
FORMALIZED MATHEMATICS

Volume 5, Number 2, 1996

Warsaw University - Bia lystok

Introduction to Circuits, II 1

Yatsuka Nakamura

Shinshu University, Nagano

Piotr Rudnicki

University of Alberta, Edmonton

Andrzej Trybulec

Warsaw University, Bia lystok

Pauline N. Kawamoto

Shinshu University, Nagano

Summary. This article is the last in a series of four articles (pre-
ceded by [23,22,21]) about modelling circuits by many sorted algebras.

The notion of a circuit computation is defined as a sequence of cir-
cuit states. For a state of a circuit the next state is given by executing
operations at circuit vertices in the current state, according to denota-
tions of the operations. The values at input vertices at each state of a
computation are provided by an external sequence of input values. The
process of how input values propagate through a circuit is described in
terms of a homomorphism of the free envelope algebra of the circuit into
itself. We prove that every computation of a circuit over a finite mono-
tonic signature and with constant input values stabilizes after executing
the number of steps equal to the depth of the circuit.

MML Identifier: CIRCUIT2.

The articles [27], [30], [31], [12], [13], [18], [14], [3], [9], [16], [5], [7], [4], [28], [1],
[6], [29], [2], [15], [10], [26], [19], [25], [11], [20], [17], [24], [23], [22], [21], and [8]
provide the terminology and notation for this paper.

1. Circuit Inputs

In this paper I1 will be a monotonic circuit-like non void non empty many
sorted signature.

The following proposition is true

1Partial funding for this work has been provided by: Shinshu Endowment Fund for Infor-
mation Science, NSERC Grant OGP9207, JSTF award 651-93-S009.

273
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630



274 yatsuka nakamura et al.

(1) Let X be a non-empty many sorted set indexed by the carrier of I1,
and let H be a many sorted function from Free(X) into Free(X), and let
H1 be a function yielding function, and let v be a sort symbol of I1, and
let p be a decorated tree yielding finite sequence, and let t be an element
of (the sorts of Free(X))(v). Suppose that

(i) v ∈ InnerVertices(I1),

(ii) t = 〈〈the action at v, the carrier of I1〉〉-tree(p),

(iii) H is a homomorphism of Free(X) into Free(X), and

(iv) H1 = H · Arity(the action at v).

Then there exists a decorated tree yielding finite sequence H2 such that
H2 = H1 � p and H(v)(t) = 〈〈the action at v, the carrier of I1〉〉-tree(H2).

Let us consider I1, let S1 be a non-empty circuit of I1, let s be a state of S1,
and let i1 be an input assignment of S1. Then s +· i1 is a state of S1.

Let us consider I1, let A be a non-empty circuit of I1, and let i1 be an input
assignment of A. The functor FixInput(i1) yields a many sorted function from
FreeGenerator(the sorts of A) into the sorts of FreeEnvelope(A) and is defined
by the condition (Def.1).

(Def.1) Let v be a vertex of I1. Then

(i) if v ∈ InputVertices(I1), then (FixInput(i1))(v) = FreeGenerator(v, the
sorts of A) 7−→ the root tree of 〈〈i1(v), v〉〉,

(ii) if v ∈ SortsWithConstants(I1), then (FixInput(i1))(v) =
FreeGenerator(v, the sorts of A) 7−→ the root tree of 〈〈the action at v,
the carrier of I1〉〉, and

(iii) if v ∈ InnerVertices(I1) \ SortsWithConstants(I1), then

(FixInput(i1))(v) = idFreeGenerator(v,the sorts of A).

Let us consider I1, let A be a non-empty circuit of I1, and let i1 be an input
assignment of A. The functor FixInputExt(i1) yields a many sorted function
from FreeEnvelope(A) into FreeEnvelope(A) and is defined by:

(Def.2) FixInputExt(i1) is a homomorphism of FreeEnvelope(A) into
FreeEnvelope(A) and FixInput(i1) ⊆ FixInputExt(i1).

The following propositions are true:

(2) Let A be a non-empty circuit of I1, and let i1 be an input as-
signment of A, and let v be a vertex of I1, and let e be an ele-
ment of (the sorts of FreeEnvelope(A))(v), and let x be arbitrary. If
v ∈ InnerVertices(I1) \ SortsWithConstants(I1) and e = the root tree of
〈〈x, v〉〉, then (FixInputExt(i1))(v)(e) = e.

(3) Let A be a non-empty circuit of I1, and let i1 be an input assignment
of A, and let v be a vertex of I1, and let x be an element of (the sorts of
A)(v). If v ∈ InputVertices(I1), then (FixInputExt(i1))(v)(the root tree
of 〈〈x, v〉〉) = the root tree of 〈〈i1(v), v〉〉.

(4) Let A be a non-empty circuit of I1, and let i1 be an input assignment
of A, and let v be a vertex of I1, and let e be an element of (the sorts



introduction to circuits, ii 275

of FreeEnvelope(A))(v), and let p, q be decorated tree yielding finite se-
quences. Suppose that

(i) v ∈ InnerVertices(I1),
(ii) e = 〈〈the action at v, the carrier of I1〉〉-tree(p),
(iii) dom p = dom q, and
(iv) for every natural number k such that k ∈ dom p holds q(k) =

(FixInputExt(i1))(πk Arity(the action at v))(p(k)).
Then (FixInputExt(i1))(v)(e) = 〈〈the action at v, the carrier of
I1〉〉-tree(q).

(5) Let A be a non-empty circuit of I1, and let i1 be an input assign-
ment of A, and let v be a vertex of I1, and let e be an element of
(the sorts of FreeEnvelope(A))(v). Suppose v ∈ SortsWithConstants(I1).
Then (FixInputExt(i1))(v)(e) = the root tree of 〈〈the action at v, the
carrier of I1〉〉.

(6) Let A be a non-empty circuit of I1, and let i1 be an input assignment
of A, and let v be a vertex of I1, and let e, e1 be elements of (the sorts of
FreeEnvelope(A))(v), and let t, t1 be decorated trees. If t = e and t1 = e1

and e1 = (FixInputExt(i1))(v)(e), then dom t = dom t1.

(7) Let A be a non-empty circuit of I1, and let i1 be an input assignment
of A, and let v be a vertex of I1, and let e, e1 be elements of (the sorts
of FreeEnvelope(A))(v). If e1 = (FixInputExt(i1))(v)(e), then card e =
card e1.

Let us consider I1, let S1 be a non-empty circuit of I1, let v be a vertex of
I1, and let i1 be an input assignment of S1. The functor InputGenTree(v, i1)
yields an element of (the sorts of FreeEnvelope(S1))(v) and is defined by:

(Def.3) There exists an element e of (the sorts of FreeEnvelope(S1))(v) such that
card e = size(v, S1) and InputGenTree(v, i1) = (FixInputExt(i1))(v)(e).

We now state two propositions:

(8) Let S1 be a non-empty circuit of I1, and let v be a vertex of I1,
and let i1 be an input assignment of S1. Then InputGenTree(v, i1) =
(FixInputExt(i1))(v)(InputGenTree(v, i1)).

(9) Let S1 be a non-empty circuit of I1, and let v be a vertex of I1, and let
i1 be an input assignment of S1, and let p be a decorated tree yielding
finite sequence. Suppose that

(i) v ∈ InnerVertices(I1),
(ii) dom p = dom Arity(the action at v), and
(iii) for every natural number k such that k ∈ dom p holds p(k) =

InputGenTree(πk Arity(the action at v), i1).
Then InputGenTree(v, i1) = 〈〈the action at v, the carrier of I1〉〉-tree(p).

Let us consider I1, let S1 be a non-empty circuit of I1, let v be a vertex of
I1, and let i1 be an input assignment of S1. The functor InputGenValue(v, i1)
yields an element of (the sorts of S1)(v) and is defined by:

(Def.4) InputGenValue(v, i1) = (Eval(S1))(v)(InputGenTree(v, i1)).



276 yatsuka nakamura et al.

The following propositions are true:

(10) Let S1 be a non-empty circuit of I1, and let v be a vertex of I1, and
let i1 be an input assignment of S1. If v ∈ InputVertices(I1), then
InputGenValue(v, i1) = i1(v).

(11) Let S1 be a non-empty circuit of I1, and let v be a vertex of I1, and
let i1 be an input assignment of S1. If v ∈ SortsWithConstants(I1), then
InputGenValue(v, i1) = (Set-Constants(S1))(v).

2. Circuit Computations

Let I1 be a circuit-like non void non empty many sorted signature, let S1 be
a non-empty circuit of I1, and let s be a state of S1. The functor Following(s)
yielding a state of S1 is defined by the condition (Def.5).

(Def.5) Let v be a vertex of I1. Then if v ∈ InputVertices(I1),
then (Following(s))(v) = s(v) and if v ∈ InnerVertices(I1), then
(Following(s))(v) = (Den(the action at v, S1))((the action at
v) depends-on-in s).

Next we state the proposition

(12) Let S1 be a non-empty circuit of I1, and let s be a state of S1, and let
i1 be an input assignment of S1. If i1 ⊆ s, then i1 ⊆ Following(s).

Let I1 be a circuit-like non void non empty many sorted signature and let S1

be a non-empty circuit of I1. A state of S1 is stable if:

(Def.6) It = Following(it).

Let us consider I1, let S1 be a non-empty circuit of I1, let s be a state of S1,
and let i1 be an input assignment of S1. The functor Following(s, i1) yielding a
state of S1 is defined by:

(Def.7) Following(s, i1) = Following(s +· i1).

Let us consider I1, let S1 be a non-empty circuit of I1, let I2 be an input
function of S1, and let s be a state of S1. The functor InitialComp(s, I2) yielding
a state of S1 is defined as follows:

(Def.8) InitialComp(s, I2) = s +· (0-th-input(I2)) +· Set-Constants(S1).

Let us consider I1, let S1 be a non-empty circuit of I1, let I2 be an input
function of S1, and let s be a state of S1. The functor Computation(s, I2)
yielding a function from � into

∏
(the sorts of S1) is defined by the conditions

(Def.9).

(Def.9) (i) (Computation(s, I2))(0) = InitialComp(s, I2), and
(ii) for every natural number i and for every state x of S1 such

that x = (Computation(s, I2))(i) holds (Computation(s, I2))(i + 1) =
Following(x, (i + 1)-th-input(I2)).

In the sequel S1 denotes a non-empty circuit of I1, s denotes a state of S1,
and i1 denotes an input assignment of S1.



introduction to circuits, ii 277

Next we state the proposition

(13) Let k be a natural number. Suppose that for every vertex v of I1

such that depth(v, S1) ≤ k holds s(v) = InputGenValue(v, i1). Let v1

be a vertex of I1. If depth(v1, S1) ≤ k + 1, then (Following(s))(v1) =
InputGenValue(v1, i1).

For simplicity we adopt the following convention: I1 is a finite monotonic
circuit-like non void non empty many sorted signature, S1 is a non-empty circuit
of I1, I2 is an input function of S1, s is a state of S1, and i1 is an input assignment
of S1.

We now state several propositions:

(14) If commute(I2) is constant and InputVertices(I1) is non empty, then for
all s, i1 such that i1 = (commute(I2))(0) and for every natural number k

holds i1 ⊆ (Computation(s, I2))(k).

(15) Let n be a natural number. Suppose commute(I2) is constant and
InputVertices(I1) is non empty and (Computation(s, I2))(n) is stable.
Let m be a natural number. If n ≤ m, then (Computation(s, I2))(n) =
(Computation(s, I2))(m).

(16) Suppose commute(I2) is constant and InputVertices(I1) is non empty.
Given s, i1. Suppose i1 = (commute(I2))(0). Let k be a natu-
ral number and let v be a vertex of I1. If depth(v, S1) ≤ k,

then ((Computation(s, I2))(k) qua element of
∏

(the sorts of S1))(v) =
InputGenValue(v, i1).

(17) Suppose commute(I2) is constant and InputVertices(I1) is non empty
and i1 = (commute(I2))(0). Let s be a state of S1 and let v be a ver-
tex of I1. Then ((Computation(s, I2))(depth(S1)) qua state of S1)(v) =
InputGenValue(v, i1).

(18) If commute(I2) is constant and InputVertices(I1) is non empty, then for
every state s of S1 holds (Computation(s, I2))(depth(S1)) is stable.

(19) If commute(I2) is constant and InputVertices(I1) is non empty, then
for all states s1, s2 of S1 holds (Computation(s1, I2))(depth(S1)) =
(Computation(s2, I2))(depth(S1)).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–

552, 1991.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[4] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82,

1993.
[5] Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397–402, 1991.
[6] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[7] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formal-

ized Mathematics, 3(2):195–204, 1992.
[8] Grzegorz Bancerek. Terms over many sorted universal algebra. Formalized Mathematics,

5(2):191–198, 1996.



278 yatsuka nakamura et al.

[9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[10] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized

Mathematics, 4(1):91–101, 1993.
[11] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formal-

ized Mathematics, 5(1):47–54, 1996.
[12] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[13] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[14] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[15] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized

Mathematics, 2(5):683–687, 1991.
[16] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[17] Ma lgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Math-

ematics, 5(1):61–65, 1996.
[18] Jaros law Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,

1(3):471–475, 1990.
[19] Beata Madras. Product of family of universal algebras. Formalized Mathematics,

4(1):103–108, 1993.
[20] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60,

1996.
[21] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. In-

troduction to circuits, I. Formalized Mathematics, 5(2):227–232, 1996.
[22] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, II. Formalized Mathematics, 5(2):215–220, 1996.
[23] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[24] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67–

74, 1996.
[25] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[26] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[27] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[28] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[30] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received April 10, 1995


