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Summary. In the first section we present properties of fields and
Abelian groups in terms of commutativity, associativity, etc. Next, we
are concerned with operations on n-tuples on some set which are gener-
alization of operations on this set. It is used in third section to introduce
the n-power of a group and the n-power of a field. Besides, we introduce a
concept of indexed family of binary (unary) operations over some indexed
family of sets and a product of such families which is binary (unary) oper-
ation on a product of family sets. We use that product in the last section
to introduce the product of a finite sequence of Abelian groups.

MML Identifier: PRVECT 1.

The notation and terminology used in this paper are introduced in the following
articles: [16], [9], [10], [13], [3], [17], [2], [5], [6], [12], [4], [8], [7], [14], [1], [11],
and [15].

1. Abelian Groups and Fields

In the sequel G will denote an Abelian group. The following propositions are
true:

(1) The addition of G is commutative.

(2) The addition of G is associative.

(3) The zero of G is a unity w.r.t. the addition of G.

(4) The reverse-map of G is an inverse operation w.r.t. the addition of G.

In the sequel G1 will be a group structure. Next we state the proposition
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(5) If the addition of G1 is commutative and the addition of G1 is associative
and the zero of G1 is a unity w.r.t. the addition of G1 and the reverse-map
of G1 is an inverse operation w.r.t. the addition of G1, then G1 is an
Abelian group.

In the sequel F is a field. We now state several propositions:

(6) The addition of F is commutative.

(7) The multiplication of F is commutative.

(8) The addition of F is associative.

(9) The multiplication of F is associative.

(10) The zero of F is a unity w.r.t. the addition of F .

(11) The unity of F is a unity w.r.t. the multiplication of F .

(12) The reverse-map of F is an inverse operation w.r.t. the addition of F .

(13) The multiplication of F is distributive w.r.t. the addition of F .

One can verify that every field-like field structure is Abelian group-like.

2. The n-Product of a Binary and a Unary Operation

For simplicity we follow a convention: F is a field, n is a natural number, D is
a non-empty set, d is an element of D, B is a binary operation on D, and C
is a unary operation on D. We now define three new functors. Let us consider
D, n, and let F be a binary operation on D, and let x, y be elements of Dn.
Then F ◦(x, y) is an element of Dn. Let D be a non-empty set, and let F be a
binary operation on D, and let n be a natural number. The functor πnF yields
a binary operation on Dn and is defined by:

(Def.1) for all elements x, y of Dn holds (πnF )(x, y) = F ◦(x, y).

Let us consider D, and let F be a unary operation on D, and let us consider n.
The functor πnF yields a unary operation on Dn and is defined as follows:

(Def.2) for every element x of Dn holds (πnF )(x) = F · x.

Let D be a non-empty set, and let us consider n, and let x be an element of
D. Then n 7−→ x is an element of Dn. We introduce the functor n 7−→. x as a
synonym of n 7−→ x.

The following four propositions are true:

(14) If B is commutative, then πnB is commutative.

(15) If B is associative, then πnB is associative.

(16) If d is a unity w.r.t. B, then n 7−→. d is a unity w.r.t. πnB.

(17) If B has a unity and B is associative and C is an inverse operation
w.r.t. B, then πnC is an inverse operation w.r.t. πnB.
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3. The n-Power of a Group and of a Field

Let F be an Abelian group, and let us consider n. The functor F n yielding a
strict Abelian group is defined as follows:

(Def.3) F n = 〈(the carrier of F )n, πn(the addition of F ), πn(the reverse-map of
F ), n 7−→. the zero of F qua an element of (the carrier of F )n〉.

We now define two new functors. Let us consider F , n. The functor ·nF yields
a function from [: the carrier of F, (the carrier of F )n :] into (the carrier of F )n

and is defined by:

(Def.4) for every element x of F and for every element v of (the carrier of F )n

holds (·nF )(x, v) = (the multiplication of F )◦(x, v).

Let us consider F , n. The n-dimension vector space over F yielding a strict
vector space structure over F is defined as follows:

(Def.5) the group structure of the n-dimension vector space over F = F n and
the multiplication of the n-dimension vector space over F = ·nF .

For simplicity we follow a convention: D will be a non-empty set, H, G
will be binary operations on D, d will be an element of D, and t1, t2 will be
elements of Dn. One can prove the following proposition

(18) If H is distributive w.r.t. G, then H◦(d,G◦(t1, t2)) = G◦(H◦(d, t1),
H◦(d, t2)).

Let D be a non-empty set, and let n be a natural number, and let F be a
binary operation on D, and let x be an element of D, and let v be an element
of Dn. Then F ◦(x, v) is an element of Dn. Let us consider F , n. Then the
n-dimension vector space over F is a strict vector space over F .

4. Sequences of Non-empty Sets

In the sequel x will be arbitrary. We now define two new attributes. A function
is non-empty set yielding if:

(Def.6) ∅ /∈ rng it.

A set is constituted functions if:

(Def.7) if x ∈ it, then x is a function.

One can check that there exists a non-empty non-empty set yielding finite se-
quence and there exists a non-empty constituted functions set.

Let F be a constituted functions non-empty set. We see that the element
of F is a function. Let f be a non-empty set yielding function. Then

∏
f

is a constituted functions non-empty set. A sequence of non-empty sets is a
non-empty non-empty set yielding finite sequence.

Let a be a non-empty function. Then dom a is a non-empty set.

The scheme NEFinSeqLambda concerns a non-empty finite sequence A and
a unary functor F and states that:
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there exists a non-empty finite sequence p such that len p = lenA and for
every element i of domA holds p(i) = F(i)
for all values of the parameters.

Let a be a non-empty set yielding non-empty function, and let i be an element
of dom a. Then a(i) is a non-empty set. Let a be a non-empty set yielding non-
empty function, and let f be an element of

∏
a, and let i be an element of

dom a. Then f(i) is an element of a(i).

5. The Product of Families of Operations

In the sequel a will denote a sequence of non-empty sets, i will denote an element
of doma, and p will denote a finite sequence. We now define two new modes.
Let a be a non-empty set yielding non-empty function. A function is called a
family of binary operations of a if:

(Def.8) dom it = dom a and for every element i of dom a holds it(i) is a binary
operation on a(i).

A function is said to be a family of unary operations of a if:

(Def.9) dom it = doma and for every element i of dom a holds it(i) is a unary
operation on a(i).

Let us consider a. Note that every family of binary operations of a is finite
sequence-like and every family of unary operations of a is finite sequence-like.

The following two propositions are true:

(19) p is a family of binary operations of a if and only if len p = len a and
for every i holds p(i) is a binary operation on a(i).

(20) p is a family of unary operations of a if and only if len p = len a and for
every i holds p(i) is a unary operation on a(i).

Let us consider a, and let b be a family of binary operations of a, and let us
consider i. Then b(i) is a binary operation on a(i). Let us consider a, and let u
be a family of unary operations of a, and let us consider i. Then u(i) is a unary
operation on a(i). Let F be a constituted functions non-empty set, and let u be
a unary operation on F , and let f be an element of F . Then u(f) is an element
of F .

In the sequel f is arbitrary. One can prove the following proposition

(21) For all unary operations d, d′ on
∏

a if for every element f of
∏

a and
for every element i of dom a holds d(f)(i) = d′(f)(i), then d = d′.

We now state the proposition

(22) For every family u of unary operations of a holds domκ u(κ) = a and
∏

(rngκ u(κ)) ⊆
∏

a.

Let us consider a, and let u be a family of unary operations of a. Then
∏

◦ u
is a unary operation on

∏
a.

We now state the proposition
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(23) For every family u of unary operations of a and for every element f of
∏

a and for every element i of dom a holds (
∏

◦ u)(f)(i) = u(i)(f(i)).

Let F be a constituted functions non-empty set, and let b be a binary op-
eration on F , and let f , g be elements of F . Then b(f, g) is an element of
F .

The following proposition is true

(24) For all binary operations d, d′ on
∏

a if for all elements f , g of
∏

a and
for every element i of dom a holds d(f, g)(i) = d′(f, g)(i), then d = d′.

In the sequel i will denote an element of dom a. Let us consider a, and let b
be a family of binary operations of a. The functor

∏
◦ b yields a binary operation

on
∏

a and is defined by:

(Def.10) for all elements f , g of
∏

a and for every element i of dom a holds
(
∏

◦ b)(f, g)(i) = b(i)(f(i), g(i)).

The following propositions are true:

(25) For every family b of binary operations of a if for every i holds b(i) is
commutative, then

∏
◦ b is commutative.

(26) For every family b of binary operations of a if for every i holds b(i) is
associative, then

∏
◦ b is associative.

(27) For every family b of binary operations of a and for every element f of
∏

a if for every i holds f(i) is a unity w.r.t. b(i), then f is a unity w.r.t.
∏

◦ b.

(28) For every family b of binary operations of a and for every family u of
unary operations of a if for every i holds u(i) is an inverse operation w.r.t.
b(i) and b(i) has a unity, then

∏
◦ u is an inverse operation w.r.t.

∏
◦ b.

6. The Product of Families of Groups

We now define three new constructions. A function is Abelian group yielding if:

(Def.11) if x ∈ rng it, then x is an Abelian group.

One can check that there exists a non-empty Abelian group yielding finite se-
quence.

A sequence of groups is a non-empty Abelian group yielding finite sequence.
Let g be a sequence of groups, and let i be an element of dom g. Then g(i)

is an Abelian group. Let g be a sequence of groups. The functor g yielding a
sequence of non-empty sets is defined as follows:

(Def.12) len g = len g and for every element j of dom g holds g(j) = the carrier
of g(j).

In the sequel g is a sequence of groups and i is an element of dom g. We now
define four new functors. Let us consider g, i. Then g(i) is an Abelian group.
Let us consider g. The functor 〈+gi

〉i yields a family of binary operations of g
and is defined by:
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(Def.13) len(〈+gi
〉i) = len g and for every i holds 〈+gi

〉i(i) = the addition of g(i).

The functor 〈−gi
〉i yields a family of unary operations of g and is defined by:

(Def.14) len(〈−gi
〉i) = len g and for every i holds 〈−gi

〉i(i) = the reverse-map of
g(i).

The functor 〈0gi
〉i yields an element of

∏
g and is defined by:

(Def.15) for every i holds 〈0gi
〉i(i) = the zero of g(i).

Let G be a sequence of groups. The functor
∏

G yields a strict Abelian group
and is defined by:

(Def.16)
∏

G = 〈
∏

G,
∏

◦(〈+Gi
〉i),

∏
◦(〈−Gi

〉i), 〈0Gi
〉i〉.
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