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Summary. A topological space X is called almost discrete if ev-
ery open subset of X is closed; equivalently, if every closed subset of
X is open (comp. [6],[5]). Almost discrete spaces were investigated in
Mizar formalism in [2]. We present here a few properties of such spaces
supplementary to those given in [2].

Most interesting is the following characterization : A topological space
X is almost discrete iff every nonempty subset of X is not nowhere dense.
Hence, X is non almost discrete iff there is an everywhere dense subset of
X different from the carrier of X. We have an analogous characterization
of discrete spaces : A topological space X is discrete iff every nonempty
subset of X is not boundary. Hence, X is non discrete iff there is a
dense subset of X different from the carrier of X. It is well known that
the class of all almost discrete spaces contains both the class of discrete
spaces and the class of anti-discrete spaces (see e.g., [2]). Observations
presented here show that the class of all almost discrete non discrete
spaces is not contained in the class of anti-discrete spaces and the class of
all almost discrete non anti-discrete spaces is not contained in the class
of discrete spaces. Moreover, the class of almost discrete non discrete
non anti-discrete spaces is nonempty. To analyse these interdependencies
we use various examples of topological spaces constructed here in Mizar
formalism.

MML Identifier: TEX 1.

The papers [12], [14], [9], [11], [7], [13], [8], [15], [10], [4], [1], [2], and [3] provide
the notation and terminology for this paper.

1. Properties of Subsets of a Topological Space with Modified

Topology

In the sequel X will be a topological space and D will be a subset of X. One
can prove the following propositions:
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(1) For every subset B of X and for every subset C of the X modified w.r.t.
D such that B = C holds if B is open, then C is open.

(2) For every subset B of X and for every subset C of the X modified w.r.t.
D such that B = C holds if B is closed, then C is closed.

(3) For every subset C of the X modified w.r.t. Dc such that C = D holds
C is closed.

(4) For every subset C of the X modified w.r.t. D such that C = D holds
if D is dense, then C is dense and C is open.

(5) For every subset C of the X modified w.r.t. D such that D ⊆ C holds
if D is dense, then C is everywhere dense.

(6) For every subset C of the X modified w.r.t. Dc such that C = D holds
if D is boundary, then C is boundary and C is closed.

(7) For every subset C of the X modified w.r.t. Dc such that C ⊆ D holds
if D is boundary, then C is nowhere dense.

2. Trivial Topological Spaces

Let us observe that a 1-sorted structure is trivial if:

(Def.1) there exists an element d of the carrier of it such that the carrier of
it = {d}.

One can verify the following observations:

∗ there exists a 1-sorted structure which is trivial and strict,

∗ there exists a 1-sorted structure which is non trivial and strict,

∗ there exists a topological structure which is trivial and strict, and

∗ there exists a non trivial strict topological structure.

One can prove the following proposition

(8) For every Y being a trivial topological structure such that the topology
of Y is non-empty holds if Y is almost discrete, then Y is topological
space-like.

One can verify the following observations:

∗ there exists a trivial strict topological space,

∗ every topological space which is trivial is also anti-discrete and discrete,

∗ every discrete anti-discrete topological space is trivial,

∗ there exists a topological space which is non trivial and strict,

∗ every non discrete topological space is non trivial, and

∗ every non anti-discrete topological space is non trivial.
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3. Examples of Discrete and Anti-discrete Topological Spaces

We now define two new functors. Let D be a set. The functor 2D
∗

yielding a
non-empty family of subsets of D is defined by:

(Def.2) 2D
∗

= {∅,D}.

Let D be a non-empty set. The functor ADTS(D) yields an anti-discrete strict
topological space and is defined as follows:

(Def.3) ADTS(D) = 〈D, 2D
∗
〉.

We now state several propositions:

(9) For every anti-discrete topological space X holds the topological struc-
ture of X = ADTS(the carrier of X).

(10) For every topological space X such that the topological structure of
X = the topological structure of ADTS(the carrier of X) holds X is
anti-discrete.

(11) For every anti-discrete topological space X and for every subset A of X

holds if A is empty, then A = ∅ and also if A is non-empty, then A = the
carrier of X.

(12) For every anti-discrete topological space X and for every subset A of X

holds if A 6= the carrier of X, then IntA = ∅ and also if A = the carrier
of X, then Int A = the carrier of X.

(13) For every topological space X if for every subset A of X such that A is
non-empty holds A = the carrier of X, then X is anti-discrete.

(14) For every topological space X if for every subset A of X such that
A 6= the carrier of X holds IntA = ∅, then X is anti-discrete.

(15) For every anti-discrete topological space X and for every subset A of
X holds if A 6= ∅, then A is dense and also if A 6= the carrier of X, then
A is boundary.

(16) For every topological space X if for every subset A of X such that A 6= ∅
holds A is dense, then X is anti-discrete.

(17) For every topological space X if for every subset A of X such that
A 6= the carrier of X holds A is boundary, then X is anti-discrete.

Let D be a set. Then 2D is a non-empty family of subsets of D. Let D be a
non-empty set. The functor DTS(D) yielding a discrete strict topological space
is defined by:

(Def.4) DTS(D) = 〈D, 2D〉.

One can prove the following propositions:

(18) For every discrete topological space X holds the topological structure
of X = DTS(the carrier of X).

(19) For every topological space X such that the topological structure of X =
the topological structure of DTS(the carrier of X) holds X is discrete.
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(20) For every discrete topological space X and for every subset A of X

holds A = A and IntA = A.

(21) For every topological space X if for every subset A of X holds A = A,
then X is discrete.

(22) For every topological space X if for every subset A of X holds IntA = A,
then X is discrete.

(23) For every non-empty set D holds ADTS(D) = DTS(D) if and only if
there exists an element d0 of D such that D = {d0}.

Let us note that there exists a discrete non anti-discrete strict topological
space and there exists an anti-discrete non discrete strict topological space.

4. An Example of a Topological Space

Let D be a set, and let F be a family of subsets of D, and let S be a set. Then
F \ S is a family of subsets of D. Let D be a non-empty set, and let d0 be an
element of D. The functor STS(D, d0) yields a strict topological space and is
defined as follows:

(Def.5) STS(D, d0) = 〈D, 2D \ {A : d0 ∈ A ∧ A 6= D}〉, where A ranges over
subsets of D.

In the sequel D denotes a non-empty set and d0 denotes an element of D.
One can prove the following propositions:

(24) For every subset A of STS(D, d0) holds if {d0} ⊆ A, then A is closed
and also if A is non-empty and A is closed, then {d0} ⊆ A.

(25) If D \{d0} is non-empty, then for every subset A of STS(D, d0) holds if
A = {d0}, then A is closed and A is boundary and also if A is non-empty
and A is closed and A is boundary, then A = {d0}.

(26) For every subset A of STS(D, d0) holds if A ⊆ D \{d0}, then A is open
and also if A 6= D and A is open, then A ⊆ D \ {d0}.

(27) If D \ {d0} is non-empty, then for every subset A of STS(D, d0) holds
if A = D \ {d0}, then A is open and A is dense and also if A 6= D and A

is open and A is dense, then A = D \ {d0}.

Let us observe that there exists a non anti-discrete non discrete strict topo-
logical space.

The following propositions are true:

(28) For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, d0) if and only if the carrier of Y = D

and for every subset A of Y holds if {d0} ⊆ A, then A is closed and also
if A is non-empty and A is closed, then {d0} ⊆ A.

(29) For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, d0) if and only if the carrier of Y = D

and for every subset A of Y holds if A ⊆ D \ {d0}, then A is open and
also if A 6= D and A is open, then A ⊆ D \ {d0}.
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(30) For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, d0) if and only if the carrier of Y = D

and for every non-empty subset A of Y holds A = A ∪ {d0}.

(31) For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, d0) if and only if the carrier of Y = D

and for every subset A of Y such that A 6= D holds Int A = A \ {d0}.

(32) STS(D, d0) = ADTS(D) if and only if D = {d0}.

(33) STS(D, d0) = DTS(D) if and only if D = {d0}.

(34) For every non-empty set D and for every element d0 of D and for
every subset A of STS(D, d0) such that A = {d0} holds DTS(D) = the
STS(D, d0) modified w.r.t. A.

5. Discrete and Almost Discrete Spaces

Let us observe that a topological space is discrete if:

(Def.6) for every non-empty subset A of it holds A is not boundary.

We now state the proposition

(35) X is discrete if and only if for every subset A of X such that A 6= the
carrier of X holds A is not dense.

One can verify that every non almost discrete topological space is non discrete
and non anti-discrete.

Let us observe that a topological space is almost discrete if:

(Def.7) for every non-empty subset A of it holds A is not nowhere dense.

Next we state three propositions:

(36) X is almost discrete if and only if for every subset A of X such that
A 6= the carrier of X holds A is everywhere dense.

(37) X is non almost discrete if and only if there exists a non-empty subset
A of X such that A is boundary and A is closed.

(38) X is non almost discrete if and only if there exists a subset A of X such
that A 6= the carrier of X and A is dense and A is open.

One can verify that there exists an almost discrete non discrete non anti-
discrete strict topological space.

Next we state the proposition

(39) For every non-empty set C and for every element c0 of C holds C \{c0}
is non-empty if and only if STS(C, c0) is non almost discrete.

Let us observe that there exists a non almost discrete strict topological space.

We now state two propositions:

(40) For every non-empty subset A of X such that A is boundary holds the
X modified w.r.t. Ac is non almost discrete.
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(41) For every subset A of X such that A 6= the carrier of X and A is dense
holds the X modified w.r.t. A is non almost discrete.
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