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The papers [6], [3], [1], [5], [4], and [2] provide the terminology and notation for
this paper. For simplicity we adopt the following convention: A denotes a non-
empty set, a denotes an element of A, x, y denote finite sequences of elements of
A, h denotes a partial function from A∗ to A, and n denotes a natural number.
We now define two new attributes. Let us consider A. A partial function from
A∗ to A is homogeneous if:

(Def.1) for all x, y such that x ∈ dom it and y ∈ dom it holds len x = len y.

Let us consider A. A partial function from A∗ to A is quasi total if:

(Def.2) for all x, y such that len x = len y and x ∈ dom it holds y ∈ dom it.

Let us consider A. Note that there exists a homogeneous quasi total non-empty
partial function from A∗ to A.

We now state three propositions:

(1) h is a non-empty partial function from A∗ to A if and only if domh 6= ∅.

(2) {εA} 7−→ a is a homogeneous quasi total non-empty partial function
from A∗ to A.

(3) {εA} 7−→ a is an element of A∗→̇A.

We now define four new constructions. We consider universal algebra struc-
tures which are extension of a 1-sorted structure and are systems

〈a carrier, a characteristic〉,
where the carrier is a non-empty set and the characteristic is a finite sequence
of elements of (the carrier)∗→̇the carrier. Let us consider A. A finite sequence
of elements of A∗→̇A is homogeneous if:
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(Def.3) for all n, h such that n ∈ dom it and h = it(n) holds h is homogeneous.

Let us consider A. A finite sequence of elements of A∗→̇A is quasi total if:

(Def.4) for all n, h such that n ∈ dom it and h = it(n) holds h is quasi total.

Let us consider A. A finite sequence of elements of A∗→̇A is non-empty if:

(Def.5) for all n, h such that n ∈ dom it and h = it(n) holds h is non-empty.

In the sequel U will be a universal algebra structure. We now define four new
constructions. Let us consider U . The functor OpersU yielding a finite sequence
of elements of (the carrier of U)∗→̇the carrier of U is defined as follows:

(Def.6) OpersU = the characteristic of U .

A universal algebra structure is partial if:

(Def.7) Opers it is homogeneous.

A universal algebra structure is quasi total if:

(Def.8) Opers it is quasi total.

A universal algebra structure is non-empty if:

(Def.9) Opers it 6= ε and Opers it is non-empty.

We now state the proposition

(4) For every element x of A∗→̇A such that x = {εA} 7−→ a holds 〈x〉 is
homogeneous, quasi total and non-empty.

Let us note that there exists a quasi total partial non-empty strict universal
algebra structure.

A universal algebra is a quasi total partial non-empty universal algebra struc-
ture.

In the sequel U will be a universal algebra. Let us consider A, and let f be a
homogeneous quasi total non-empty partial function from A∗ to A. The functor
arity f yielding a natural number is defined as follows:

(Def.10) if x ∈ dom f , then arity f = len x.

The following proposition is true

(5) For every U and for every n such that n ∈ dom OpersU holds (OpersU)

(n) is a homogeneous quasi total non-empty partial function from

(the carrier of U)∗ to the carrier of U .

Let U be a universal algebra. The functor signatureU yields a finite sequence
of elements of � and is defined as follows:

(Def.11) len signatureU = len OpersU

and for every n such that n ∈ dom signature U and for every homogeneous
quasi total non-empty partial function h from (the carrier of U)∗ to the
carrier of U such that h = (OpersU)(n) holds (signature U)(n) = arity h.
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