Coherent Space

Jarosław Kotowicz Warsaw University Białystok Konrad Raczkowski Warsaw University Białystok

Summary. Coherent Space web of coherent space and two categories: category of coherent spaces and category of tolerances on same fixed set.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{COH_SP}.$

The articles [8], [10], [11], [1], [5], [9], [6], [2], [7], [4], and [3] provide the notation and terminology for this paper. We follow a convention: x, y will be arbitrary and a, b, X, A will be sets. Let F be a non-empty set of functions. We see that the element of F is a function.

1. Coherent Space and Web of Coherent Space

We now define three new constructions. A set is down-closed if:

(Def.1) for all a, b such that $a \in it$ and $b \subseteq a$ holds $b \in it$.

A set is binary complete if:

(Def.2) for every A such that $A \subseteq it$ and for all a, b such that $a \in A$ and $b \in A$ holds $a \cup b \in it$ holds $\bigcup A \in it$.

Let us observe that there exists a down-closed binary complete non-empty set. A coherent space is a down-closed binary complete non-empty set.

In the sequel C, D are coherent spaces. Next we state four propositions:

(1)
$$\emptyset \in C$$
.

(2) 2^X is a coherent space.

- (3) $\{\emptyset\}$ is a coherent space.
- (4) If $x \in \bigcup C$, then $\{x\} \in C$.

Let C be a coherent space. The functor $\operatorname{Web}(C)$ yields a tolerance of $\bigcup C$ and is defined by:

255

C 1992 Fondation Philippe le Hodey ISSN 0777-4028 (Def.3) for all x, y holds $\langle x, y \rangle \in \text{Web}(C)$ if and only if there exists X such that $X \in C$ and $x \in X$ and $y \in X$.

In the sequel T is a tolerance of $\bigcup C$. One can prove the following propositions:

- (5) T = Web(C) if and only if for all x, y holds $\langle x, y \rangle \in T$ if and only if $\{x, y\} \in C$.
- (6) $a \in C$ if and only if for all x, y such that $x \in a$ and $y \in a$ holds $\{x, y\} \in C$.
- (7) $a \in C$ if and only if for all x, y such that $x \in a$ and $y \in a$ holds $\langle x, y \rangle \in Web(C)$.
- (8) If for all x, y such that $x \in a$ and $y \in a$ holds $\{x, y\} \in C$, then $a \subseteq \bigcup C$.
- (9) If $\operatorname{Web}(C) = \operatorname{Web}(D)$, then C = D.
- (10) If $\bigcup C \in C$, then $C = 2 \bigcup^C$.
- (11) If $C = 2 \bigcup^C$, then $\operatorname{Web}(C) = \nabla_{||C}$.

Let X be a set, and let E be a tolerance of X. The functor CohSp(E) yielding a coherent space is defined by:

(Def.4) for every a holds $a \in \operatorname{CohSp}(E)$ if and only if for all x, y such that $x \in a$ and $y \in a$ holds $\langle x, y \rangle \in E$.

In the sequel E denotes a tolerance of X. Next we state four propositions:

- (12) $\operatorname{Web}(\operatorname{CohSp}(E)) = E.$
- (13) $\operatorname{CohSp}(\operatorname{Web}(C)) = C.$
- (14) $a \in CohSp(E)$ if and only if a is a set of mutually elements w.r.t. E.
- (15) $\operatorname{CohSp}(E) = \operatorname{TolSets} E.$

2. CATEGORY OF COHERENT SPACES

Let us consider X. The functor CSp(X) yielding a non-empty set is defined as follows:

(Def.5) $CSp(X) = \{x : x \text{ is a coherent space}\}, \text{ where } x \text{ ranges over subsets of } 2^X.$

In the sequel C, C_1, C_2 denote elements of CSp(X). Let us consider X, C. The functor ${}^{@}C$ yielding a coherent space is defined as follows: (Def.6) ${}^{@}C = C$.

The following proposition is true

(16) If $\{x, y\} \in C$, then $x \in \bigcup C$ and $y \in \bigcup C$.

Let us consider X. The functor $\operatorname{Funcs}_{\mathbf{C}} X$ yielding a non-empty set of functions is defined by:

(Def.7) Funcs_C $X = \bigcup \{ (\bigcup y) \bigcup^x \}$, where x ranges over elements of CSp(X), and y ranges over elements of CSp(X).

In the sequel g is an element of $\operatorname{Funcs}_{\mathbf{C}} X$. The following proposition is true

(17) $x \in \operatorname{Funcs}_{C} X$ if and only if there exist C_1 , C_2 such that if $\bigcup C_2 = \emptyset$, then $\bigcup C_1 = \emptyset$ and also x is a function from $\bigcup C_1$ into $\bigcup C_2$.

Let us consider X. The functor $Maps_C X$ yielding a non-empty set is defined by:

(Def.8) Maps_C $X = \{ \langle \langle C, C_3 \rangle, f \rangle : (\bigcup C_3 = \emptyset \Rightarrow \bigcup C = \emptyset) \land f \text{ is a function from} \\ \bigcup C \text{ into } \bigcup C_3 \land \bigwedge_{x,y} [\{x, y\} \in C \Rightarrow \{f(x), f(y)\} \in C_3] \},$ where C ranges over elements of CSp(X), and C₃ ranges over elements of CSp(X), and f ranges over elements of Funcs_CX.

In the sequel l, l_1 , l_2 , l_3 will be elements of $Maps_C X$. The following two propositions are true:

- (18) There exist g, C_1, C_2 such that $l = \langle \langle C_1, C_2 \rangle, g \rangle$ and also if $\bigcup C_2 = \emptyset$, then $\bigcup C_1 = \emptyset$ and g is a function from $\bigcup C_1$ into $\bigcup C_2$ and for all x, ysuch that $\{x, y\} \in C_1$ holds $\{g(x), g(y)\} \in C_2$.
- (19) For every function f from $\bigcup C_1$ into $\bigcup C_2$ such that if $\bigcup C_2 = \emptyset$, then $\bigcup C_1 = \emptyset$ and also for all x, y such that $\{x, y\} \in C_1$ holds $\{f(x), f(y)\} \in C_2$ holds $\langle \langle C_1, C_2 \rangle, f \rangle \in \text{Maps}_C X$.

We now define three new functors. Let us consider X, l. The functor graph(l) yields a function and is defined by:

(Def.9) graph $(l) = l_2$.

The functor dom l yielding an element of CSp(X) is defined by:

 $(Def.10) \quad \mathrm{dom}\, l = (l_1)_1.$

The functor $\operatorname{cod} l$ yielding an element of $\operatorname{CSp}(X)$ is defined by:

 $(Def.11) \quad \operatorname{cod} l = (l_1)_2.$

Next we state the proposition

(20) $l = \langle \langle \operatorname{dom} l, \operatorname{cod} l \rangle, \operatorname{graph}(l) \rangle.$

Let us consider X, C. The functor id(C) yields an element of $Maps_C X$ and is defined by:

(Def.12) $\operatorname{id}(C) = \langle \langle C, C \rangle, \operatorname{id}_{||C} \rangle.$

One can prove the following proposition

(21) $\bigcup \operatorname{cod} l \neq \emptyset$ or $\bigcup \operatorname{dom} l = \emptyset$ and also graph(l) is a function from $\bigcup \operatorname{dom} l$ into $\bigcup \operatorname{cod} l$ and for all x, y such that $\{x, y\} \in \operatorname{dom} l$ holds $\{(\operatorname{graph}(l))(x), (\operatorname{graph}(l))(y)\} \in \operatorname{cod} l.$

Let us consider X, l_1 , l_2 . Let us assume that $\operatorname{cod} l_1 = \operatorname{dom} l_2$. The functor $l_2 \cdot l_1$ yielding an element of $\operatorname{Maps}_{\mathbf{C}} X$ is defined as follows:

(Def.13) $l_2 \cdot l_1 = \langle \langle \operatorname{dom} l_1, \operatorname{cod} l_2 \rangle, \operatorname{graph}(l_2) \cdot \operatorname{graph}(l_1) \rangle.$

We now state four propositions:

- (22) If dom $l_2 = \operatorname{cod} l_1$, then graph $((l_2 \cdot l_1)) = \operatorname{graph}(l_2) \cdot \operatorname{graph}(l_1)$ and $\operatorname{dom}(l_2 \cdot l_1) = \operatorname{dom} l_1$ and $\operatorname{cod}(l_2 \cdot l_1) = \operatorname{cod} l_2$.
- (23) If dom $l_2 = \operatorname{cod} l_1$ and dom $l_3 = \operatorname{cod} l_2$, then $l_3 \cdot (l_2 \cdot l_1) = (l_3 \cdot l_2) \cdot l_1$.

- (24) $\operatorname{graph}(\operatorname{id}(C)) = \operatorname{id}_{||C|}$ and $\operatorname{dom} \operatorname{id}(C) = C$ and $\operatorname{cod} \operatorname{id}(C) = C$.
- (25) $l \cdot id(\operatorname{dom} l) = l \text{ and } id(\operatorname{cod} l) \cdot l = l.$

We now define four new functors. Let us consider X. The functor $\text{Dom}_{CSp} X$ yields a function from $\text{Maps}_C X$ into CSp(X) and is defined as follows:

(Def.14) for every l holds $(\text{Dom}_{\text{CSp}} X)(l) = \text{dom} l$.

The functor $\operatorname{Cod}_{\operatorname{CSp}} X$ yielding a function from $\operatorname{Maps}_{\operatorname{C}} X$ into $\operatorname{CSp}(X)$ is defined by:

(Def.15) for every l holds $(\operatorname{Cod}_{\operatorname{CSp}} X)(l) = \operatorname{cod} l$.

The functor $\cdot_{\text{CSp}} X$ yielding a partial function from $[\text{Maps}_{\text{C}} X, \text{Maps}_{\text{C}} X]$ to $\text{Maps}_{\text{C}} X$ is defined by:

- (Def.16) for all l_2 , l_1 holds $\langle l_2, l_1 \rangle \in \operatorname{dom} \cdot_{\operatorname{CSp}} X$ if and only if $\operatorname{dom} l_2 = \operatorname{cod} l_1$ and for all l_2 , l_1 such that $\operatorname{dom} l_2 = \operatorname{cod} l_1$ holds $(\cdot_{\operatorname{CSp}} X)(\langle l_2, l_1 \rangle) = l_2 \cdot l_1$. The functor $\operatorname{Id}_{\operatorname{CSp}} X$ yielding a function from $\operatorname{CSp}(X)$ into $\operatorname{Maps}_{\mathbf{C}} X$ is defined by:
- (Def.17) for every C holds $(\operatorname{Id}_{\operatorname{CSp}} X)(C) = \operatorname{id}(C)$.

Next we state the proposition

- (26) $\langle \operatorname{CSp}(X), \operatorname{Maps}_{C}X, \operatorname{Dom}_{\operatorname{CSp}}X, \operatorname{Cod}_{\operatorname{CSp}}X, \operatorname{Id}_{\operatorname{CSp}}X \rangle$ is a category. Let us consider X. The X-coherent space category yields a category and is defined by:
- (Def.18) the X-coherent space category

 $= \langle \operatorname{CSp}(X), \operatorname{Maps}_{\mathcal{C}} X, \operatorname{Dom}_{\operatorname{CSp}} X, \operatorname{Cod}_{\operatorname{CSp}} X, \cdot_{\operatorname{CSp}} X, \operatorname{Id}_{\operatorname{CSp}} X \rangle.$

3. Category of Tolerances

We now define two new functors. Let X be a set. The tolerances on X constitute a non-empty set defined by:

(Def.19) the tolerances on X is the set of all tolerances of X.

Let X be a set. The tolerances on subsets of X constitute a non-empty set defined as follows:

(Def.20) the tolerances on subsets of $X = \bigcup \{$ the tolerances on $Y \}$, where Y ranges over subsets of X.

In the sequel t denotes an element of the tolerances on subsets of X. The following propositions are true:

- (27) $x \in$ the tolerances on subsets of X if and only if there exists A such that $A \subseteq X$ and x is a tolerance of A.
- (28) $\nabla_a \in \text{the tolerances on } a.$
- (29) $\triangle_a \in \text{the tolerances on } a.$
- (30) $\emptyset \in$ the tolerances on subsets of X.
- (31) If $a \subseteq X$, then $\nabla_a \in$ the tolerances on subsets of X.

- (32) If $a \subseteq X$, then $\triangle_a \in$ the tolerances on subsets of X.
- (33) $\nabla_X \in$ the tolerances on subsets of X.
- (34) $\triangle_X \in$ the tolerances on subsets of X.

Let us consider X. The functor TOL(X) yields a non-empty set and is defined by:

(Def.21) $\operatorname{TOL}(X) = \{ \langle t, Y \rangle : t \text{ is a tolerance of } Y \}$, where t ranges over elements of the tolerances on subsets of X, and Y ranges over elements of 2^X .

In the sequel T, T_1 , T_2 will denote elements of TOL(X). Next we state several propositions:

- (35) $\langle \emptyset, \emptyset \rangle \in \mathrm{TOL}(X).$
- (36) If $a \subseteq X$, then $\langle \triangle_a, a \rangle \in \text{TOL}(X)$.
- (37) If $a \subseteq X$, then $\langle \nabla_a, a \rangle \in \text{TOL}(X)$.
- (38) $\langle \triangle_X, X \rangle \in \mathrm{TOL}(X).$
- (39) $\langle \nabla_X, X \rangle \in \mathrm{TOL}(X).$

Let us consider X, T. Then T_2 is an element of 2^X . Then T_1 is a tolerance of T_2 . Let us consider X. The functor $\operatorname{Funcs}_T X$ yielding a non-empty set of functions is defined as follows:

(Def.22) Funcs_T $X = \bigcup \{ (T_{32})^T \mathbf{2} \}$, where T ranges over elements of TOL(X), and T_3 ranges over elements of TOL(X).

In the sequel f denotes an element of $\operatorname{Funcs}_{\mathrm{T}} X$. We now state the proposition

(40) $x \in \operatorname{Funcs}_{\mathrm{T}} X$ if and only if there exist T_1, T_2 such that if $T_{22} = \emptyset$, then $T_{12} = \emptyset$ and also x is a function from T_{12} into T_{22} .

Let us consider X. The functor $Maps_T X$ yielding a non-empty set is defined by:

(Def.23) Maps_T $X = \{ \langle \langle T, T_3 \rangle, f \rangle : (T_{32} = \emptyset \Rightarrow T_2 = \emptyset) \land f \text{ is a function from } T_2 \text{ into } T_{32} \land \bigwedge_{x,y} [\langle x, y \rangle \in T_1 \Rightarrow \langle f(x), f(y) \rangle \in T_{31}] \},$ where T ranges over elements of TOL(X), and T_3 ranges over elements

where T ranges over elements of TOL(X), and T_3 ranges over elements of TOL(X), and f ranges over elements of $Funcs_T X$.

In the sequel m, m_1, m_2, m_3 denote elements of $Maps_T X$. One can prove the following two propositions:

- (41) There exist f, T_1, T_2 such that $m = \langle \langle T_1, T_2 \rangle, f \rangle$ and also if $T_{22} = \emptyset$, then $T_{12} = \emptyset$ and f is a function from T_{12} into T_{22} and for all x, y such that $\langle x, y \rangle \in T_{11}$ holds $\langle f(x), f(y) \rangle \in T_{21}$.
- (42) For every function f from T_{12} into T_{22} such that if $T_{22} = \emptyset$, then $T_{12} = \emptyset$ and also for all x, y such that $\langle x, y \rangle \in T_{11}$ holds $\langle f(x), f(y) \rangle \in T_{21}$ holds $\langle \langle T_1, T_2 \rangle, f \rangle \in \text{Maps}_T X$.

We now define three new functors. Let us consider X, m. The functor graph(m) yielding a function is defined by:

(Def.24) $\operatorname{graph}(m) = m_2$.

The functor dom m yields an element of TOL(X) and is defined by:

(Def.25) dom $m = (m_1)_1$.

The functor $\operatorname{cod} m$ yields an element of $\operatorname{TOL}(X)$ and is defined by:

 $(Def.26) \quad \operatorname{cod} m = (m_1)_2.$

One can prove the following proposition

(43) $m = \langle \langle \operatorname{dom} m, \operatorname{cod} m \rangle, \operatorname{graph}(m) \rangle.$

Let us consider X, T. The functor id(T) yields an element of $Maps_T X$ and is defined by:

(Def.27) $\operatorname{id}(T) = \langle \langle T, T \rangle, \operatorname{id}_{(T_2)} \rangle.$

One can prove the following proposition

(44) $(\operatorname{cod} m)_{\mathbf{2}} \neq \emptyset$ or $(\operatorname{dom} m)_{\mathbf{2}} = \emptyset$ and also $\operatorname{graph}(m)$ is a function from $(\operatorname{dom} m)_{\mathbf{2}}$ into $(\operatorname{cod} m)_{\mathbf{2}}$ and for all x, y such that $\langle x, y \rangle \in (\operatorname{dom} m)_{\mathbf{1}}$ holds $\langle (\operatorname{graph}(m))(x), (\operatorname{graph}(m))(y) \rangle \in (\operatorname{cod} m)_{\mathbf{1}}$.

Let us consider X, m_1 , m_2 . Let us assume that $\operatorname{cod} m_1 = \operatorname{dom} m_2$. The functor $m_2 \cdot m_1$ yielding an element of $\operatorname{Maps}_T X$ is defined by:

(Def.28)
$$m_2 \cdot m_1 = \langle \langle \operatorname{dom} m_1, \operatorname{cod} m_2 \rangle, \operatorname{graph}(m_2) \cdot \operatorname{graph}(m_1) \rangle.$$

The following propositions are true:

- (45) If dom $m_2 = \operatorname{cod} m_1$, then graph $((m_2 \cdot m_1)) = \operatorname{graph}(m_2) \cdot \operatorname{graph}(m_1)$ and dom $(m_2 \cdot m_1) = \operatorname{dom} m_1$ and $\operatorname{cod}(m_2 \cdot m_1) = \operatorname{cod} m_2$.
- (46) If dom $m_2 = \operatorname{cod} m_1$ and dom $m_3 = \operatorname{cod} m_2$, then $m_3 \cdot (m_2 \cdot m_1) = (m_3 \cdot m_2) \cdot m_1$.
- (47) $\operatorname{graph}(\operatorname{id}(T)) = \operatorname{id}_{(T_2)}$ and $\operatorname{dom} \operatorname{id}(T) = T$ and $\operatorname{cod} \operatorname{id}(T) = T$.

(48) $m \cdot \operatorname{id}(\operatorname{dom} m) = m$ and $\operatorname{id}(\operatorname{cod} m) \cdot m = m$.

We now define four new functors. Let us consider X. The functor Dom_X yields a function from $\text{Maps}_T X$ into TOL(X) and is defined by:

(Def.29) for every m holds $Dom_X(m) = dom m$.

The functor Cod_X yields a function from $\operatorname{Maps}_T X$ into $\operatorname{TOL}(X)$ and is defined as follows:

(Def.30) for every m holds $\operatorname{Cod}_X(m) = \operatorname{cod} m$.

The functor \cdot_X yields a partial function from [Maps_TX, Maps_TX] to Maps_TX and is defined as follows:

(Def.31) for all m_2 , m_1 holds $\langle m_2, m_1 \rangle \in \operatorname{dom}(\cdot_X)$ if and only if dom $m_2 = \operatorname{cod} m_1$ and for all m_2 , m_1 such that dom $m_2 = \operatorname{cod} m_1$ holds $\cdot_X(\langle m_2, m_1 \rangle) = m_2 \cdot m_1$.

The functor Id_X yields a function from $\operatorname{TOL}(X)$ into $\operatorname{Maps}_T X$ and is defined by:

(Def.32) for every T holds $Id_X(T) = id(T)$.

Next we state the proposition

(49) $\langle \text{TOL}(X), \text{Maps}_{\mathrm{T}}X, \text{Dom}_X, \text{Cod}_X, \cdot_X, \text{Id}_X \rangle$ is a category.

Let us consider X. The X-tolerance category is a category defined by:

(Def.33) the X-tolerance category = $\langle \text{TOL}(X), \text{Maps}_T X, \text{Dom}_X, \text{Cod}_X, \cdot_X, \text{Id}_X \rangle$.

References

- [1] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [3] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
- [4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [5] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105–109, 1991.
- [6] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [7] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received December 29, 1992