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The terminology and notation used in this paper are introduced in the following
papers: [20], [23], [21], [25], [5], [3], [4], [9], [6], [16], [8], [7], [17], [22], [1], [2],
[24], [10], [19], [11], [18], [15], [14], [13], and [12].

1. Combining of Many Sorted Signatures

Let S be a many sorted signature. A gate of S is an element of the operation
symbols of S.

Let A be a set and let X be a set. Then A 7−→ X is a many sorted set
indexed by A.

Let A be a set and let X be a non empty set. One can check that A 7−→ X

is non-empty.
Let A be a set and let f be a function. One can verify that A 7−→ f is

function yielding.
Let f , g be non-empty functions. Note that f +· g is non-empty.
Let A, B be sets, let f be a many sorted set indexed by A, and let g be a

many sorted set indexed by B. Then f +· g is a many sorted set indexed by
A ∪ B.

We now state several propositions:

1This work was written while the second author visited Shinshu University, July–August
1994.
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(1) For all functions f1, f2, g1, g2 such that rng g1 ⊆ dom f1 and rng g2 ⊆
dom f2 and f1 ≈ f2 holds (f1 +· f2) · (g1 +· g2) = f1 · g1 +· f2 · g2.

(2) For all functions f1, f2, g such that rng g ⊆ dom f1 and rng g ⊆ dom f2

and f1 ≈ f2 holds f1 · g = f2 · g.

(3) Let A, B be sets, and let f be a many sorted set indexed by A, and let
g be a many sorted set indexed by B. If f ⊆ g, then f # ⊆ g#.

(4) For all sets X, Y , x, y holds X 7−→ x ≈ Y 7−→ y iff x = y or X misses
Y .

(5) For all functions f , g, h such that f ≈ g and g ≈ h and h ≈ f holds
f +· g ≈ h.

(6) For every set X and for every non empty set Y and for every finite
sequence p of elements of X holds (X 7−→ Y )#(p) = Y len p.

Let A be a set, let f1, g1 be non-empty many sorted sets indexed by A, let
B be a set, let f2, g2 be non-empty many sorted sets indexed by B, let h1 be a
many sorted function from f1 into g1, and let h2 be a many sorted function from
f2 into g2. Then h1 +· h2 is a many sorted function from f1 +· f2 into g1 +· g2.

Let S1, S2 be many sorted signatures. The predicate S1 ≈ S2 is defined by:

(Def.1) The arity of S1 ≈ the arity of S2 and the result sort of S1 ≈ the result
sort of S2.

Let us notice that this predicate is reflexive and symmetric.
Let S1, S2 be non empty many sorted signatures. The functor S1 +· S2

yielding a strict non empty many sorted signature is defined by the conditions
(Def.2).

(Def.2) (i) The carrier of S1 +· S2 = (the carrier of S1) ∪ (the carrier of S2),
(ii) the operation symbols of S1+·S2 = (the operation symbols of S1)∪(the

operation symbols of S2),
(iii) the arity of S1 +· S2 = (the arity of S1) +· (the arity of S2), and
(iv) the result sort of S1 +· S2 = (the result sort of S1) +· (the result sort

of S2).

The following propositions are true:

(7) For all non empty many sorted signatures S1, S2, S3 such that S1 ≈ S2

and S2 ≈ S3 and S3 ≈ S1 holds S1 +· S2 ≈ S3.

(8) For every non empty many sorted signature S holds S +·S = the many
sorted signature of S.

(9) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2

holds S1 +· S2 = S2 +· S1.

(10) For all non empty many sorted signatures S1, S2, S3 holds (S1 +·S2)+·
S3 = S1 +· (S2 +· S3).

One can verify that there exists a function which is one-to-one.
Next we state four propositions:

(11) Let f be an one-to-one function and let S1, S2 be circuit-like non empty
many sorted signatures. Suppose the result sort of S1 ⊆ f and the result
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sort of S2 ⊆ f. Then S1 +· S2 is circuit-like.

(12) For all circuit-like non empty many sorted signatures S1, S2 such that
InnerVertices(S1) misses InnerVertices(S2) holds S1 +· S2 is circuit-like.

(13) For all non empty many sorted signatures S1, S2 such that S1 is not
void or S2 is not void holds S1 +· S2 is non void.

(14) For all finite non empty many sorted signatures S1, S2 holds S1 +· S2

is finite.

Let S1 be a non void non empty many sorted signature and let S2 be a non
empty many sorted signature. Observe that S1 +· S2 is non void and S2 +· S1

is non void.

We now state several propositions:

(15) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2

holds InnerVertices(S1 +·S2) = InnerVertices(S1)∪ InnerVertices(S2) and
InputVertices(S1 +· S2) ⊆ InputVertices(S1) ∪ InputVertices(S2).

(16) For all non empty many sorted signatures S1, S2 and for every vertex v2

of S2 such that v2 ∈ InputVertices(S1 +·S2) holds v2 ∈ InputVertices(S2).

(17) Let S1, S2 be non empty many sorted signatures. If S1 ≈ S2, then
for every vertex v1 of S1 such that v1 ∈ InputVertices(S1 +· S2) holds
v1 ∈ InputVertices(S1).

(18) Let S1 be a non empty many sorted signature, and let S2 be a non void
non empty many sorted signature, and let o2 be an operation symbol of
S2, and let o be an operation symbol of S1 +· S2. Suppose o2 = o. Then
Arity(o) = Arity(o2) and the result sort of o = the result sort of o2.

(19) Let S1 be a non empty many sorted signature and let S2, S be circuit-
like non void non empty many sorted signatures. Suppose S = S1 +· S2.

Let v2 be a vertex of S2. Suppose v2 ∈ InnerVertices(S2). Let v be a vertex
of S. If v2 = v, then v ∈ InnerVertices(S) and the action at v = the action
at v2.

(20) Let S1 be a non void non empty many sorted signature and let S2 be
a non empty many sorted signature. Suppose S1 ≈ S2. Let o1 be an
operation symbol of S1 and let o be an operation symbol of S1 +· S2.

Suppose o1 = o. Then Arity(o) = Arity(o1) and the result sort of o = the
result sort of o1.

(21) Let S1, S be circuit-like non void non empty many sorted signatures
and let S2 be a non empty many sorted signature. Suppose S1 ≈ S2 and
S = S1 +· S2. Let v1 be a vertex of S1. Suppose v1 ∈ InnerVertices(S1).
Let v be a vertex of S. If v1 = v, then v ∈ InnerVertices(S) and the
action at v = the action at v1.
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2. Combinig of Circuits

Let S1, S2 be non empty many sorted signatures, let A1 be an algebra over
S1, and let A2 be an algebra over S2. The predicate A1 ≈ A2 is defined by:

(Def.3) S1 ≈ S2 and the sorts of A1 ≈ the sorts of A2 and the characteristics of
A1 ≈ the characteristics of A2.

Let S1, S2 be non empty many sorted signatures, let A1 be a non-empty
algebra over S1, and let A2 be a non-empty algebra over S2. Let us assume that
the sorts of A1 ≈ the sorts of A2. The functor A1+·A2 yields a strict non-empty
algebra over S1 +· S2 and is defined by the conditions (Def.4).

(Def.4) (i) The sorts of A1 +· A2 = (the sorts of A1) +· (the sorts of A2), and

(ii) the characteristics of A1 +· A2 = (the characteristics of A1) +· (the
characteristics of A2).

The following propositions are true:

(22) For every non void non empty many sorted signature S and for every
algebra A over S holds A ≈ A.

(23) Let S1, S2 be non void non empty many sorted signatures, and let A1

be an algebra over S1, and let A2 be an algebra over S2. If A1 ≈ A2, then
A2 ≈ A1.

(24) Let S1, S2, S3 be non empty many sorted signatures, and let A1 be a
non-empty algebra over S1, and let A2 be a non-empty algebra over S2,
and let A3 be an algebra over S3. If A1 ≈ A2 and A2 ≈ A3 and A3 ≈ A1,

then A1 +· A2 ≈ A3.

(25) Let S be a strict non empty many sorted signature and let A be a
non-empty algebra over S. Then A +· A = the algebra of A.

(26) Let S1, S2 be non empty many sorted signatures, and let A1 be a non-
empty algebra over S1, and let A2 be a non-empty algebra over S2. If
A1 ≈ A2, then A1 +· A2 = A2 +· A1.

(27) Let S1, S2, S3 be non empty many sorted signatures, and let A1 be a
non-empty algebra over S1, and let A2 be a non-empty algebra over S2,
and let A3 be a non-empty algebra over S3. Suppose that

(i) the sorts of A1 ≈ the sorts of A2,
(ii) the sorts of A2 ≈ the sorts of A3, and

(iii) the sorts of A3 ≈ the sorts of A1.
Then (A1 +· A2) +· A3 = A1 +· (A2 +· A3).

(28) Let S1, S2 be non empty many sorted signatures, and let A1 be a locally-
finite non-empty algebra over S1, and let A2 be a locally-finite non-empty
algebra over S2. If the sorts of A1 ≈ the sorts of A2, then A1 +· A2 is
locally-finite.

(29) For all non-empty functions f , g and for every element x of
∏

f and for
every element y of

∏
g holds x +· y ∈

∏
(f +· g).
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(30) For all non-empty functions f , g and for every element x of
∏

(f +· g)
holds x

�
dom g ∈

∏
g.

(31) For all non-empty functions f , g such that f ≈ g and for every element
x of

∏
(f +· g) holds x

�
dom f ∈

∏
f.

(32) Let S1, S2 be non empty many sorted signatures, and let A1 be a non-
empty algebra over S1, and let s1 be an element of

∏
(the sorts of A1), and

let A2 be a non-empty algebra over S2, and let s2 be an element of
∏

(the
sorts of A2). If the sorts of A1 ≈ the sorts of A2, then s1 +· s2 ∈

∏
(the

sorts of A1 +· A2).

(33) Let S1, S2 be non empty many sorted signatures, and let A1 be a
non-empty algebra over S1, and let A2 be a non-empty algebra over S2.
Suppose the sorts of A1 ≈ the sorts of A2. Let s be an element of

∏
(the

sorts of A1 +· A2). Then s
�
(the carrier of S1) ∈

∏
(the sorts of A1) and

s
�
(the carrier of S2) ∈

∏
(the sorts of A2).

(34) Let S1, S2 be non void non empty many sorted signatures, and let A1

be a non-empty algebra over S1, and let A2 be a non-empty algebra over
S2. Suppose the sorts of A1 ≈ the sorts of A2. Let o be an operation
symbol of S1 +· S2 and let o2 be an operation symbol of S2. If o = o2,

then Den(o,A1 +· A2) = Den(o2, A2).

(35) Let S1, S2 be non void non empty many sorted signatures, and let A1

be a non-empty algebra over S1, and let A2 be a non-empty algebra over
S2. Suppose the sorts of A1 ≈ the sorts of A2 and the characteristics of
A1 ≈ the characteristics of A2. Let o be an operation symbol of S1 +· S2

and let o1 be an operation symbol of S1. If o = o1, then Den(o,A1+·A2) =
Den(o1, A1).

(36) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S = S1 +· S2. Let A1 be a non-empty circuit of S1, and let A2

be a non-empty circuit of S2, and let A be a non-empty circuit of S, and
let s be a state of A, and let s2 be a state of A2. Suppose s2 = s

�
(the

carrier of S2). Let g be a gate of S and let g2 be a gate of S2. If g = g2,

then g depends-on-in s = g2 depends-on-in s2.

(37) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S = S1 +· S2 and S1 ≈ S2. Let A1 be a non-empty circuit of S1,
and let A2 be a non-empty circuit of S2, and let A be a non-empty circuit
of S, and let s be a state of A, and let s1 be a state of A1. Suppose
s1 = s

�
(the carrier of S1). Let g be a gate of S and let g1 be a gate of

S1. If g = g1, then g depends-on-in s = g1 depends-on-in s1.

(38) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S = S1 +·S2. Let A1 be a non-empty circuit of S1, and let A2 be
a non-empty circuit of S2, and let A be a non-empty circuit of S. Suppose
A1 ≈ A2 and A = A1 +·A2. Let s be a state of A and let v be a vertex of
S. Then

(i) for every state s1 of A1 such that s1 = s
�
(the carrier of S1) holds if
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v ∈ InnerVertices(S1) or v ∈ the carrier of S1 and v ∈ InputVertices(S),
then (Following(s))(v) = (Following(s1))(v), and

(ii) for every state s2 of A2 such that s2 = s
�
(the carrier of S2) holds if

v ∈ InnerVertices(S2) or v ∈ the carrier of S2 and v ∈ InputVertices(S),
then (Following(s))(v) = (Following(s2))(v).

(39) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InnerVertices(S1) misses InputVertices(S2) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, and let A2 be a non-empty circuit of S2,
and let A be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2.

Let s be a state of A, and let s1 be a state of A1, and let s2 be a state of
A2. Suppose s1 = s

�
(the carrier of S1) and s2 = s

�
(the carrier of S2).

Then Following(s) = Following(s1) +· Following(s2).

(40) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InnerVertices(S2) misses InputVertices(S1) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, and let A2 be a non-empty circuit of S2,
and let A be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2.

Let s be a state of A, and let s1 be a state of A1, and let s2 be a state of
A2. Suppose s1 = s

�
(the carrier of S1) and s2 = s

�
(the carrier of S2).

Then Following(s) = Following(s2) +· Following(s1).

(41) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) ⊆ InputVertices(S2) and S = S1 +·S2. Let A1

be a non-empty circuit of S1, and let A2 be a non-empty circuit of S2, and
let A be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1 +· A2.

Let s be a state of A, and let s1 be a state of A1, and let s2 be a state of
A2. Suppose s1 = s

�
(the carrier of S1) and s2 = s

�
(the carrier of S2).

Then Following(s) = Following(s2) +· Following(s1).

(42) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S2) ⊆ InputVertices(S1) and S = S1 +·S2. Let A1

be a non-empty circuit of S1, and let A2 be a non-empty circuit of S2, and
let A be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1 +· A2.

Let s be a state of A, and let s1 be a state of A1, and let s2 be a state of
A2. Suppose s1 = s

�
(the carrier of S1) and s2 = s

�
(the carrier of S2).

Then Following(s) = Following(s1) +· Following(s2).

3. Signatures with One Operation

Let A, B be non empty sets and let a be an element of A. Then B 7−→ a is
a function from B into A.

Let f be a set, let p be a finite sequence, and let x be a set. The func-
tor 1GateCircStr(p, f, x) yields a non void strict many sorted signature and is
defined by the conditions (Def.5).

(Def.5) (i) The carrier of 1GateCircStr(p, f, x) = rng p ∪ {x},
(ii) the operation symbols of 1GateCircStr(p, f, x) = {〈〈p, f〉〉},
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(iii) (the arity of 1GateCircStr(p, f, x))(〈〈p, f〉〉) = p, and

(iv) (the result sort of 1GateCircStr(p, f, x))(〈〈p, f〉〉) = x.

Let f be a set, let p be a finite sequence, and let x be a set. Note that
1GateCircStr(p, f, x) is non empty.

The following propositions are true:

(43) Let f , x be sets and let p be a finite sequence. Then the ar-
ity of 1GateCircStr(p, f, x) = {〈〈p, f〉〉} 7−→ p and the result sort of
1GateCircStr(p, f, x) = {〈〈p, f〉〉} 7−→ x.

(44) Let f , x be sets, and let p be a finite sequence, and let g be a gate of
1GateCircStr(p, f, x). Then g = 〈〈p, f〉〉 and Arity(g) = p and the result
sort of g = x.

(45) For all sets f , x and for every finite sequence p holds In-
putVertices (1GateCircStr(p, f, x)) = rng p \ {x} and InnerVertices
(1GateCircStr(p, f, x)) = {x}.

Let f be a set and let p be a finite sequence. The functor 1GateCircStr(p, f)
yielding a non void strict many sorted signature is defined by the conditions
(Def.6).

(Def.6) (i) The carrier of 1GateCircStr(p, f) = rng p ∪ {〈〈p, f〉〉},

(ii) the operation symbols of 1GateCircStr(p, f) = {〈〈p, f〉〉},

(iii) (the arity of 1GateCircStr(p, f))(〈〈p, f〉〉) = p, and

(iv) (the result sort of 1GateCircStr(p, f))(〈〈p, f〉〉) = 〈〈p, f〉〉.

Let f be a set and let p be a finite sequence. Note that 1GateCircStr(p, f)
is non empty.

One can prove the following propositions:

(46) For every set f and for every finite sequence p holds 1GateCircStr(p, f) =
1GateCircStr(p, f, 〈〈p, f〉〉).

(47) Let f be a set and let p be a finite sequence. Then the ar-
ity of 1GateCircStr(p, f) = {〈〈p, f〉〉} 7−→ p and the result sort of
1GateCircStr(p, f) = {〈〈p, f〉〉} 7−→ 〈〈p, f〉〉.

(48) Let f be a set, and let p be a finite sequence, and let g be a gate of
1GateCircStr(p, f). Then g = 〈〈p, f〉〉 and Arity(g) = p and the result sort
of g = g.

(49) For every set f and for every finite sequence p holds InputVertices

(1GateCircStr(p, f)) = rng p and InnerVertices(1GateCircStr(p, f)) =
{〈〈p, f〉〉}.

(50) For every set f and for every finite sequence p and for every set x such
that x ∈ rng p holds rk(x) ∈ rk(〈〈p, f〉〉).

(51) For every set f and for all finite sequences p, q holds
1GateCircStr(p, f) ≈ 1GateCircStr(q, f).
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4. Unsplit Condition

A many sorted signature is unsplit if:

(Def.7) The result sort of it = id(the operation symbols of it).

A many sorted signature has arity held in gates if:

(Def.8) For every set g such that g ∈ the operation symbols of it holds g = 〈〈(the
arity of it)(g), g2〉〉.

A many sorted signature has Boolean denotation held in gates if it satisfies the
condition (Def.9).

(Def.9) Let g be a set. Suppose g ∈ the operation symbols of it. Let p be
a finite sequence. Suppose p = (the arity of it)(g). Then there exists a
function f from Boolean

len p into Boolean such that g = 〈〈g1, f〉〉.

Let S be a non empty many sorted signature. An algebra over S has denotation
held in gates if:

(Def.10) For every set g such that g ∈ the operation symbols of S holds g = 〈〈g1,

(the characteristics of it)(g)〉〉.

A non empty many sorted signature has denotation held in gates if:

(Def.11) There exists algebra over it which has denotation held in gates.

One can verify that every non empty many sorted signature which has
Boolean denotation held in gates has also denotation held in gates.

The following two propositions are true:

(52) Let S be a non empty many sorted signature. Then S is unsplit if and
only if for every set o such that o ∈ the operation symbols of S holds (the
result sort of S)(o) = o.

(53) Let S be a non empty many sorted signature. Suppose S is unsplit.
Then the operation symbols of S ⊆ the carrier of S.

Let us note that every non empty many sorted signature which is unsplit is
also circuit-like.

The following proposition is true

(54) For every set f and for every finite sequence p holds 1GateCircStr(p, f)
is unsplit and has arity held in gates.

Let f be a set and let p be a finite sequence. Observe that 1GateCircStr(p, f)
is unsplit and has arity held in gates.

Let us observe that there exists a many sorted signature which is unsplit non
void strict and non empty and has arity held in gates.

One can prove the following propositions:

(55) For all unsplit non empty many sorted signatures S1, S2 with arity held
in gates holds S1 ≈ S2.

(56) Let S1, S2 be non empty many sorted signatures, and let A1 be an
algebra over S1, and let A2 be an algebra over S2. Suppose A1 has de-
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notation held in gates and A2 has denotation held in gates. Then the
characteristics of A1 ≈ the characteristics of A2.

(57) For all unsplit non empty many sorted signatures S1, S2 holds S1 +·S2

is unsplit.

Let S1, S2 be unsplit non empty many sorted signatures. Observe that
S1 +· S2 is unsplit.

We now state the proposition

(58) For all non empty many sorted signatures S1, S2 with arity held in gates
holds S1 +· S2 has arity held in gates.

Let S1, S2 be non empty many sorted signatures with arity held in gates.
Note that S1 +· S2 has arity held in gates.

The following proposition is true

(59) Let S1, S2 be non empty many sorted signatures. Suppose S1 has
Boolean denotation held in gates and S2 has Boolean denotation held in
gates. Then S1 +· S2 has Boolean denotation held in gates.

5. One Gate Circuits

Let n be a natural number. A finite sequence is said to be a finite sequence
with length n if:

(Def.12) len it = n.

Let n be a natural number, let X, Y be non empty sets, let f be a function
from Xn into Y , let p be a finite sequence with length n, and let x be a set.
Let us assume that if x ∈ rng p, then X = Y. The functor 1GateCircuit(p, f, x)
yielding a strict non-empty algebra over 1GateCircStr(p, f, x) is defined by:

(Def.13) The sorts of 1GateCircuit(p, f, x) = (rng p 7−→ X) +· ({x} 7−→ Y ) and
(the characteristics of 1GateCircuit(p, f, x))(〈〈p, f〉〉) = f.

Let n be a natural number, let X be a non empty set, let f be a function
from Xn into X, and let p be a finite sequence with length n. The functor
1GateCircuit(p, f) yielding a strict non-empty algebra over 1GateCircStr(p, f)
is defined as follows:

(Def.14) The sorts of 1GateCircuit(p, f) = (the carrier of 1GateCircStr(p, f)) 7−→
(X) and (the characteristics of 1GateCircuit(p, f))(〈〈p, f〉〉) = f.

Next we state the proposition

(60) Let n be a natural number, and let X be a non empty set, and let
f be a function from Xn into X, and let p be a finite sequence with
length n. Then 1GateCircuit(p, f) has denotation held in gates and
1GateCircStr(p, f) has denotation held in gates.

Let n be a natural number, let X be a non empty set, let f be a function
from Xn into X, and let p be a finite sequence with length n. One can verify
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that 1GateCircuit(p, f) has denotation held in gates and 1GateCircStr(p, f) has
denotation held in gates.

One can prove the following proposition

(61) Let n be a natural number, and let p be a finite sequence with
length n, and let f be a function from Boolean

n into Boolean . Then
1GateCircStr(p, f) has Boolean denotation held in gates.

Let n be a natural number, let f be a function from Boolean
n into Boolean ,

and let p be a finite sequence with length n. Note that 1GateCircStr(p, f) has
Boolean denotation held in gates.

One can check that there exists a many sorted signature which is non empty
and has Boolean denotation held in gates.

Let S1, S2 be non empty many sorted signatures with Boolean denotation
held in gates. Observe that S1 +· S2 has Boolean denotation held in gates.

One can prove the following proposition

(62) Let n be a natural number, and let X be a non empty set, and
let f be a function from Xn into X, and let p be a finite sequence
with length n. Then the characteristics of 1GateCircuit(p, f) = {〈〈p,

f〉〉} 7−→ f and for every vertex v of 1GateCircStr(p, f) holds (the sorts of
1GateCircuit(p, f))(v) = X.

Let n be a natural number, let X be a non empty finite set, let f be a
function from Xn into X, and let p be a finite sequence with length n. One can
check that 1GateCircuit(p, f) is locally-finite.

Next we state two propositions:

(63) Let n be a natural number, and let X be a non empty set, and let f be
a function from Xn into X, and let p, q be finite sequences with length
n. Then 1GateCircuit(p, f) ≈ 1GateCircuit(q, f).

(64) Let n be a natural number, and let X be a finite non empty set, and let f

be a function from Xn into X, and let p be a finite sequence with length
n, and let s be a state of 1GateCircuit(p, f). Then (Following(s))(〈〈p,

f〉〉) = f(s · p).

Let X be a non empty set. Observe that there exists a non empty subset of
X which is finite.

6. Boolean Circuits

Boolean is a finite non empty subset of � .

Let S be a non empty many sorted signature. An algebra over S is Boolean
if:

(Def.15) For every vertex v of S holds (the sorts of it)(v) = Boolean .

Next we state the proposition
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(65) Let S be a non empty many sorted signature and let A be an algebra
over S. Then A is Boolean if and only if the sorts of A = (the carrier of
S) 7−→ Boolean .

Let S be a non empty many sorted signature. Note that every algebra over
S which is Boolean is also non-empty and locally-finite.

One can prove the following three propositions:

(66) Let S be a non empty many sorted signature and let A be an algebra
over S. Then A is Boolean if and only if rng (the sorts of A) ⊆ {Boolean}.

(67) Let S1, S2 be non empty many sorted signatures, and let A1 be an
algebra over S1, and let A2 be an algebra over S2. Suppose A1 is Boolean
and A2 is Boolean. Then the sorts of A1 ≈ the sorts of A2.

(68) Let S1, S2 be unsplit non empty many sorted signatures with arity held
in gates, and let A1 be an algebra over S1, and let A2 be an algebra over
S2. Suppose A1 is Boolean and has denotation held in gates and A2 is
Boolean and has denotation held in gates. Then A1 ≈ A2.

Let S be a non empty many sorted signature. One can check that there
exists a strict algebra over S which is Boolean.

We now state three propositions:

(69) Let n be a natural number, and let f be a function from Boolean
n

into Boolean , and let p be a finite sequence with length n. Then
1GateCircuit(p, f) is Boolean.

(70) Let S1, S2 be non empty many sorted signatures, and let A1 be a
Boolean algebra over S1, and let A2 be a Boolean algebra over S2. Then
A1 +· A2 is Boolean.

(71) Let S1, S2 be non empty many sorted signatures, and let A1 be a
non-empty algebra over S1, and let A2 be a non-empty algebra over S2.
Suppose A1 has denotation held in gates and A2 has denotation held in
gates and the sorts of A1 ≈ the sorts of A2. Then A1 +·A2 has denotation
held in gates.

Let us observe that there exists a non empty many sorted signature which is
unsplit non void and strict and has arity held in gates, denotation held in gates,
and Boolean denotation held in gates.

Let S be a non empty many sorted signature with Boolean denotation held
in gates. Note that there exists a strict algebra over S which is Boolean and has
denotation held in gates.

Let S1, S2 be unsplit non void non empty many sorted signatures with
Boolean denotation held in gates, let A1 be a Boolean circuit of S1 with de-
notation held in gates, and let A2 be a Boolean circuit of S2 with denotation
held in gates. One can verify that A1 +·A2 is Boolean and has denotation held
in gates.

Let n be a natural number, let X be a finite non empty set, let f be a
function from Xn into X, and let p be a finite sequence with length n. Observe
that there exists a circuit of 1GateCircStr(p, f) which is strict and non-empty
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and has denotation held in gates.
Let n be a natural number, let X be a finite non empty set, let f be a

function from Xn into X, and let p be a finite sequence with length n. Note
that 1GateCircuit(p, f) has denotation held in gates.

One can prove the following proposition

(72) Let S1, S2 be unsplit non void non empty many sorted signatures with
arity held in gates and Boolean denotation held in gates, and let A1 be
a Boolean circuit of S1 with denotation held in gates, and let A2 be a
Boolean circuit of S2 with denotation held in gates, and let s be a state
of A1 +· A2, and let v be a vertex of S1 +· S2. Then

(i) for every state s1 of A1 such that s1 = s
�
(the carrier of S1) holds if v ∈

InnerVertices(S1) or v ∈ the carrier of S1 and v ∈ InputVertices(S1 +·S2),
then (Following(s))(v) = (Following(s1))(v), and

(ii) for every state s2 of A2 such that s2 = s
�
(the carrier of S2) holds if v ∈

InnerVertices(S2) or v ∈ the carrier of S2 and v ∈ InputVertices(S1 +·S2),
then (Following(s))(v) = (Following(s2))(v).
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[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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