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Summary. By categorial categories we mean categories with cat-
egories as objects and morphisms of the form (C1, C2, F ), where C1 and
C2 are categories and F is a functor from C1 into C2.

MML Identifier: CAT 5.

The terminology and notation used here are introduced in the following articles:
[14], [16], [9], [15], [11], [17], [2], [3], [5], [12], [10], [7], [6], [4], [8], [1], and [13].

1. Categories with Triple-like Morphisms

Let D1, D2, D be non empty sets and let x be an element of [: [: D1, D2 :],
D :]. Then x1,1 is an element of D1. Then x1,2 is an element of D2.

Let D1, D2 be non empty sets and let x be an element of [: D1, D2 :]. Then
x2 is an element of D2.

Next we state the proposition

(1) Let C, D be category structures. Suppose the category structure of
C = the category structure of D. If C is category-like, then D is category-
like.

A category structure has triple-like morphisms if:

(Def.1) For every morphism f of it there exists a set x such that f = 〈〈〈〈dom f,

cod f〉〉, x〉〉.

One can verify that there exists a strict category has triple-like morphisms.
Next we state the proposition

(2) Let C be a category structure with triple-like morphisms and let f be a
morphism of C. Then dom f = f1,1 and cod f = f1,2 and f = 〈〈〈〈dom f,

cod f〉〉, f2〉〉.
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Let C be a category structure with triple-like morphisms and let f be a
morphism of C. Then f1,1 is an object of C. Then f1,2 is an object of C.

In this article we present several logical schemes. The scheme CatEx concerns
non empty sets A, B, a binary functor F yielding arbitrary, and a ternary
predicate P, and states that:

There exists a strict category C with triple-like morphisms such
that
(i) the objects of C = A,

(ii) for all elements a, b of A and for every element f of B such
that P[a, b, f ] holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of C,
(iii) for every morphism m of C there exist elements a, b of A
and there exists an element f of B such that m = 〈〈〈〈a, b〉〉, f〉〉 and
P[a, b, f ], and
(iv) for all morphisms m1, m2 of C and for all elements a1, a2, a3

of A and for all elements f1, f2 of B such that m1 = 〈〈〈〈a1, a2〉〉, f1〉〉
and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 · m1 = 〈〈〈〈a1, a3〉〉, F(f2, f1)〉〉

provided the parameters meet the following requirements:
• For all elements a, b, c of A and for all elements f , g of B such that

P[a, b, f ] and P[b, c, g] holds F(g, f) ∈ B and P[a, c,F(g, f)],
• Let a be an element of A. Then there exists an element f of B such

that
(i) P[a, a, f ], and
(ii) for every element b of A and for every element g of B holds
if P[a, b, g], then F(g, f) = g and if P[b, a, g], then F(f, g) = g,

• Let a, b, c, d be elements of A and let f , g, h be elements of
B. If P[a, b, f ] and P[b, c, g] and P[c, d, h], then F(h,F(g, f)) =
F(F(h, g), f).

The scheme CatUniq deals with non empty sets A, B, a binary functor F
yielding arbitrary, and a ternary predicate P, and states that:

Let C1, C2 be strict categories with triple-like morphisms. Suppose
that
(i) the objects of C1 = A,

(ii) for all elements a, b of A and for every element f of B such
that P[a, b, f ] holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of C1,
(iii) for every morphism m of C1 there exist elements a, b of A
and there exists an element f of B such that m = 〈〈〈〈a, b〉〉, f〉〉 and
P[a, b, f ],
(iv) for all morphisms m1, m2 of C1 and for all elements a1, a2,
a3 of A and for all elements f1, f2 of B such that m1 = 〈〈〈〈a1, a2〉〉,
f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 · m1 = 〈〈〈〈a1, a3〉〉, F(f2, f1)〉〉,
(v) the objects of C2 = A,

(vi) for all elements a, b of A and for every element f of B such
that P[a, b, f ] holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of C2,

(vii) for every morphism m of C2 there exist elements a, b of A
and there exists an element f of B such that m = 〈〈〈〈a, b〉〉, f〉〉 and
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P[a, b, f ], and
(viii) for all morphisms m1, m2 of C2 and for all elements a1, a2,

a3 of A and for all elements f1, f2 of B such that m1 = 〈〈〈〈a1, a2〉〉,
f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 · m1 = 〈〈〈〈a1, a3〉〉, F(f2, f1)〉〉.

Then C1 = C2

provided the parameters meet the following requirement:
• Let a be an element of A. Then there exists an element f of B such

that
(i) P[a, a, f ], and
(ii) for every element b of A and for every element g of B holds
if P[a, b, g], then F(g, f) = g and if P[b, a, g], then F(f, g) = g.

The scheme FunctorEx concerns categories A, B, a unary functor F yielding
an object of B, and a unary functor G yielding a set, and states that:

There exists a functor F from A to B such that for every morphism
f of A holds F (f) = G(f)

provided the following conditions are met:
• Let f be a morphism of A. Then G(f) is a morphism of B and for

every morphism g of B such that g = G(f) holds dom g = F(dom f)
and cod g = F(cod f),

• For every object a of A holds G(ida) = idF(a),

• For all morphisms f1, f2 of A and for all morphisms g1, g2 of B
such that g1 = G(f1) and g2 = G(f2) and dom f2 = cod f1 holds
G(f2 · f1) = g2 · g1.

We now state two propositions:

(3) Let C1 be a category and let C2 be a subcategory of C1. Suppose C1 is
a subcategory of C2. Then the category structure of C1 = the category
structure of C2.

(4) For every category C and for every subcategory D of C holds every
subcategory of D is a subcategory of C.

Let C1, C2 be categories. Let us assume that there exists a category C such
that C1 is a subcategory of C and C2 is a subcategory of C. And let us assume
that there exists an object o1 of C1 such that o1 is an object of C2. The functor
C1 ∩ C2 yields a strict category and is defined by the conditions (Def.2).

(Def.2) (i) The objects of C1 ∩ C2 = (the objects of C1) ∩ (the objects of C2),
(ii) the morphisms of C1 ∩ C2 = (the morphisms of C1) ∩ (the morphisms

of C2),
(iii) the dom-map of C1 ∩ C2 = (the dom-map of C1)

�
(the morphisms of

C2),
(iv) the cod-map of C1 ∩ C2 = (the cod-map of C1)

�
(the morphisms of

C2),
(v) the composition of C1∩C2 = (the composition of C1)

�
([: the morphisms

of C2, the morphisms of C2 :] qua set), and
(vi) the id-map of C1 ∩ C2 = (the id-map of C1)

�
(the objects of C2).

In the sequel C is a category and C1, C2 are subcategories of C.
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The following propositions are true:

(5) If (the objects of C1)∩ (the objects of C2) 6= ∅, then C1 ∩C2 = C2 ∩C1.

(6) If (the objects of C1) ∩ (the objects of C2) 6= ∅, then C1 ∩ C2 is a
subcategory of C1 and C1 ∩ C2 is a subcategory of C2.

Let C, D be categories and let F be a functor from C to D. The functor
ImF yields a strict subcategory of D and is defined by the conditions (Def.3).

(Def.3) (i) The objects of ImF = rng ObjF,

(ii) rng F ⊆ the morphisms of Im F, and
(iii) for every subcategory E of D such that the objects of E = rng ObjF

and rng F ⊆ the morphisms of E holds ImF is a subcategory of E.

Next we state three propositions:

(7) Let C, D be categories, and let E be a subcategory of D, and let F

be a functor from C to D. If rng F ⊆ the morphisms of E, then F is a
functor from C to E.

(8) For all categories C, D holds every functor from C to D is a functor
from C to Im F.

(9) Let C, D be categories, and let E be a subcategory of D, and let F be
a functor from C to E, and let G be a functor from C to D. If F = G,

then ImF = ImG.

2. Categorial Categories

A set is categorial if:

(Def.4) For every set x such that x ∈ it holds x is a category.

One can check that there exists a non empty set which is categorial. Let us
observe that a non empty set is categorial if:

(Def.5) Every element of it is a category.

A category is categorial if it satisfies the conditions (Def.6).

(Def.6) (i) The objects of it is categorial,
(ii) for every object a of it and for every category A such that a = A holds

ida = 〈〈〈〈A, A〉〉, idA〉〉,
(iii) for every morphism m of it and for all categories A, B such that

A = domm and B = cod m there exists a functor F from A to B such
that m = 〈〈〈〈A, B〉〉, F 〉〉, and

(iv) for all morphisms m1, m2 of it and for all categories A, B, C and for
every functor F from A to B and for every functor G from B to C such
that m1 = 〈〈〈〈A, B〉〉, F 〉〉 and m2 = 〈〈〈〈B, C〉〉, G〉〉 holds m2 · m1 = 〈〈〈〈A, C〉〉,
G · F 〉〉.

Let us mention that every category which is categorial has triple-like mor-
phisms.

One can prove the following two propositions:
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(10) Let C, D be categories. Suppose the category structure of C = the
category structure of D. If C is categorial, then D is categorial.

(11) For every category C holds ˙�
(C, 〈〈〈〈C, C〉〉, idC〉〉) is categorial.

Let us note that there exists a strict category which is categorial.

We now state two propositions:

(12) For every categorial category C holds every object of C is a category.

(13) For every categorial category C and for every morphism f of C holds
dom f = f1,1 and cod f = f1,2.

Let C be a categorial category and let m be a morphism of C. Then m1,1 is
a category. Then m1,2 is a category.

We now state the proposition

(14) Let C1, C2 be categorial categories. Suppose the objects of C1 = the
objects of C2 and the morphisms of C1 = the morphisms of C2. Then the
category structure of C1 = the category structure of C2.

Let C be a categorial category. One can check that every subcategory of C

is categorial.

We now state the proposition

(15) Let C, D be categorial categories. Suppose the morphisms of C ⊆ the
morphisms of D. Then C is a subcategory of D.

Let a be a set. Let us assume that a is a category. The functor cat a yields
a category and is defined by:

(Def.7) cat a = a.

One can prove the following proposition

(16) For every categorial category C and for every object c of C holds cat c =
c.

Let C be a categorial category and let m be a morphism of C. Then m2 is
a functor from cat domm to cat cod m.

Next we state two propositions:

(17) Let X be a categorial non empty set and let Y be a non empty set.
Suppose that

(i) for all elements A, B, C of X and for every functor F from A to B

and for every functor G from B to C such that F ∈ Y and G ∈ Y holds
G · F ∈ Y, and

(ii) for every element A of X holds idA ∈ Y.

Then there exists a strict categorial category C such that

(iii) the objects of C = X, and

(iv) for all elements A, B of X and for every functor F from A to B holds
〈〈〈〈A, B〉〉, F 〉〉 is a morphism of C iff F ∈ Y.

(18) Let X be a categorial non empty set, and let Y be a non empty set,
and let C1, C2 be strict categorial categories. Suppose that

(i) the objects of C1 = X,
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(ii) for all elements A, B of X and for every functor F from A to B holds
〈〈〈〈A, B〉〉, F 〉〉 is a morphism of C1 iff F ∈ Y,

(iii) the objects of C2 = X, and
(iv) for all elements A, B of X and for every functor F from A to B holds

〈〈〈〈A, B〉〉, F 〉〉 is a morphism of C2 iff F ∈ Y.

Then C1 = C2.

A categorial category is full if it satisfies the condition (Def.8).

(Def.8) Let a, b be categories. Suppose a is an object of it and b is an object of
it. Let F be a functor from a to b. Then 〈〈〈〈a, b〉〉, F 〉〉 is a morphism of it.

Let us note that there exists a categorial strict category which is full.
The following propositions are true:

(19) Let C1, C2 be full categorial categories. Suppose the objects of C1 = the
objects of C2. Then the category structure of C1 = the category structure
of C2.

(20) For every categorial non empty set A there exists a full categorial strict
category C such that the objects of C = A.

(21) Let C be a categorial category and let D be a full categorial category.
Suppose the objects of C ⊆ the objects of D. Then C is a subcategory of
D.

(22) Let C be a category, and let D1, D2 be categorial categories, and let
F1 be a functor from C to D1, and let F2 be a functor from C to D2. If
F1 = F2, then Im F1 = Im F2.

3. Slice Categories

Let C be a category and let o be an object of C. The functor Hom(o) yielding
a non empty subset of the morphisms of C is defined by:

(Def.9) Hom(o) = (the cod-map of C) −1 {o}.

The functor hom(o, � ) yields a non empty subset of the morphisms of C and is
defined by:

(Def.10) hom(o, � ) = (the dom-map of C) −1 {o}.

We now state several propositions:

(23) For every category C and for every object a of C and for every morphism
f of C holds f ∈ Hom(a) iff cod f = a.

(24) For every category C and for every object a of C and for every morphism
f of C holds f ∈ hom(a, � ) iff dom f = a.

(25) For every category C and for all objects a, b of C holds hom(a, b) =
hom(a, � ) ∩ Hom(b).

(26) For every category C and for every morphism f of C holds f ∈
hom(dom f, � ) and f ∈ Hom(cod f).
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(27) For every category C and for every morphism f of C and for every
element g of Hom(dom f) holds f · g ∈ Hom(cod f).

(28) For every category C and for every morphism f of C and for every
element g of hom(cod f, � ) holds g · f ∈ hom(dom f, � ).

Let C be a category and let o be an object of C. The functor SliceCat(C, o)
yields a strict category with triple-like morphisms and is defined by the condi-
tions (Def.11).

(Def.11) (i) The objects of SliceCat(C, o) = Hom(o),
(ii) for all elements a, b of Hom(o) and for every morphism f of C such

that dom b = cod f and a = b · f holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of
SliceCat(C, o),

(iii) for every morphism m of SliceCat(C, o) there exist elements a, b of
Hom(o) and there exists a morphism f of C such that m = 〈〈〈〈a, b〉〉, f〉〉
and dom b = cod f and a = b · f, and

(iv) for all morphisms m1, m2 of SliceCat(C, o) and for all elements a1, a2,
a3 of Hom(o) and for all morphisms f1, f2 of C such that m1 = 〈〈〈〈a1, a2〉〉,
f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 · m1 = 〈〈〈〈a1, a3〉〉, f2 · f1〉〉.

The functor SliceCat(o,C) yielding a strict category with triple-like morphisms
is defined by the conditions (Def.12).

(Def.12) (i) The objects of SliceCat(o,C) = hom(o, � ),
(ii) for all elements a, b of hom(o, � ) and for every morphism f of C such

that dom f = cod a and f · a = b holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of
SliceCat(o,C),

(iii) for every morphism m of SliceCat(o,C) there exist elements a, b of
hom(o, � ) and there exists a morphism f of C such that m = 〈〈〈〈a, b〉〉, f〉〉
and dom f = cod a and f · a = b, and

(iv) for all morphisms m1, m2 of SliceCat(o,C) and for all elements a1, a2,
a3 of hom(o, � ) and for all morphisms f1, f2 of C such that m1 = 〈〈〈〈a1,

a2〉〉, f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 · m1 = 〈〈〈〈a1, a3〉〉, f2 · f1〉〉.

Let C be a category, let o be an object of C, and let m be a morphism
of SliceCat(C, o). Then m2 is a morphism of C. Then m1,1 is an element of
Hom(o). Then m1,2 is an element of Hom(o).

We now state two propositions:

(29) Let C be a category, and let a be an object of C, and let m be
a morphism of SliceCat(C, a). Then m = 〈〈〈〈m1,1, m1,2〉〉, m2〉〉 and
dom(m1,2) = cod(m2) and m1,1 = m1,2 · m2 and domm = m1,1 and
cod m = m1,2.

(30) Let C be a category, and let o be an object of C, and let f be an
element of Hom(o), and let a be an object of SliceCat(C, o). If a = f,

then ida = 〈〈〈〈a, a〉〉, iddom f 〉〉.

Let C be a category, let o be an object of C, and let m be a morphism
of SliceCat(o,C). Then m2 is a morphism of C. Then m1,1 is an element of
hom(o, � ). Then m1,2 is an element of hom(o, � ).
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We now state two propositions:

(31) Let C be a category, and let a be an object of C, and let m be
a morphism of SliceCat(a,C). Then m = 〈〈〈〈m1,1, m1,2〉〉, m2〉〉 and
dom(m2) = cod(m1,1) and m2 · m1,1 = m1,2 and domm = m1,1 and
cod m = m1,2.

(32) Let C be a category, and let o be an object of C, and let f be an
element of hom(o, � ), and let a be an object of SliceCat(o,C). If a = f,

then ida = 〈〈〈〈a, a〉〉, idcod f 〉〉.

4. Functors Between Slice Categories

Let C be a category and let f be a morphism of C. The functor SliceFunctor(f)
yielding a functor from SliceCat(C,dom f) to SliceCat(C, cod f) is defined by:

(Def.13) For every morphism m of SliceCat(C,dom f) holds (SliceFunctor(f))(m) =
〈〈〈〈f · m1,1, f · m1,2〉〉, m2〉〉.

The functor SliceContraFunctor(f) yields a functor from SliceCat(cod f,C) to
SliceCat(dom f,C) and is defined as follows:

(Def.14) For every morphism m of SliceCat(cod f,C) holds
(SliceContraFunctor(f))(m) = 〈〈〈〈m1,1 · f, m1,2 · f〉〉, m2〉〉.

We now state two propositions:

(33) For every category C and for all morphisms f , g of C such that dom g =
cod f holds SliceFunctor(g · f) = SliceFunctor(g) · SliceFunctor(f).

(34) For every category C and for all morphisms f , g of C such that
dom g = cod f holds SliceContraFunctor(g · f) = SliceContraFunctor(f) ·
SliceContraFunctor(g).
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[3] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.
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