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Summary. Sequences in metric spaces are defined. The article
contains definitions of bounded, convergent, Cauchy sequences. The sub-
sequences are introduced too. Some theorems concerning sequences are
proved.

MML Identifier: METRIC 6.

The terminology and notation used in this paper have been introduced in the
following articles: [11], [14], [4], [5], [3], [6], [13], [12], [7], [10], [8], [9], [1], and
[2]. For simplicity we follow a convention: X will be a metric space, x, y, z will
be elements of the carrier of X, V will be a subset of the carrier of X, A will
be a non-empty set, a will be an element of A, G will be a function from [:A,

A :] into � , k, n, m will be natural numbers, and r will be a real number. The
following propositions are true:

(1) |ρ(x, z) − ρ(y, z)| ≤ ρ(x, y).

(2) If G is a metric of A, then for all elements a, b of A holds 0 ≤ G(a, b).

Let us consider A, G. We say that G is not a pseudo metric if and only if:

(Def.1) for all elements a, b of A holds G(a, b) = 0 if and only if a = b.

Let us consider A, G. We say that G is symmetric if and only if:

(Def.2) for all elements a, b of A holds G(a, b) = G(b, a).

Let us consider A, G. We say that G satisfies triangle inequality if and only
if:

(Def.3) for all elements a, b, c of A holds G(a, c) ≤ G(a, b) + G(b, c).

Next we state three propositions:

(3) G is a metric of A if and only if G is not a pseudo metric and G is
symmetric and G satisfies triangle inequality.

(4) For every strict metric space X holds the distance of X is not a pseudo
metric and the distance of X is symmetric and the distance of X satisfies
triangle inequality.
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(5) G is a metric of A if and only if G is not a pseudo metric and for all
elements a, b, c of A holds G(b, c) ≤ G(a, b) + G(a, c).

Let us consider A, G. Let us assume that G is a metric of A. The functor
G̃A yielding a function from [:A, A :] into � is defined as follows:

(Def.4) for all elements a, b of A holds G̃A(a, b) = G(a, b)
1+G(a, b) .

The following proposition is true

(6) If G is a metric of A, then G̃A is a metric of A.

Let X be a metric space. A sequence of elements of X is defined by:

(Def.5) it is a function from � into the carrier of X.

Let X be a metric space. We see that the sequence of elements of X is a
function from � into the carrier of X.

Next we state the proposition

(7) For every function F from � into the carrier of X holds F is a sequence
of elements of X.

We follow the rules: S, S1, T denote sequences of elements of X, N1 denotes
an increasing sequence of naturals, and F denotes a function from � into the
carrier of X. The following propositions are true:

(8) F is a sequence of elements of X if and only if for every a such that
a ∈ � holds F (a) is an element of the carrier of X.

(9) For all S, T such that for every n holds S(n) = T (n) holds S = T .

(10) For every x there exists S such that rng S = {x}.

(11) If there exists x such that for every n holds S(n) = x, then there exists
x such that rng S = {x}.

Let us consider X, S. We say that S is constant if and only if:

(Def.6) there exists x such that for every n holds S(n) = x.

The following proposition is true

(13)1 S is constant if and only if there exists x such that rng S = {x}.

Let us consider X, S. We say that S is convergent if and only if:

(Def.7) there exists x such that for every r such that 0 < r there exists m such
that for every n such that m ≤ n holds ρ(S(n), x) < r.

Let us consider X, S, x. We say that S is convergent to x if and only if:

(Def.8) for every r such that 0 < r there exists m such that for every n such
that m ≤ n holds ρ(S(n), x) < r.

Let us consider X, S. We say that S satisfies the Cauchy condition if and
only if:

(Def.9) for every r such that 0 < r there exists m such that for all n, k such
that m ≤ n and m ≤ k holds ρ(S(n), S(k)) < r.

Let us consider X, V . We say that V is bounded if and only if:

1The proposition (12) has been removed.
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(Def.10) there exist r, x such that 0 < r and V ⊆ Ball(x, r).

Let us consider X, S. We say that S is bounded if and only if:

(Def.11) there exist r, x such that 0 < r and rng S ⊆ Ball(x, r).

Let us consider X, V , S. We say that V contains almost all sequence S if
and only if:

(Def.12) there exists m such that for every n such that m ≤ n holds S(n) ∈ V .

Let us consider X, s1, s2. We say that s1 is a subsequence of s2 if and only
if:

(Def.13) there exists N1 such that s1 = s2 · N1.

Next we state the proposition

(16)2 S is convergent to x if and only if for every r such that 0 < r there
exists m such that for every n such that m ≤ n holds ρ(S(n), x) < r.

We now state three propositions:

(20)3 S is bounded if and only if there exist r, x such that 0 < r and for every
n holds S(n) ∈ Ball(x, r).

(21) If S is convergent to x, then S is convergent.

(22) If S is convergent, then there exists x such that S is convergent to x.

Let us consider X, S, x. The functor ρ(S, x) yields a sequence of real numbers
and is defined as follows:

(Def.14) for every n holds (ρ(S, x))(n) = ρ(S(n), x).

Next we state the proposition

(23) ρ(S, x) is a sequence of real numbers if and only if for every n holds
(ρ(S, x))(n) = ρ(S(n), x).

Let us consider X, S, T . The functor ρ(S, T ) yields a sequence of real
numbers and is defined by:

(Def.15) for every n holds (ρ(S, T ))(n) = ρ(S(n), T (n)).

Next we state the proposition

(24) ρ(S, T ) is a sequence of real numbers if and only if for every n holds
(ρ(S, T ))(n) = ρ(S(n), T (n)).

Let us consider X, S. Let us assume that S is convergent. The functor lim S

yields an element of the carrier of X and is defined as follows:

(Def.16) for every r such that 0 < r there exists m such that for every n such
that m ≤ n holds ρ(S(n), lim S) < r.

One can prove the following propositions:

(25) If S is convergent, then lim S = x if and only if for every r such that 0 <

r there exists m such that for every n such that m ≤ n holds ρ(S(n), x) <

r.

2The propositions (14) and (15) have been removed.
3The propositions (17)–(19) have been removed.
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(26) If S is convergent to x, then limS = x.

(27) S is convergent to x if and only if S is convergent and limS = x.

(28) If S is convergent, then there exists x such that S is convergent to x

and lim S = x.

(29) S is convergent to x if and only if ρ(S, x) is convergent and lim ρ(S, x) =
0.

(30) If S is convergent to x, then for every r such that 0 < r holds Ball(x, r)
contains almost all sequence S.

(31) If for every r such that 0 < r holds Ball(x, r) contains almost all se-
quence S, then for every V such that x ∈ V and V ∈ the open set family
of X holds V contains almost all sequence S.

(32) If for every V such that x ∈ V and V ∈ the open set family of X holds
V contains almost all sequence S, then S is convergent to x.

(33) S is convergent to x if and only if for every r such that 0 < r holds
Ball(x, r) contains almost all sequence S.

(34) S is convergent to x if and only if for every V such that x ∈ V and
V ∈ the open set family of X holds V contains almost all sequence S.

(35) For every r such that 0 < r holds Ball(x, r) contains almost all sequence
S if and only if for every V such that x ∈ V and V ∈ the open set family
of X holds V contains almost all sequence S.

(36) If S is convergent and T is convergent, then ρ(limS, lim T ) = lim ρ(S, T ).

(37) If S is convergent to x and S is convergent to y, then x = y.

(38) If S is constant, then S is convergent.

(39) If S is convergent to x and S1 is a subsequence of S, then S1 is conver-
gent to x.

(40) If S satisfies the Cauchy condition and S1 is a subsequence of S, then
S1 satisfies the Cauchy condition.

(41) If S is convergent, then S satisfies the Cauchy condition.

(42) If S is constant, then S satisfies the Cauchy condition.

(43) If S is convergent, then S is bounded.

(44) If S satisfies the Cauchy condition, then S is bounded.
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