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Summary. Coherent Space web of coherent space and two cate-
gories: category of coherent spaces and category of tolerances on same
fixed set.

MML Identifier: COH_SP.

The articles [8], [10], [11], [1], [5], [9], [6], [2], [7], [4], and [3] provide the notation
and terminology for this paper. We follow a convention: x, y will be arbitrary
and a, b, X, A will be sets. Let F' be a non-empty set of functions. We see that
the element of F' is a function.

1. COHERENT SPACE AND WEB OF COHERENT SPACE

We now define three new constructions. A set is down-closed if:
(Def.1)  for all a, b such that a € it and b C a holds b € it.
A set is binary complete if:

(Det.2)  for every A such that A C it and for all a, b such that a € Aand be A
holds a U b € it holds |J A € it.

Let us observe that there exists a down-closed binary complete non-empty set.
A coherent space is a down-closed binary complete non-empty set.

In the sequel C, D are coherent spaces. Next we state four propositions:

(1) odecC.

(2) 2% is a coherent space.

(3) {0} is a coherent space.

(4) IfzxeC, then {z} € C.

Let C be a coherent space. The functor Web(C') yields a tolerance of (JC
and is defined by:
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(Def.3)  for all x, y holds (z, y) € Web(C) if and only if there exists X such
that X € C and x € X and y € X.

In the sequel T is a tolerance of |JC. One can prove the following proposi-

tions:
(5) T = Web(C) if and only if for all z, y holds (z, y) € T if and only if
{z,y} € C.
(6) a € C if and only if for all z, y such that z € a and y € a holds
{z,y} € C.
(7)  a € C if and only if for all x, y such that x € a and y € a holds (z,
y) € Web(C).

(8) If for all x, y such that € a and y € a holds {z,y} € C, thena C |JC.
(9) If Web(C) = Web(D), then C' = D.
(10) IfUC € C, then C =2UC.

(11)  If ¢ = 2UC, then Web(C) = Ve

Let X be a set, and let E be a tolerance of X. The functor CohSp(F) yielding
a coherent space is defined by:

(Def.4)  for every a holds a € CohSp(E) if and only if for all z, y such that
x € aand y € a holds (z, y) € E.

In the sequel E denotes a tolerance of X. Next we state four propositions:

(12)  Web(CohSp(E)) = E.

(13)  CohSp(Web(C)) = C.

(14) a € CohSp(F) if and only if a is a set of mutually elements w.r.t. E.
(15)  CohSp(E) = TolSets E.

2. CATEGORY OF COHERENT SPACES

Let us consider X. The functor CSp(X) yielding a non-empty set is defined as
follows:
(Def.5) CSp(X) = {z : xzisa coherent space}, where = ranges over subsets of
2%,

In the sequel C, Cy, Cy denote elements of CSp(X). Let us consider X, C.
The functor ®C yielding a coherent space is defined as follows:
(Def.6) “C=C.
The following proposition is true
(16) If{z,y} € C,thenxzeJC and y e YC.
Let us consider X. The functor FuncscX yielding a non-empty set of func-
tions is defined by:

(Def.7)  FuncscX = U{(U y)Ux}, where z ranges over elements of CSp(X), and
y ranges over elements of CSp(X).
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In the sequel g is an element of FuncscX. The following proposition is true

(17) 2 € FuncscX if and only if there exist C, Cy such that if |JCy = 0,
then |JC7 = () and also z is a function from |JC; into |JCs.

Let us consider X. The functor MapsX yielding a non-empty set is defined
by:
(Def.8)  MapscX = {{(C, C3), f): (UC3=0=UC =0)Afisa function from
UCinto UCs A A, {z,y} € C = {f(2), f(y)} € Csl},
where C' ranges over elements of CSp(X), and Cs ranges over elements of
CSp(X), and f ranges over elements of FuncscX.
In the sequel [, I, la, I3 will be elements of MapscX. The following two
propositions are true:

(18)  There exist g, C1, Co such that [ = ((Cy, Cs), g) and also if |JCo = 0,
then |JC; = 0 and ¢ is a function from |JC} into |JCy and for all z, y
such that {z,y} € C1 holds {g(x),g(y)} € Cs.

(19)  For every function f from |JC; into |JCs such that if [JCy = (), then
UC1 = 0 and also for all z, y such that {x,y} € C1 holds {f(x), f(y)} €
Cs holds ((Cy, C2), f) € MapscX.

We now define three new functors. Let us consider X, . The functor graph(l)
yields a function and is defined by:
(Det.9)  graph(l) = Ia.
The functor dom! yielding an element of CSp(X) is defined by:
(Def.10)  dom! = (I1)1.
The functor cod !l yielding an element of CSp(X) is defined by:
(Def.11)  codl = (11)2.

Next we state the proposition
(20) 1= ((doml, codl), graph(l)).
Let us consider X, C. The functor id(C) yields an element of MapssX and
is defined by:
(Def.12) id(C) = ((C, C), idUC).

One can prove the following proposition
(21)  Ucodl # 0 or Jdom! = () and also graph(l) is a function from Jdom!
into |Jcod! and for all z, y such that {z,y} € dom! holds
{(graph(1))(x), (graph())(y)} € codl.
Let us consider X, [1, lo. Let us assume that codl; = domly. The functor
ly - 11 yielding an element of MapscX is defined as follows:
(Def.13) Iy - 13 = ({domly, codls), graph(ls) - graph(ly)).
We now state four propositions:
(22) If domls = codly, then graph((l2 - l1)) = graph(l2) - graph(ly) and
dom(ly - I1) = dom!; and cod(ls - 1) = cod ls.
(23) If domly = codl; and domls = codls, then I3 - (l2 - 11) = (I3 - 12) - [5.
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(24) graph(id(C)) = idUC and domid(C) = C and codid(C) = C.
(25) [l-id(doml) =1 and id(codl) -1 = 1.
We now define four new functors. Let us consider X. The functor Domcgp X
yields a function from Mapss X into CSp(X) and is defined as follows:
(Def.14)  for every [ holds (Domcgp X) (1) = dom .
The functor Codcgp X yielding a function from MapscX into CSp(X) is defined
by:
(Def.15)  for every [ holds (Codcsp X)(I) = cod .
The functor -csp X yielding a partial function from [ MapscX, MapscX | to
MapscX is defined by:
(Def.16)  for all lg, I} holds (I, 1) € dom-csp X if and only if domly = codl;
and for all Iy, [; such that domly = codl; holds (-csp X)({l2, l1)) = l2- 1.
The functor Idcgp X yielding a function from CSp(X) into MapsqX is defined
by:
(Def.17)  for every C holds (Idcsp, X)(C) = id(C).
Next we state the proposition
(26) (CSp(X),MapscX, Domcgp X, Codesp X, -csp X, Idcgp X) is a category.
Let us consider X. The X-coherent space category yields a category and is
defined by:

(Def.18)  the X-coherent space category
= <CSp(X), MapSCX, DOHlCSp X, COdcsp X, *CSp X, Idcsp X>

3. CATEGORY OF TOLERANCES

We now define two new functors. Let X be a set. The tolerances on X constitute
a non-empty set defined by:

(Def.19)  the tolerances on X is the set of all tolerances of X.

Let X be a set. The tolerances on subsets of X constitute a non-empty set
defined as follows:

(Def.20)  the tolerances on subsets of X = [J{the tolerances on Y}, where Y
ranges over subsets of X.

In the sequel ¢ denotes an element of the tolerances on subsets of X. The
following propositions are true:

(27)  x € the tolerances on subsets of X if and only if there exists A such

that A C X and =z is a tolerance of A.
28 V. € the tolerances on a.
29
30

31

A\, € the tolerances on a.
@ € the tolerances on subsets of X.
If a C X, then V, € the tolerances on subsets of X.

~~ I/~ —~
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(32) Ifa C X, then A, € the tolerances on subsets of X.
(33)  Vx € the tolerances on subsets of X.
(34)  Ax € the tolerances on subsets of X.

Let us consider X. The functor TOL(X) yields a non-empty set and is
defined by:

(Def.21)  TOL(X) = {(t,Y) : tisa tolerance of Y}, where ¢ ranges over ele-

ments of the tolerances on subsets of X, and Y ranges over elements of
2%,

In the sequel T, Ty, T, will denote elements of TOL(X). Next we state
several propositions:
(35) (@, 0) € TOL(X).
(36) If a C X, then (A,, a) € TOL(X).
(37) If a C X, then (V,, a) € TOL(X).
(38) (Ax, X) € TOL(X).
(39) (Vx, X) € TOL(X).
Let us consider X, T. Then T5 is an element of 2X. Then 7} is a tolerance

of To. Let us consider X. The functor FuncstX yielding a non-empty set of
functions is defined as follows:

(Def.22)  FuncstX = U{(T32)"2}, where T ranges over elements of TOL(X),
and T3 ranges over elements of TOL(X).
In the sequel f denotes an element of FuncstX. We now state the proposition
(40)  x € FuncstX if and only if there exist T3, T, such that if Tho = (), then
T12 = () and also x is a function from T} into Ths.
Let us consider X. The functor Mapst X yielding a non-empty set is defined
by:
(Def.23)  MapstX = {({T, T3), f) : (Ts2 =0 = To = 0)Afisa function from To

into Tz A Ny [{z, y) € Ty = (f(2), f(y)) € Tsal},
where T ranges over elements of TOL(X), and T3 ranges over elements

of TOL(X), and f ranges over elements of FuncstX.

In the sequel m, my, mgy, ms denote elements of MapstX. One can prove
the following two propositions:

(41)  There exist f, Ty, Ty such that m = ((T1, Tz), f) and also if Tho = 0,
then T19 = () and f is a function from T4 into Thg and for all z, y such
that (z, y) € T11 holds (f(z), f(y)) € To1.

(42)  For every function f from Tj9 into Thg such that if The = (), then Ty 9 =
() and also for all x, y such that {(z, y) € T11 holds (f(z), f(y)) € T
holds ((T1, T»), f) € MapstX.

We now define three new functors. Let us consider X, m. The functor
graph(m) yielding a function is defined by:
(Def.24)  graph(m) = ma.
The functor domm yields an element of TOL(X) and is defined by:
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(Def.25)  domm = (mq)1.
The functor cod m yields an element of TOL(X) and is defined by:
(Def.26)  codm = (m1)a2.

One can prove the following proposition
(43)  m = ({domm, codm), graph(m)).
Let us consider X, T. The functor id(7") yields an element of MapspX and
is defined by:
(Def.27) id(T) = ((T, T), id(T2)).
One can prove the following proposition

(44)  (codm)g # 0 or (domm)g = @) and also graph(m) is a function from
(domm)g into (codm)g and for all x, y such that (z, y) € (domm)q

holds ((graph(m))(z), (graph(m))(y)) € (codm)y.

Let us consider X, mq, mgy. Let us assume that cod m; = dommsy. The
functor mg - my yielding an element of MapstX is defined by:

(Def.28)  mgy - my = ((dommy, cod ms), graph(ms) - graph(my)).
The following propositions are true:
(45) If domms = codmy, then graph((ms - my)) = graph(ms) - graph(mq)
and dom(mg - my) = domm; and cod(mg - my) = cod ma.
(46) If domms = codm; and dommg = codms, then mg - (mg - my) =
(m3 . mg) -ma.
(47)  graph(id(T)) = id(z,) and domid(T) =T and codid(T") =T
(48)  m-id(domm) = m and id(cod m) - m = m.
We now define four new functors. Let us consider X. The functor Dom x
yields a function from MapstX into TOL(X) and is defined by:
(Def.29)  for every m holds Dom x(m) = domm.

The functor Cody yields a function from MapstX into TOL(X) and is defined
as follows:

(Def.30)  for every m holds Codx(m) = cod m.

The functor -y yields a partial function from [ MapstX, MapstX ] to Mapst X
and is defined as follows:

(Def.31)  for all mg, my holds (mo, m1) € dom(-x) if and only if dommy =
codmy and for all mgy, my such that dommgy = codm; holds -x({ma,
m1>) =m9o-Mmi.

The functor Idx yields a function from TOL(X) into MapstX and is defined
by:

(Def.32)  for every T holds Idx (T") = id(T).

Next we state the proposition
(49) (TOL(X),MapstX,Domy,Cody, x,Idx) is a category.
Let us consider X. The X-tolerance category is a category defined by:

(Def.33)  the X-tolerance category = (TOL(X), Maps1X, Domx, Codx, x,Idx).
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