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Summary. Some properties of finite groups are proved. The no-
tion of cyclic group is defined next, some cyclic groups are given, for
example the group of integers with addition operations. Chosen proper-
ties of cyclic groups are proved next.
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The articles [19], [7], [12], [8], [13], [2], [3], [16], [6], [5], [18], [1], [11], [4], [15],
(28], [17], [21], [14], [23], [27], [22], [25], [26], [24], [20], [10], and [9] provide the
notation and terminology for this paper. For simplicity we adopt the following
rules: 71 denotes an element of Z, j; denotes an integer, p, s, k, n, [, m denote
natural numbers, x is arbitrary, G denotes a group, a, b denote elements of
G, and I denotes a finite sequence of elements of Z. We now state several
propositions:
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For every n such that n > 0 holds m mod n = (n -k + m) mod n.

For every n such that n > 0 holds (p+ s)modn = ((pmodn)+ s)modn.
For every n such that n > 0 holds (p+s)modn = (p+ (smodn)) modn.
For every k such that k& < n holds k mod n = k.

For every n such that n > 0 holds n mod n = 0.

For every n such that n > 0 holds 0 = 0 mod n.

Ifk+1=m,thenl <m.

For all k, I, m such that [l = m and m = k + [ holds £ = 0.

Let us consider n satisfying the condition: n > 0. The functor 7,, yields a
non-empty subset of N and is defined by:

(Def.1)

Zn:{p:p<n}'

We now state several propositions:
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For every n such that n > 0 holds if x € 7,,, then z is a natural number.
For every n such that n > 0 holds s € 7, if and only if s < n.

For every n such that n > 0 holds 7,, C N.

For every n such that n > 0 holds 0 € 7,,.

7, = {0}.

The binary operation +z on 7 is defined by:

(Def.2)

for all elements i1, i3 of Z holds (+z7)(i1, i2) = +gr(i1, i2).

The following propositions are true:
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For all integers 41, i holds (+7)(i1, i2) = i1 + i2.

For every iy such that ¢; = 0 holds ¢1 is a unity w.r.t. +z.
14, =0.

42z has a unity.

+7 is commutative.

+7 is associative.

Let F be a finite sequence of elements of Z. The functor ) F' yields an integer
and is defined by:

(Def.3)

EF:+Z®F-

Next we state several propositions:
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For all non-empty sets D, D; holds ep = ep,.

For every finite sequence I of elements of 7 holds [[((len I — a)!) =

a2l

Let G be a group, and let a be an element of G. Then {a} is a subset of G.

We now state several propositions:
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b € gr({a}) if and only if there exists j; such that b = a’1.

If G is finite, then a is not of order 0.

If G is finite, then ord(a) = ord(gr({a})).

If G is finite, then ord(a) | ord(G).

If G is finite, then a®4(%) = 1.

If G is finite, then (a™)~! = gord(@)~(nmod ord(&)),

For every strict group G such that ord(G) > 1 there exists an element

a of G such that a # 15.

For every strict group G such that G is finite and ord(G) = p and p is

prime and for every strict subgroup H of G holds H = {1} or H = G.

(Z,4+7) is a group.

The group Z 7 is defined as follows:

(Def.4)

Z+ — <Z,—|—Z>
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Let D be a non-empty set, and let D be a non-empty subset of D, and let
Dy be a non-empty subset of D;. We see that the element of Dy is an element
of Dl.

Let us consider n satisfying the condition: n > 0. The functor +,, yielding a
binary operation on 7., is defined by:

(Def.5)  for all elements k, [ of Z,, holds +,(k, ) = (k + [) mod n.

Next we state the proposition
(34)  For every n such that n > 0 holds (Z,, +,) is a group.

Let us consider n satisfying the condition: n > 0. The functor 7, yields a
strict group and is defined by:

(Def.6) 7} =(Zn,+n).
Next we state two propositions:
(35) 1z+=0.
(36)  For every n such that n > 0 holds 1,+ = 0.

Let h be an element of ZT. The functor ®h yields an integer and is defined
as follows:

(Def.7)  ©h =h.
Let h be an integer. The functor @A yielding an element of Z* is defined as
follows:
(Def.8)  ©h =h.
The following proposition is true
(37)  For every element h of Z+ holds h=! = —“h.

In the sequel G; will denote a subgroup of Z™ and h will denote an element
of Z7. Next we state two propositions:

(38)  For every h such that h = 1 and for every k holds h* = k.
(39)  For all h, j; such that h = 1 holds j; = h'L.

A strict group is said to be a cyclic group if:
(Def.9)  there exists an element a of it such that it = gr({a}).

One can prove the following propositions:

(40) {1}q is a cyclic group.

(41)  For every strict group G holds G is a cyclic group if and only if there
exists an element a of G such that for every element b of G there exists
41 such that b = a’!.

(42)  For every strict group G such that G is finite holds G is a cyclic group
if and only if there exists an element a of GG such that for every element
b of G there exists n such that b = a™.

(43)  For every strict group G such that G is finite holds G is a cyclic group
if and only if there exists an element a of G such that ord(a) = ord(G).

(44)  For every strict subgroup H of G such that G is finite and G is a cyclic
group and H is a subgroup of GG holds H is a cyclic group.
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For every strict group G such that G is finite and ord(G) = p and p is
prime holds G is a cyclic group.

For every n such that n > 0 there exists an element g of Z such that
for every element b of 7 there exists j; such that b = g*.

If G is a cyclic group, then G is an Abelian group.

77T is a cyclic group.

For every n such that n > 0 holds 7! is a cyclic group.
77T is an Abelian group.

For every n such that n > 0 holds 7, is an Abelian group.
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