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Summary. Coherent Space web of coherent space and two cate-
gories: category of coherent spaces and category of tolerances on same
fixed set.

MML Identifier: COH SP.

The articles [8], [10], [11], [1], [5], [9], [6], [2], [7], [4], and [3] provide the notation
and terminology for this paper. We follow a convention: x, y will be arbitrary
and a, b, X, A will be sets. Let F be a non-empty set of functions. We see that
the element of F is a function.

1. Coherent Space and Web of Coherent Space

We now define three new constructions. A set is down-closed if:

(Def.1) for all a, b such that a ∈ it and b ⊆ a holds b ∈ it.

A set is binary complete if:

(Def.2) for every A such that A ⊆ it and for all a, b such that a ∈ A and b ∈ A

holds a ∪ b ∈ it holds
⋃

A ∈ it.

Let us observe that there exists a down-closed binary complete non-empty set.
A coherent space is a down-closed binary complete non-empty set.

In the sequel C, D are coherent spaces. Next we state four propositions:

(1) ∅ ∈ C.

(2) 2X is a coherent space.

(3) {∅} is a coherent space.

(4) If x ∈
⋃

C, then {x} ∈ C.

Let C be a coherent space. The functor Web(C) yields a tolerance of
⋃

C

and is defined by:
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(Def.3) for all x, y holds 〈〈x, y〉〉 ∈ Web(C) if and only if there exists X such
that X ∈ C and x ∈ X and y ∈ X.

In the sequel T is a tolerance of
⋃

C. One can prove the following proposi-
tions:

(5) T = Web(C) if and only if for all x, y holds 〈〈x, y〉〉 ∈ T if and only if
{x, y} ∈ C.

(6) a ∈ C if and only if for all x, y such that x ∈ a and y ∈ a holds
{x, y} ∈ C.

(7) a ∈ C if and only if for all x, y such that x ∈ a and y ∈ a holds 〈〈x,

y〉〉 ∈ Web(C).

(8) If for all x, y such that x ∈ a and y ∈ a holds {x, y} ∈ C, then a ⊆
⋃

C.

(9) If Web(C) = Web(D), then C = D.

(10) If
⋃

C ∈ C, then C = 2
⋃

C .

(11) If C = 2
⋃

C , then Web(C) = ∇⋃
C .

Let X be a set, and let E be a tolerance of X. The functor CohSp(E) yielding
a coherent space is defined by:

(Def.4) for every a holds a ∈ CohSp(E) if and only if for all x, y such that
x ∈ a and y ∈ a holds 〈〈x, y〉〉 ∈ E.

In the sequel E denotes a tolerance of X. Next we state four propositions:

(12) Web(CohSp(E)) = E.

(13) CohSp(Web(C)) = C.

(14) a ∈ CohSp(E) if and only if a is a set of mutually elements w.r.t. E.

(15) CohSp(E) = TolSets E.

2. Category of Coherent Spaces

Let us consider X. The functor CSp(X) yielding a non-empty set is defined as
follows:

(Def.5) CSp(X) = {x : x is a coherent space}, where x ranges over subsets of
2X .

In the sequel C, C1, C2 denote elements of CSp(X). Let us consider X, C.
The functor @C yielding a coherent space is defined as follows:

(Def.6) @C = C.

The following proposition is true

(16) If {x, y} ∈ C, then x ∈
⋃

C and y ∈
⋃

C.

Let us consider X. The functor FuncsCX yielding a non-empty set of func-
tions is defined by:

(Def.7) FuncsCX =
⋃
{(

⋃
y)

⋃
x}, where x ranges over elements of CSp(X), and

y ranges over elements of CSp(X).
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In the sequel g is an element of FuncsCX. The following proposition is true

(17) x ∈ FuncsCX if and only if there exist C1, C2 such that if
⋃

C2 = ∅,
then

⋃
C1 = ∅ and also x is a function from

⋃
C1 into

⋃
C2.

Let us consider X. The functor MapsCX yielding a non-empty set is defined
by:

(Def.8) MapsCX = {〈〈〈〈C, C3〉〉, f〉〉 : (
⋃

C3 = ∅ ⇒
⋃

C = ∅)∧f is a function from
⋃

C into
⋃

C3 ∧
∧

x,y[{x, y} ∈ C ⇒ {f(x), f(y)} ∈ C3]},
where C ranges over elements of CSp(X), and C3 ranges over elements of
CSp(X), and f ranges over elements of FuncsCX.

In the sequel l, l1, l2, l3 will be elements of MapsCX. The following two
propositions are true:

(18) There exist g, C1, C2 such that l = 〈〈〈〈C1, C2〉〉, g〉〉 and also if
⋃

C2 = ∅,
then

⋃
C1 = ∅ and g is a function from

⋃
C1 into

⋃
C2 and for all x, y

such that {x, y} ∈ C1 holds {g(x), g(y)} ∈ C2.

(19) For every function f from
⋃

C1 into
⋃

C2 such that if
⋃

C2 = ∅, then
⋃

C1 = ∅ and also for all x, y such that {x, y} ∈ C1 holds {f(x), f(y)} ∈
C2 holds 〈〈〈〈C1, C2〉〉, f〉〉 ∈ MapsCX.

We now define three new functors. Let us consider X, l. The functor graph(l)
yields a function and is defined by:

(Def.9) graph(l) = l2.

The functor dom l yielding an element of CSp(X) is defined by:

(Def.10) dom l = (l1)1.

The functor cod l yielding an element of CSp(X) is defined by:

(Def.11) cod l = (l1)2.

Next we state the proposition

(20) l = 〈〈〈〈dom l, cod l〉〉, graph(l)〉〉.

Let us consider X, C. The functor id(C) yields an element of MapsCX and
is defined by:

(Def.12) id(C) = 〈〈〈〈C, C〉〉, id⋃
C〉〉.

One can prove the following proposition

(21)
⋃

cod l 6= ∅ or
⋃

dom l = ∅ and also graph(l) is a function from
⋃

dom l

into
⋃

cod l and for all x, y such that {x, y} ∈ dom l holds
{(graph(l))(x), (graph(l))(y)} ∈ cod l.

Let us consider X, l1, l2. Let us assume that cod l1 = dom l2. The functor
l2 · l1 yielding an element of MapsCX is defined as follows:

(Def.13) l2 · l1 = 〈〈〈〈 dom l1, cod l2〉〉, graph(l2) · graph(l1)〉〉.

We now state four propositions:

(22) If dom l2 = cod l1, then graph((l2 · l1)) = graph(l2) · graph(l1) and
dom(l2 · l1) = dom l1 and cod(l2 · l1) = cod l2.

(23) If dom l2 = cod l1 and dom l3 = cod l2, then l3 · (l2 · l1) = (l3 · l2) · l1.
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(24) graph(id(C)) = id⋃
C and dom id(C) = C and cod id(C) = C.

(25) l · id(dom l) = l and id(cod l) · l = l.

We now define four new functors. Let us consider X. The functor DomCSp X

yields a function from MapsCX into CSp(X) and is defined as follows:

(Def.14) for every l holds (DomCSp X)(l) = dom l.

The functor CodCSp X yielding a function from MapsCX into CSp(X) is defined
by:

(Def.15) for every l holds (CodCSp X)(l) = cod l.

The functor ·CSp X yielding a partial function from [:MapsCX, MapsCX :] to
MapsCX is defined by:

(Def.16) for all l2, l1 holds 〈〈l2, l1〉〉 ∈ dom ·CSp X if and only if dom l2 = cod l1
and for all l2, l1 such that dom l2 = cod l1 holds (·CSp X)(〈〈l2, l1〉〉) = l2 · l1.

The functor IdCSp X yielding a function from CSp(X) into MapsCX is defined
by:

(Def.17) for every C holds (IdCSp X)(C) = id(C).

Next we state the proposition

(26) 〈CSp(X),MapsCX,DomCSp X,CodCSp X, ·CSp X, IdCSp X〉 is a category.

Let us consider X. The X-coherent space category yields a category and is
defined by:

(Def.18) the X-coherent space category
= 〈CSp(X),MapsCX,DomCSp X,CodCSp X, ·CSp X, IdCSp X〉.

3. Category of Tolerances

We now define two new functors. Let X be a set. The tolerances on X constitute
a non-empty set defined by:

(Def.19) the tolerances on X is the set of all tolerances of X.

Let X be a set. The tolerances on subsets of X constitute a non-empty set
defined as follows:

(Def.20) the tolerances on subsets of X =
⋃
{the tolerances on Y }, where Y

ranges over subsets of X.

In the sequel t denotes an element of the tolerances on subsets of X. The
following propositions are true:

(27) x ∈ the tolerances on subsets of X if and only if there exists A such
that A ⊆ X and x is a tolerance of A.

(28) ∇a ∈ the tolerances on a.

(29) △a ∈ the tolerances on a.

(30) � ∈ the tolerances on subsets of X.

(31) If a ⊆ X, then ∇a ∈ the tolerances on subsets of X.
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(32) If a ⊆ X, then △a ∈ the tolerances on subsets of X.

(33) ∇X ∈ the tolerances on subsets of X.

(34) △X ∈ the tolerances on subsets of X.

Let us consider X. The functor TOL(X) yields a non-empty set and is
defined by:

(Def.21) TOL(X) = {〈〈t, Y 〉〉 : t is a tolerance of Y }, where t ranges over ele-
ments of the tolerances on subsets of X, and Y ranges over elements of
2X .

In the sequel T , T1, T2 will denote elements of TOL(X). Next we state
several propositions:

(35) 〈〈 � , ∅〉〉 ∈ TOL(X).

(36) If a ⊆ X, then 〈〈△a, a〉〉 ∈ TOL(X).

(37) If a ⊆ X, then 〈〈∇a, a〉〉 ∈ TOL(X).

(38) 〈〈△X , X〉〉 ∈ TOL(X).

(39) 〈〈∇X , X〉〉 ∈ TOL(X).

Let us consider X, T . Then T2 is an element of 2X . Then T1 is a tolerance
of T2. Let us consider X. The functor FuncsTX yielding a non-empty set of
functions is defined as follows:

(Def.22) FuncsTX =
⋃
{(T32)T2}, where T ranges over elements of TOL(X),

and T3 ranges over elements of TOL(X).

In the sequel f denotes an element of FuncsTX. We now state the proposition

(40) x ∈ FuncsTX if and only if there exist T1, T2 such that if T22 = ∅, then
T12 = ∅ and also x is a function from T12 into T22.

Let us consider X. The functor MapsTX yielding a non-empty set is defined
by:

(Def.23) MapsTX = {〈〈〈〈T, T3〉〉, f〉〉 : (T32 = ∅ ⇒ T2 = ∅)∧f is a function from T2

into T32 ∧
∧

x,y[〈〈x, y〉〉 ∈ T1 ⇒ 〈〈f(x), f(y)〉〉 ∈ T31]},
where T ranges over elements of TOL(X), and T3 ranges over elements
of TOL(X), and f ranges over elements of FuncsTX.

In the sequel m, m1, m2, m3 denote elements of MapsTX. One can prove
the following two propositions:

(41) There exist f , T1, T2 such that m = 〈〈〈〈T1, T2〉〉, f〉〉 and also if T22 = ∅,
then T12 = ∅ and f is a function from T12 into T22 and for all x, y such
that 〈〈x, y〉〉 ∈ T11 holds 〈〈f(x), f(y)〉〉 ∈ T21.

(42) For every function f from T12 into T22 such that if T22 = ∅, then T12 =
∅ and also for all x, y such that 〈〈x, y〉〉 ∈ T11 holds 〈〈f(x), f(y)〉〉 ∈ T21

holds 〈〈〈〈T1, T2〉〉, f〉〉 ∈ MapsTX.

We now define three new functors. Let us consider X, m. The functor
graph(m) yielding a function is defined by:

(Def.24) graph(m) = m2.

The functor domm yields an element of TOL(X) and is defined by:
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(Def.25) domm = (m1)1.

The functor cod m yields an element of TOL(X) and is defined by:

(Def.26) cod m = (m1)2.

One can prove the following proposition

(43) m = 〈〈〈〈 dom m, cod m〉〉, graph(m)〉〉.

Let us consider X, T . The functor id(T ) yields an element of MapsTX and
is defined by:

(Def.27) id(T ) = 〈〈〈〈T, T 〉〉, id(T
2

)〉〉.

One can prove the following proposition

(44) (cod m)2 6= ∅ or (domm)2 = ∅ and also graph(m) is a function from
(domm)2 into (cod m)2 and for all x, y such that 〈〈x, y〉〉 ∈ (domm)1
holds 〈〈(graph(m))(x), (graph(m))(y)〉〉 ∈ (cod m)1.

Let us consider X, m1, m2. Let us assume that cod m1 = domm2. The
functor m2 · m1 yielding an element of MapsTX is defined by:

(Def.28) m2 · m1 = 〈〈〈〈dom m1, cod m2〉〉, graph(m2) · graph(m1)〉〉.

The following propositions are true:

(45) If domm2 = cod m1, then graph((m2 · m1)) = graph(m2) · graph(m1)
and dom(m2 · m1) = domm1 and cod(m2 · m1) = cod m2.

(46) If domm2 = cod m1 and domm3 = cod m2, then m3 · (m2 · m1) =
(m3 · m2) · m1.

(47) graph(id(T )) = id(T
2

) and dom id(T ) = T and cod id(T ) = T .

(48) m · id(domm) = m and id(cod m) · m = m.

We now define four new functors. Let us consider X. The functor DomX

yields a function from MapsTX into TOL(X) and is defined by:

(Def.29) for every m holds DomX(m) = domm.

The functor CodX yields a function from MapsTX into TOL(X) and is defined
as follows:

(Def.30) for every m holds CodX(m) = cod m.

The functor ·X yields a partial function from [: MapsTX, MapsTX :] to MapsTX

and is defined as follows:

(Def.31) for all m2, m1 holds 〈〈m2, m1〉〉 ∈ dom(·X) if and only if domm2 =
cod m1 and for all m2, m1 such that domm2 = cod m1 holds ·X(〈〈m2,

m1〉〉) = m2 · m1.

The functor IdX yields a function from TOL(X) into MapsTX and is defined
by:

(Def.32) for every T holds IdX(T ) = id(T ).

Next we state the proposition

(49) 〈TOL(X),MapsTX,DomX ,CodX , ·X , IdX〉 is a category.

Let us consider X. The X-tolerance category is a category defined by:

(Def.33) the X-tolerance category = 〈TOL(X),MapsTX,DomX ,CodX , ·X , IdX〉.
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