of Z) = {x1, x2} holds
Z = (the elementary tree of 2)(〈0〉/(Z � x1))(〈1〉/(Z � x2)).
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(30) Let Z be a tree decorated by D. Then for all elements x1, x2 of domZ
such that domZ is finite and x1 = 〈0〉 and x2 = 〈1〉 and succ(the root of
dom Z) = {x1, x2} holds Z = ( the elementary tree of 2 7−→ the root of
Z)(〈0〉/(Z � x1))(〈1〉/(Z � x2)).

The non-empty set V is defined by:

(Def.3) V = [: {3}, � :].

A variable is an element of V.

The non-empty set C is defined as follows:

(Def.4) C = [: {0, 1, 2}, � :].

A conective is an element of C.

One can prove the following proposition

(31) C ∩ V = ∅.

In the sequel p, q denote variables. Let T be a tree, and let v be an element
of T . Then the branch degree of v is a natural number.

Let D be a non-empty set. A non-empty set is called a non-empty set of
trees decorated by D if:

(Def.5) for every x such that x ∈ it holds x is a tree decorated by D.

Let D0 be a non-empty set, and let D be a non-empty set of trees decorated
by D0. We see that the element of D is a tree decorated by D0.

The non-empty set WFF of trees decorated by [: � , � qua a non-empty set :]
is defined by the condition (Def.6).

(Def.6) Let x be a tree decorated by [: � , � qua a non-empty set :]. Then x ∈
WFF if and only if the following conditions are satisfied:

(i) domx is finite,
(ii) for every element v of domx holds the branch degree of v ≤ 2 but if

the branch degree of v = 0, then x(v) = 〈〈0, 0〉〉 or there exists k such that
x(v) = 〈〈3, k〉〉 but if the branch degree of v = 1, then x(v) = 〈〈1, 0〉〉 or
x(v) = 〈〈1, 1〉〉 but if the branch degree of v = 2, then x(v) = 〈〈2, 0〉〉.

A MP-formula is an element of WFF.

In the sequel A, A1, B, B1, C denote MP-formulae. Let us consider A, and
let a be an element of domA. Then A � a is a MP-formula.

Let a be an element of C. The functor Arity(a) yielding a natural number is
defined by:

(Def.7) Arity(a) = a1.

Let D be a non-empty set, and let T , T1 be trees decorated by D, and let
p be a finite sequence of elements of � . Let us assume that p ∈ dom T . The
functor T (p← T1) yields a tree decorated by D and is defined by:

(Def.8) T (p← T1) = T (p/T1).

The following propositions are true:

(32) (The elementary tree of 1 7−→ 〈〈1, 0〉〉)(〈0〉/A) is a MP-formula.
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(33) (The elementary tree of 1 7−→ 〈〈1, 1〉〉)(〈0〉/A) is a MP-formula.

(34) (The elementary tree of 2 7−→ 〈〈2, 0〉〉)(〈0〉/A)(〈1〉/B) is a MP-formula.

We now define three new functors. Let us consider A. The functor ¬A yields
a MP-formula and is defined as follows:

(Def.9) ¬A = ( the elementary tree of 1 7−→ 〈〈1, 0〉〉)(〈0〉/A).

The functor � A yields a MP-formula and is defined as follows:

(Def.10) � A = ( the elementary tree of 1 7−→ 〈〈1, 1〉〉)(〈0〉/A).

Let us consider B. The functor A ∧ B yielding a MP-formula is defined as
follows:

(Def.11) A ∧B = ( the elementary tree of 2 7−→ 〈〈2, 0〉〉)(〈0〉/A)(〈1〉/B).

We now define three new functors. Let us consider A. The functor � A yields
a MP-formula and is defined as follows:

(Def.12) � A = ¬ � ¬A.

Let us consider B. The functor A ∨ B yields a MP-formula and is defined as
follows:

(Def.13) A ∨B = ¬(¬A ∧ ¬B).

The functor A⇒ B yields a MP-formula and is defined by:

(Def.14) A⇒ B = ¬(A ∧ ¬B).

The following propositions are true:

(35) The elementary tree of 0 7−→ 〈〈3, n〉〉 is a MP-formula.

(36) The elementary tree of 0 7−→ 〈〈0, 0〉〉 is a MP-formula.

Let us consider p. The functor @p yields a MP-formula and is defined by:

(Def.15) @p = the elementary tree of 0 7−→ p.

We now state four propositions:

(37) If @p = @q, then p = q.

(38) If ¬A = ¬B, then A = B.

(39) If � A = � B, then A = B.

(40) If A ∧B = A1 ∧B1, then A = A1 and B = B1.

The MP-formula VERUM is defined by:

(Def.16) VERUM = the elementary tree of 0 7−→ 〈〈0, 0〉〉.

Next we state several propositions:

(41) card domA 6= 0.

(42) If card domA = 1, then A = VERUM or there exists p such that
A = @p.

(43) If card domA ≥ 2, then there exists B such that A = ¬B or A = � B
or there exist B, C such that A = B ∧ C.

(44) card domA < card dom¬A.

(45) card domA < card dom � A.

(46) card domA < card dom(A ∧B) and card domB < card dom(A ∧B).
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We now define four new attributes. A MP-formula is atomic if:

(Def.17) there exists p such that it = @p.

A MP-formula is negative if:

(Def.18) there exists A such that it = ¬A.

A MP-formula is necessitive if:

(Def.19) there exists A such that it = � A.

A MP-formula is conjunctive if:

(Def.20) there exist A, B such that it = A ∧B.

The scheme MP Ind deals with a unary predicate P, and states that:
for every element A of WFF holds P[A]

provided the parameter satisfies the following conditions:
• P[VERUM],
• for every variable p holds P[@p],
• for every element A of WFF such that P[A] holds P[¬A],
• for every element A of WFF such that P[A] holds P[ � A],
• for all elements A, B of WFF such that P[A] and P[B] holds
P[A ∧B].

The following propositions are true:

(47) For every element A of WFF holds A = VERUM or A is a MP-formula
or A is a MP-formula or A is a MP-formula or A is a MP-formula.

(48) A = VERUM or there exists p such that A = @p or there exists B such
that A = ¬B or there exists B such that A = � B or there exist B, C
such that A = B ∧ C.

(49) @p 6= ¬A and @p 6= � A and @p 6= A ∧B.

(50) ¬A 6= � B and ¬A 6= B ∧ C.

(51) � A 6= B ∧C.

(52) VERUM 6= @p and VERUM 6= ¬A and VERUM 6= � A and VERUM 6=
A ∧B.

The scheme MP Func Ex deals with a non-empty set A, an element B of
A, a unary functor F yielding an element of A, a unary functor G yielding an
element of A, a unary functor H yielding an element of A, and a binary functor
I yielding an element of A and states that:

there exists a function f from WFF into A such that f(VERUM) = B and
for every variable p holds f(@p) = F(p) and for every element A of WFF and
for every element d of A such that f(A) = d holds f(¬A) = G(d) and for every
element A of WFF and for every element d of A such that f(A) = d holds
f( � A) = H(d) and for all elements A, B of WFF and for all elements d1, d2 of
A such that d1 = f(A) and d2 = f(B) holds f(A ∧B) = I(d1, d2)
for all values of the parameters.
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