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Summary. Category theory had been formalized in Mizar quite
early [8]. This had been done closely to the handbook of S. McLane [11].
In this paper we use a different approach. Category is a triple

〈O, {〈o1, o2〉}o1,o2∈O
, {◦o1,o2,o3}o1,o2,o3∈O

〉

where ◦o1,o2,o3 : 〈o2, o3〉×〈o1, o2〉 → 〈o1, o3〉 that satisfies usual conditions
(associativity and the existence of the identities). This approach is closer
to the way in which categories are presented in homological algebra (e.g.
[1], pp.58-59). We do not assume that 〈o1, o2〉’s are mutually disjoint.
If f is simultaneously a morphism from o1 to o2 and o′1 to o2 (o1 6= o′1)
than different compositions are used (◦o1,o2,o3 or ◦o′

1
,o2,o3

) to compose it

with a morphism g from o2 to o3. The operation g · f has actually six
arguments (two visible and four hidden: three objects and the category).

We introduce some simple properties of categories. Perhaps more
than necessary. It is partially caused by the formalization. The functional
categories are characterized by the following properties:

• quasi-functional that means that morphisms are functions (rather
meaningless, if it stands alone)

• semi-functional that means that the composition of morphism is the
composition of functions, provided they are functions.

• pseudo-functional that means that the composition of morphisms is
the composition of functions.

For categories pseudo-functional is just quasi-functional and semi-
functional, but we work in a bit more general setting. Similarly the
concept of a discrete category is split into two:

• quasi-discrete that means that 〈o1, o2〉 is empty for o1 6= o2 and

• pseudo-discrete that means that 〈o, o〉 is trivial, i.e. consists of the
identity only, in a category.

We plan to follow Semadeni-Wiweger book [14], in the development
the category theory in Mizar. However, the beginning is not very close
to [14], because of the approach adopted and because we work in Tarski-
Grothendieck set theory.
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MML Identifier: ALTCAT 1.

The terminology and notation used in this paper have been introduced in the
following articles: [19], [21], [20], [15], [22], [2], [6], [7], [3], [13], [5], [10], [4], [16],
[9], [18], [12], and [17].

1. Preliminaries

One can prove the following proposition

(1) For every non empty set A and for all sets B, C, D such that [: A,

B :] ⊆ [:C, D :] or [: B, A :] ⊆ [:D, C :] holds B ⊆ D.

In the sequel i, j, k, x are arbitrary.
Let A be a functional set. Observe that every subset of A is functional.
Let f be a function yielding function and let C be a set. Observe that f

�
C

is function yielding.
Let f be a function. One can verify that {f} is functional.
Next we state four propositions:

(2) For every set A holds idA ∈ AA.

(3) ∅∅ = {id∅}.

(4) For all sets A, B, C and for all functions f , g such that f ∈ BA and
g ∈ CB holds g · f ∈ CA.

(5) For all sets A, B, C such that BA 6= ∅ and CB 6= ∅ holds CA 6= ∅.

Let A, B be sets. One can check that BA is functional.
We now state two propositions:

(6) For all sets A, B and for every function f such that f ∈ BA holds
dom f = A and rng f ⊆ B.

(7) Let A, B be sets, and let F be a many sorted set indexed by [:B, A :],
and let C be a subset of A, and let D be a subset of B, and let x, y be
arbitrary. If x ∈ C and y ∈ D, then F (y, x) = (F

�
[: D, C :])(y, x).

In this article we present several logical schemes. The scheme MSSLambdaD

deals with a non empty set A and a unary functor F yielding arbitrary, and
states that:

There exists a many sorted set M indexed by A such that for every
element i of A holds M(i) = F(i)

for all values of the parameters.
The scheme MSSLambda2 deals with sets A, B and a binary functor F yield-

ing arbitrary, and states that:
There exists a many sorted set M indexed by [:A, B :] such that for
all i, j such that i ∈ A and j ∈ B holds M(i, j) = F(i, j)

for all values of the parameters.



categories without uniqueness of cod . . . 261

The scheme MSSLambda2D deals with non empty sets A, B and a binary
functor F yielding arbitrary, and states that:

There exists a many sorted set M indexed by [:A, B :] such that
for every element i of A and for every element j of B holds M(i,
j) = F(i, j)

for all values of the parameters.
The scheme MSSLambda3 concerns sets A, B, C and a ternary functor F

yielding arbitrary, and states that:
There exists a many sorted set M indexed by [:A, B, C :] such that
for all i, j, k such that i ∈ A and j ∈ B and k ∈ C holds M(i, j,

k) = F(i, j, k)
for all values of the parameters.

The scheme MSSLambda3D deals with non empty sets A, B, C and a ternary
functor F yielding arbitrary, and states that:

There exists a many sorted set M indexed by [:A, B, C :] such that
for every element i of A and for every element j of B and for every
element k of C holds M(i, j, k) = F(i, j, k)

for all values of the parameters.
One can prove the following propositions:

(8) Let A, B be sets and let N , M be many sorted sets indexed by [:A, B :].
If for all i, j such that i ∈ A and j ∈ B holds N(i, j) = M(i, j), then
M = N.

(9) Let A, B be non empty sets and let N , M be many sorted sets indexed
by [:A, B :]. Suppose that for every element i of A and for every element
j of B holds N(i, j) = M(i, j). Then M = N.

(10) Let A be a set and let N , M be many sorted sets indexed by [:A, A,

A :]. Suppose that for all i, j, k such that i ∈ A and j ∈ A and k ∈ A

holds N(i, j, k) = M(i, j, k). Then M = N.

(11) [〈i, j〉 7→ k] = 〈〈i, j〉〉7−→. k.

(12) [〈i, j〉 7→ k](i, j) = k.

2. Graphs

We consider graphs as extensions of 1-sorted structure as systems
〈 a carrier, arrows 〉,

where the carrier is a set and the arrows constitute a many sorted set indexed
by [: the carrier, the carrier :].

Let G be a graph.

(Def.1) An element of the carrier of G is called an object of G.

Let G be a graph and let o1, o2 be objects of G. The functor 〈o1, o2〉 is
defined as follows:

(Def.2) 〈o1, o2〉 = (the arrows of G)(o1, o2).
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Let G be a graph and let o1, o2 be objects of G.

(Def.3) An element of 〈o1, o2〉 is said to be a morphism from o1 to o2.

Let G be a graph. We say that G is transitive if and only if:

(Def.4) For all objects o1, o2, o3 of G such that 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅
holds 〈o1, o3〉 6= ∅.

3. Many Sorted Binary Compositions

Let I be a set and let G be a many sorted set indexed by [: I, I :]. The functor
{|G|} yields a many sorted set indexed by [: I, I, I :] and is defined as follows:

(Def.5) For all i, j, k such that i ∈ I and j ∈ I and k ∈ I holds ({|G|})(i, j,

k) = G(i, k).

Let H be a many sorted set indexed by [: I, I :]. The functor {|G,H|} yielding a
many sorted set indexed by [: I, I, I :] is defined by:

(Def.6) For all i, j, k such that i ∈ I and j ∈ I and k ∈ I holds ({|G,H|})(i, j,

k) = [: H(j, k), G(i, j) :].

Let I be a set and let G be a many sorted set indexed by [: I, I :]. A binary
composition of G is a many sorted function from {|G,G|} into {|G|}.

Let I be a non empty set, let G be a many sorted set indexed by [: I, I :], let
o be a binary composition of G, and let i, j, k be elements of I. Then o(i, j, k)
is a function from [:G(j, k), G(i, j) :] into G(i, k).

Let I be a non empty set and let G be a many sorted set indexed by [: I, I :].
A binary composition of G is associative if it satisfies the condition (Def.7).

(Def.7) Let i, j, k, l be elements of I and let f , g, h be arbitrary. Suppose
f ∈ G(i, j) and g ∈ G(j, k) and h ∈ G(k, l). Then it(i, k, l)(h, it(i, j,

k)(g, f)) = it(i, j, l)(it(j, k, l)(h, g), f).

A binary composition of G has right units if it satisfies the condition (Def.8).

(Def.8) Let i be an element of I. Then there exists arbitrary e such that e ∈ G(i,
i) and for every element j of I and for arbitrary f such that f ∈ G(i, j)
holds it(i, i, j)(f, e) = f.

A binary composition of G has left units if it satisfies the condition (Def.9).

(Def.9) Let j be an element of I. Then there exists arbitrary e such that
e ∈ G(j, j) and for every element i of I and for arbitrary f such that
f ∈ G(i, j) holds it(i, j, j)(e, f) = f.

4. Categories

We introduce category structures which are extensions of graph and are sys-
tems

〈 a carrier, arrows, a composition 〉,
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where the carrier is a set, the arrows constitute a many sorted set indexed by
[: the carrier, the carrier :], and the composition is a binary composition of the
arrows.

Let us observe that there exists a category structure which is strict and non
empty.

Let C be a non empty category structure and let o1, o2, o3 be objects of C.
Let us assume that 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅ and 〈o1, o3〉 6= ∅. Let f be a
morphism from o1 to o2 and let g be a morphism from o2 to o3. The functor
g · f yields a morphism from o1 to o3 and is defined by:

(Def.10) g · f = (the composition of C)(o1, o2, o3)(g, f).

A function is compositional if:

(Def.11) If x ∈ dom it, then there exist functions f , g such that x = 〈〈g, f〉〉 and
it(x) = g · f.

Let A, B be functional sets. Observe that there exists a many sorted function
of [: A, B :] which is compositional.

Next we state the proposition

(13) Let A, B be functional sets, and let F be a compositional many sorted
set indexed by [:A, B :], and let g, f be functions. If g ∈ A and f ∈ B,

then F (g, f) = g · f.

Let A, B be functional sets.

(Def.12) FuncComp(A,B) is a compositional many sorted function of [: B, A :].

The following propositions are true:

(14) For all sets A, B, C holds rng FuncComp(BA, CB) ⊆ CA.

(15) For every set o holds FuncComp({ido}, {ido}) = [〈ido, ido〉 7→ ido].

(16) For all functional sets A, B and for every subset A1 of A and for every
subset B1 of B holds FuncComp(A1, B1) = FuncComp(A,B)

�
[:B1, A1 :].

Let C be a non empty category structure. We say that C is quasi-functional
if and only if:

(Def.13) For all objects a1, a2 of C holds 〈a1, a2〉 ⊆ a2
a1 .

We say that C is semi-functional if and only if the condition (Def.14) is satisfied.

(Def.14) Let a1, a2, a3 be objects of C. Suppose 〈a1, a2〉 6= ∅ and 〈a2, a3〉 6= ∅
and 〈a1, a3〉 6= ∅. Let f be a morphism from a1 to a2, and let g be a
morphism from a2 to a3, and let f ′, g′ be functions. If f = f ′ and g = g′,

then g · f = g′ · f ′.

We say that C is pseudo-functional if and only if:

(Def.15) For all objects o1, o2, o3 of C holds (the composition of C)(o1, o2,

o3) = FuncComp(o2
o1 , o3

o2)
�
[: 〈o2, o3〉, 〈o1, o2〉 :].

Let X be a non empty set, let A be a many sorted set indexed by [:X, X :],
and let C be a binary composition of A. Note that 〈X,A,C〉 is non empty.

Let us observe that there exists a non empty category structure which is
strict and pseudo-functional.

One can prove the following propositions:
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(17) Let C be a non empty category structure and let a1, a2, a3 be objects
of C. Suppose if 〈a1, a3〉 = ∅, then 〈a1, a2〉 = ∅ or 〈a2, a3〉 = ∅. Then (the
composition of C)(a1, a2, a3) is a function from [: 〈a2, a3〉, 〈a1, a2〉 :] into
〈a1, a3〉.

(18) Let C be a pseudo-functional non empty category structure and let
a1, a2, a3 be objects of C. Suppose 〈a1, a2〉 6= ∅ and 〈a2, a3〉 6= ∅ and
〈a1, a3〉 6= ∅. Let f be a morphism from a1 to a2, and let g be a morphism
from a2 to a3, and let f ′, g′ be functions. If f = f ′ and g = g′, then
g · f = g′ · f ′.

Let A be a non empty set. The functor EnsA yielding a strict pseudo-
functional non empty category structure is defined as follows:

(Def.16) The carrier of EnsA = A and for all objects a1, a2 of EnsA holds
〈a1, a2〉 = a2

a1 .

Let C be a non empty category structure. We say that C is associative if
and only if:

(Def.17) The composition of C is associative.

We say that C has units if and only if:

(Def.18) The composition of C has left units and right units.

Let us mention that there exists a non empty category structure which is
transitive associative and strict and has units.

The following propositions are true:

(19) Let C be a transitive non empty category structure and let a1, a2, a3

be objects of C. Then (the composition of C)(a1, a2, a3) is a function
from [: 〈a2, a3〉, 〈a1, a2〉 :] into 〈a1, a3〉.

(20) Let C be a transitive non empty category structure and let a1, a2, a3 be
objects of C. Then dom (the composition of C)(a1, a2, a3) = [: 〈a2, a3〉,
〈a1, a2〉 :] and rng (the composition of C)(a1, a2, a3) ⊆ 〈a1, a3〉.

(21) For every non empty category structure C with units and for every
object o of C holds 〈o, o〉 6= ∅.

Let A be a non empty set. Observe that EnsA is transitive and associative
and has units.

Let us mention that every non empty category structure which is quasi-
functional semi-functional and transitive is also pseudo-functional and every
non empty category structure which is pseudo-functional and transitive and has
units is also quasi-functional and semi-functional.

A category is a transitive associative non empty category structure with
units.

5. Identities

One can prove the following proposition
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(22) Let C be a transitive non empty category structure and let o1, o2, o3 be
objects of C. Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let f be a morphism
from o1 to o2 and let g be a morphism from o2 to o3. Then g · f = (the
composition of C)(o1, o2, o3)(g, f).

Let C be a non empty category structure with units and let o be an object
of C. The functor ido yielding a morphism from o to o is defined by:

(Def.19) For every object o′ of C such that 〈o, o′〉 6= ∅ and for every morphism a

from o to o′ holds a · ido = a.

One can prove the following three propositions:

(23) For every non empty category structure C with units and for every
object o of C holds ido ∈ 〈o, o〉.

(24) Let C be a non empty category structure with units and let o1, o2 be
objects of C. If 〈o1, o2〉 6= ∅, then for every morphism a from o1 to o2

holds id(o2) ·a = a.

(25) Let C be an associative transitive non empty category structure and
let o1, o2, o3, o4 be objects of C. Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅
and 〈o3, o4〉 6= ∅. Let a be a morphism from o1 to o2, and let b be a
morphism from o2 to o3, and let c be a morphism from o3 to o4. Then
c · (b · a) = (c · b) · a.

6. Discrete categories

Let C be a category structure. We say that C is quasi-discrete if and only if:

(Def.20) For all objects i, j of C such that 〈i, j〉 6= ∅ holds i = j.

We say that C is pseudo-discrete if and only if:

(Def.21) For every object i of C holds 〈i, i〉 is trivial.

One can prove the following proposition

(26) Let C be a non empty category structure with units. Then C is pseudo-
discrete if and only if for every object o of C holds 〈o, o〉 = {ido}.

Let us observe that every category structure which is trivial is also quasi-
discrete.

One can prove the following proposition

(27) Ens1 is pseudo-discrete and trivial.

Let us note that there exists a category which is pseudo-discrete trivial and
strict.

Let us observe that there exists a category which is quasi-discrete pseudo-
discrete trivial and strict.

A discrete category is a quasi-discrete pseudo-discrete category.
Let A be a non empty set. The functor DiscrCat(A) yields a quasi-discrete

strict non empty category structure and is defined by:
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(Def.22) The carrier of DiscrCat(A) = A and for every object i of DiscrCat(A)
holds 〈i, i〉 = {idi}.

One can verify that every category structure which is quasi-discrete is also
transitive.

One can prove the following propositions:

(28) Let A be a non empty set and let o1, o2, o3 be objects of DiscrCat(A). If
o1 6= o2 or o2 6= o3, then (the composition of DiscrCat(A))(o1, o2, o3) = ∅.

(29) For every non empty set A and for every object o of DiscrCat(A) holds
(the composition of DiscrCat(A))(o, o, o) = [〈ido, ido〉 7→ ido].

Let A be a non empty set. Note that DiscrCat(A) is pseudo-functional
pseudo-discrete and associative and has units.
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[10] Eugeniusz Kusak, Wojciech Leończuk, and Micha l Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[11] Saunders Mac Lane. Categories for the Working Mathematician. Volume 5 of Graduate

Texts in Mathematics, Springer Verlag, New York, Heidelberg, Berlin, 1971.
[12] Beata Madras. Product of family of universal algebras. Formalized Mathematics,

4(1):103–108, 1993.
[13] Micha l Muzalewski and Wojciech Skaba. Three-argument operations and four-argument

operations. Formalized Mathematics, 2(2):221–224, 1991.
[14] Zbigniew Semadeni and Antoni Wiweger. Wstȩp do teorii kategorii i funktorów. Vol-
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