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Summary. The dual concept to filters (see [2,3]) i.e. ideals of a
lattice is introduced.

MML Identifier: FILTER_2.

The articles [12], [14], [13], [4], [15], [6], [10], [9], [7], [5], [16], [8], [2], [11], [3],
and [1] provide the notation and terminology for this paper.

1. SOME PROPERTIES OF THE RESTRICTION OF BINARY OPERATIONS

In this paper D is a non empty set.
We now state several propositions:

(1) Let D be a non empty set, and let S be a non empty subset of D, and
let f be a binary operation on D, and let g be a binary operation on S.
Suppose g = f [} S, S]. Then

(i) if f is commutative, then g is commutative,
(ii) if f is idempotent, then g is idempotent, and

(iii) if f is associative, then g is associative.

(2) Let D be a non empty set, and let S be a non empty subset of D, and
let f be a binary operation on D, and let g be a binary operation on S,
and let d be an element of D, and let d’ be an element of S. Suppose
g=f1}S,S5]and d =d. Then

(i) if d is a left unity w.r.t. f, then d’ is a left unity w.r.t. g,
(ii) if d is a right unity w.r.t. f, then d’ is a right unity w.r.t. g, and

(i)  if d is a unity w.r.t. f, then d’ is a unity w.r.t. g.

(3) Let D be a non empty set, and let S be a non empty subset of D, and
let f1, fo be binary operations on D, and let g1, g2 be binary operations
on S. Suppose g1 = f1 1 [S, S]and go = fo I [ S, S{. Then
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(i) if f1 is left distributive w.r.t. fo, then gp is left distributive w.r.t. gs,
and

(il) if fy is right distributive w.r.t. fo, then g; is right distributive w.r.t.
g2-

(4) Let D be a non empty set, and let S be a non empty subset of D, and
let f1, fo be binary operations on D, and let g1, go be binary operations
on S. Suppose g1 = f1 1 [S, S]and go = fo I [ S, S{. If f; is distributive
w.r.t. fs, then g; is distributive w.r.t. gs.

(5) Let D be a non empty set, and let S be a non empty subset of D, and
let f1, fo be binary operations on D, and let g1, go be binary operations
onS. Ifg1 = f11[S, S]and go = fo [ [ S, S, then if f; absorbs f, then
g1 absorbs gs.

2. CLOSED SUBSETS OF A LATTICE

Let D be a non empty set and let X1, X5 be subsets of D. Let us observe
that X; = X5 if and only if:

(Def.1)  For every element z of D holds =z € X; iff x € X5.

For simplicity we follow the rules: L will denote a lattice, p, ¢, r will denote
elements of the carrier of L, p’, ¢’ will denote elements of the carrier of L°, and
x will be arbitrary.

Next we state several propositions:

(6) Let Ly, Lo be lattice structures. Suppose the lattice structure of L =
the lattice structure of Ly. Then L1° = L5°.

(7)  (L°)° = the lattice structure of L.

(8) Let Ly, Ly be non empty lattice structures. Suppose the lattice struc-
ture of L1 = the lattice structure of Lo. Let a1, by be elements of the
carrier of L1 and let ag, by be elements of the carrier of Lo. Suppose
a1 = ag and by = by. Then a1 Ub; = as LU by and a1 Mb; = as Mby and
aj C b1 iff as C bg.

(9) Let Ly, Lo be lower bound lattices. Suppose the lattice structure of
Ly = the lattice structure of Ly. Then L7,y = L(z,).

(10) Let Ly, Ly be upper bound lattices. Suppose the lattice structure of
Ly = the lattice structure of Ly. Then T (z,) = T(z,).

(11)  Let Ly, Ly be complemented lattices. Suppose the lattice structure of
L1 = the lattice structure of Lo. Let ai, b1 be elements of the carrier of
L1 and let as, by be elements of the carrier of Lo. If a1 = as and b; = by
and a7 is a complement of by, then ay is a complement of bs.

(12)  Let Ly, Lo be Boolean lattices. Suppose the lattice structure of L; = the
lattice structure of Lo. Let a be an element of the carrier of L1 and let b
be an element of the carrier of Lo. If a = b, then a® = 0°.
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Let us consider L. A subset of the carrier of L is said to be a closed subset
of L if:
(Def.2)  For all p, ¢ such that p € it and ¢ € it holds pM¢q € it and p U ¢ € it.
Let us consider L. Observe that there exists a closed subset of L which is
non empty.
The following two propositions are true:
(13) Let X be a subset of the carrier of L. Suppose that for all p, ¢ holds
pe X and g€ X iff pfg € X. Then X is a closed subset of L.
(14) Let X be a subset of the carrier of L. Suppose that for all p, ¢ holds
peXandge X iff plqg € X. Then X is a closed subset of L.
Let us consider L. Then [L) is a filter of L. Let p be an element of the carrier
of L. Then [p) is a filter of L.
Let us consider L and let D be a non empty subset of the carrier of L. Then
[D) is a filter of L.
Let L be a distributive lattice and let Fy, Fy be filters of L. Then Iy M Fy is
a filter of L.
Let us consider L. A non empty closed subset of L is called an ideal of L if:
(Def.3) peitandgeitiff pUgq € it.
Next we state three propositions:
(15) Let X be a non empty subset of the carrier of L. Suppose that for all
p,qholds pe X and g € X iff plU g € X. Then X is an ideal of L.
(16) Let Ly, Lo be lattices. Suppose the lattice structure of L; = the lattice
structure of Lo. Given z. If x is a filter of L1, then z is a filter of L.
(17)  Let Ly, Lo be lattices. Suppose the lattice structure of L; = the lattice
structure of Lo. Given x. If x is an ideal of L1, then x is an ideal of Ls.
Let us consider L, p. The functor p° yielding an element of the carrier of L°
is defined by:
(Defd) p° =p.
Let us consider L and let p be an element of the carrier of L°. The functor
°p yields an element of the carrier of L and is defined as follows:
(Def.5)  °p=np.
Next we state four propositions:
(18)  °p® =pand (°p')° =p".
(19)  png = p°Uq® and plig = p°Mg° and p'Mq’ = °p/U°¢" and p’'Uq’ = °p'M°q
(20) pEqiff ¢° Cp°and p' C ¢ iff °¢' C °p'.
(21) xis an ideal of L iff z is a filter of L°.
Let us consider L and let X be a subset of the carrier of L. The functor X°
yielding a subset of the carrier of L° is defined as follows:
(Def.6) X°=X.
Let us consider L and let X be a subset of the carrier of L°. The functor °X
yielding a subset of the carrier of L is defined by:

/
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(Def.7)  °X =X.

Let us consider L and let D be a non empty subset of the carrier of L.
Observe that D° is non empty.

Let us consider L and let D be a non empty subset of the carrier of L°.
Observe that °D is non empty.

Let us consider L and let S be a closed subset of L. Then S° is a closed
subset of L°.

Let us consider L and let S be a non empty closed subset of L. Then S° is
a non empty closed subset of L°.

Let us consider L and let S be a closed subset of L°. Then °S is a closed
subset of L.

Let us consider L and let S be a non empty closed subset of L°. Then °S is
a non empty closed subset of L.

Let us consider L and let F' be a filter of L. Then F° is an ideal of L°.

Let us consider L and let F' be a filter of L°. Then °F is an ideal of L.

Let us consider L and let I be an ideal of L. Then I° is a filter of L°.

Let us consider L and let I be an ideal of L°. Then °I is a filter of L.

We now state the proposition

(22)  Let D be a non empty subset of the carrier of L. Then D is an ideal of
L if and only if the following conditions are satisfied:

(i) for all p, ¢ such that p € D and ¢ € D holds pU g € D, and

(ii)  for all p, ¢ such that p € D and ¢ C p holds g € D.

In the sequel I, J will be ideals of L and F will be a filter of L.

One can prove the following propositions:

(23) Ifpel,thenpfgelandgnpel.

(24)  There exists p such that p € I.

(25) If L is lower-bounded, then L € I.

(26)  If L is lower-bounded, then {1} is an ideal of L.
(27)  If {p} is an ideal of L, then L is lower-bounded.

3. IDEALS GENERATED BY SUBSETS OF A LATTICE

Next we state the proposition
(28)  The carrier of L is an ideal of L.
Let us consider L. The functor (L] yielding an ideal of L is defined as follows:
(Def.8) (L] = the carrier of L.

Let us consider L, p. The functor (p] yields an ideal of L and is defined as
follows:

(Det.9)  (p] ={q:qEp}.
We now state four propositions:

(29) qe(piff¢Cp.
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(30)  (p] = [p°) and (p°] = [p).
(31) pe(plandprige (p] and ¢Mp € (p].
(32) If L is upper-bounded, then (L] = (T ].
Let us consider L, I. We say that I is maximal if and only if:

(Def.10) I # the carrier of L and for every J such that I C J and J # the carrier
of L holds I = J.

One can prove the following four propositions:
(33) I is maximal iff I° is an ultrafilter.

(34) If L is upper-bounded, then for every I such that I # the carrier of L
there exists J such that I C J and J is maximal.

(35)  If there exists r such that p LI # p, then (p] # the carrier of L.

(36) If L is upper-bounded and p # T 1, then there exists I such that p € T
and [ is maximal.

In the sequel D denotes a non empty subset of the carrier of L and D’ denotes
a non empty subset of the carrier of L°.

Let us consider L, D. The functor (D] yields an ideal of L and is defined as
follows:

(Def.11) D C (D] and for every I such that D C I holds (D] C I.
We now state two propositions:
(37) [D°) = (D] and [D) = (D°] and [°D’') = (D’] and [D’) = (°D’].
(38) (I]=1.
In the sequel Dy, Do are non empty subsets of the carrier of L and D}, D}

are non empty subsets of the carrier of L°.
The following propositions are true:
39) 1 Dy C Ds, then (Dy] C (Ds] and (D)) € (D).
40) If p € D, then (p] C (D].
41) If D = {p}, then (D] = (p].
42) If L is upper-bounded and Ty € D, then (D] = (L] and (D] = the
carrier of L.

(43) If L is upper-bounded and T, € I, then I = (L] and I = the carrier of
L.

Let us consider L, I. We say that I is prime if and only if:
(Def12) pngeliffpelorqgel.
The following proposition is true

(
(
(
(

(44) I is prime iff I° is prime.
Let us consider L, Dy, Do. The functor Dy LI Dy yielding a non empty subset
of the carrier of L is defined by:
(Def13) DiUDy={pUq:p€ D1 A q€ Ds}.
We now state four propositions:
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(45) D1UDy = D1°MDy° and D1°1UD9° = DM Dy and DiUDé = OD&HODQ
and °D| U°D) = D} M Ds.
(46) If pe Dy and g € Dy, then pU g € Dy U D9 and qUp € Dy U Do.
(47) If = € Dy U Dy, then there exist p, ¢ such that x = pU g and p € Dy
and g € Ds.
(48) D1 U Dy =Dy U Ds.
Let L be a distributive lattice and let I, Is be ideals of L. Then I7 Ll I5 is
an ideal of L.
The following four propositions are true:

(49) (Dl U DQ] = ((Dl] U DQ] and (D1 U DQ] = (D1 @] (DQH
(50) (IuJl={r:V,, rCpUg Apel AN qgeJ}.
(51) ICIUJand JCTUJ.
(52) (ITuJ]={Uu.J].

We follow the rules: B denotes a Boolean lattice, I3, J; denote ideals of B,

and a, b denote elements of the carrier of B.
The following propositions are true:

(53) L is a complemented lattice iff L° is a complemented lattice.
(54) L is a Boolean lattice iff L° is a Boolean lattice.
Let B be a Boolean lattice. One can verify that B° is Boolean and lattice-like.
In the sequel a’ will denote an element of the carrier of (B qua lattice)®.
The following propositions are true:
(55)  (a®)° =a® and (°d)® = d'".
(56) (IgUJl] =1I3U J;.
(57) I3 is maximal iff I3 # the carrier of B and for every a holds a € I3 or
a® € Is.
(58) I3 # (B] and I3 is prime iff I3 is maximal.
(59) If I3 is maximal, then for every a holds a € I3 iff a© ¢ I3.
(60) If a # b, then there exists I3 such that I3 is maximal but a € I3 and
b¢ Isora¢lsandbe Is.
In the sequel P denotes a non empty closed subset of L and 01, 02 denote
binary operations on P.
One can prove the following two propositions:
(61) (i) (The join operation of L) | [ P, P] is a binary operation on P, and
(ii)  (the meet operation of L) | | P, P{ is a binary operation on P.
(62)  Suppose 07 = (the join operation of L) | [ P, P] and oy = (the meet
operation of L) | [ P, P]. Then o; is commutative and associative and 0g
is commutative and associative and o1 absorbs o9 and o9 absorbs 0.
Let us consider L, p, q. Let us assume that p C ¢. The functor [p, q] yielding
a non empty closed subset of L is defined by:
(Def.14)  [p,ql={r:pCr A rCq}.
We now state several propositions:
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(63) If pC q,thenr € [p,q]iff pCr and r C q.

(64) TIf p C g, then p € [p,q] and q € [p, ql.

(65)  [p,p] = {p}

(66) If L is upper-bounded, then [p) = [p, T ].

(67) If L is lower-bounded, then (p] = [LL,p].

(68) Let L, Ly be lattices, and let F; be a filter of L1, and let F» be a filter

of Lo. Suppose the lattice structure of L; = the lattice structure of Lo
and F1 = Fg. Then I]—(Fl) = [|_(F2).

4. SUBLATTICES

Let us consider L. Let us note that the sublattice of L can be characterized
by the following (equivalent) condition:

(Def.15)  There exist P, 01, o2 such that

(i) 01 = (the join operation of L) | [ P, P,

(ii) o2 = (the meet operation of L) [ [ P, P ], and
(iii)  the lattice structure of it = (P, 01, 02).
The following proposition is true

(69) For every sublattice K of L holds every element of the carrier of K is
an element of the carrier of L.

Let us consider L, P. The functor L% yields a strict sublattice of L and is
defined as follows:

(Def.16)  There exist 01, 0g such that o1 = (the join operation of L) | [ P, P ] and

02 = (the meet operation of L) | [ P, P] and L5 = (P, 01, 0).
Let us consider L and let [ be a sublattice of L. Then [° is a strict sublattice
of L°.
Next we state a number of propositions:
(70) lp = [L%.
(71)  Lh = (Lk)e.
(72) [L(LL] = the lattice structure of L and [L[LL) = the lattice structure of L.
(73) (i)  The carrier of L% = P,
(ii)  the join operation of L% = (the join operation of L) | | P, P, and
(iii)  the meet operation of L% = (the meet operation of L) | [ P, P].
(74)  For all p, g and for all elements p’, ¢’ of the carrier of [Lf; such that
p=p and g=¢ holds plUg=p' Uq¢ and plg=9p'1¢.
(75)  For all p, ¢ and for all elements p’, ¢’ of the carrier of I]_ILD such that
p=p and g=¢ holds pC qiff p’' C ¢'.
(76)  If L is lower-bounded, then L% is lower-bounded.
(77)  If L is modular, then 15 is modular.
(78)  If L is distributive, then L% is distributive.
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If L is implicative and p C ¢, then I]_é) d is implicative.
I]_éﬂ is upper-bounded.

T = 7.
gy P

If L is lower-bounded, then [L(Lp | is lower-bounded and J_L(L] =1r.
P

If L is lower-bounded, then ”—é,} is bounded.

If p C g, then I]_{J | is bounded and T,z =gqand L, =p.
P9 [p.q] [p.q]

If L is a complemented lattice and modular, then [Lén ] is a complemented
lattice.

If L is a complemented lattice and modular and p C ¢, then I]_[g’ d is a
complemented lattice.

If L is a Boolean lattice and p C ¢, then [L[z d is a Boolean lattice.
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