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Summary. We have formalized deterministic finite state machines
closely following the textbook [9], pp. 88–119 up to the minimization the-
orem. In places, we have changed the approach presented in the book as
it turned out to be too specific and inconvenient. Our work also revealed
several minor mistakes in the book. After defining a structure for an
outputless finite state machine, we have derived the structures for the
transition assigned output machine (Mealy) and state assigned output
machine (Moore). The machines are then proved similar, in the sense
that for any Mealy (Moore) machine there exists a Moore (Mealy) ma-
chine producing essentially the same response for the same input. The
rest of work is then done for Mealy machines. Next, we define equivalence
of machines, equivalence and k-equivalence of states, and characterize a
process of constructing for a given Mealy machine, the machine equiva-
lent to it in which no two states are equivalent. The final, minimization
theorem states:

Theorem 4.5: Let M1 and M2 be reduced, con-
nected finite-state machines. Then the state graphs
of M1 and M2 are isomorphic if and only if M1 and
M2 are equivalent.

and it is the last theorem in this article.

MML Identifier: FSM 1.

The papers [19], [23], [10], [2], [21], [13], [16], [8], [20], [18], [24], [5], [6], [7], [22],
[3], [4], [1], [14], [17], [12], [11], and [15] provide the terminology and notation
for this paper.
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1. Preliminaries

For simplicity we adopt the following convention: m, n, i, k will denote
natural numbers, D will denote a non empty set, d will denote an element of D,
and d1, d2 will denote finite sequences of elements of D.

Next we state several propositions:

(1) If m < n, then there exists a natural number p such that n = m + p

and 1 ≤ p.

(2) If i ∈ Seg n, then i + m ∈ Seg(n + m).

(3) If i > 0 and i + m ∈ Seg(n + m), then i ∈ Seg n and i ∈ Seg(n + m).

(4) If k < i, then there exists a natural number j such that j = i − k and
1 ≤ j.

(5) If 1 ≤ len d1, then there exist d, d2 such that d = d1(1) and d1 = 〈d〉 � d2.

(6) If i ∈ dom d1, then (〈d〉 � d1)(i + 1) = d1(i).

For simplicity we adopt the following rules: S is a set, D1, D2 are non empty
sets, f1 is a function from S into D1, and f2 is a function from D1 into D2.

One can prove the following propositions:

(7) If f1 is bijective and f2 is bijective, then f2 · f1 is bijective.

(8) For every set Y and for all equivalence relations E1, E2 of Y such that
Classes E1 = Classes E2 holds E1 = E2.

(9) For every non empty set W holds every partition of W is non empty.

(10) For every finite set Z holds every partition of Z is finite.

Let W be a non empty set. Note that every partition of W is non empty.

Let Z be a finite set. Note that every partition of Z is finite.

Let X be a non empty finite set. Observe that there exists a partition of X

which is non empty and finite.

We adopt the following rules: X, A will be non empty finite sets, P1 will be
a partition of X, and P2, P3 will be partitions of A.

We now state several propositions:

(11) For every set P4 such that P4 ∈ P1 there exists an element x of X such
that x ∈ P4.

(12) card P1 ≤ card X.

(13) If P2 is finer than P3, then card P3 ≤ card P2.

(14) If P2 is finer than P3, then for every element p2 of P3 there exists an
element p1 of P2 such that p1 ⊆ p2.

(15) If P2 is finer than P3 and card P2 = card P3, then P2 = P3.
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2. Definitions and Terminology

Let I1 be a non empty set. We consider FSM over I1 as systems
〈 states, a Tran, a InitS 〉,

where the states constitute a finite non empty set, the Tran is a function from
[: the states, I1 :] into the states, and the InitS is an element of the states.

Let I1 be a non empty set and let f3 be a FSM over I1. A state of f3 is an
element of the states of f3.

For simplicity we follow a convention: I1, O1 are non empty sets, f3 is a FSM
over I1, s is an element of I1, w, w1, w2 are finite sequences of elements of I1,
q, q′, q1, q2 are states of f3, and q3 is a finite sequence of elements of the states
of f3.

Let us consider I1, f3, s, q. The functor s-succ(q) yielding a state of f3 is
defined by:

(Def.1) s-succ(q) = (the Tran of f3)(〈〈q, s〉〉).

Let us consider I1, f3, q, w. The functor (q,w)-admissible yields a finite
sequence of elements of the states of f3 and is defined by the conditions (Def.2).

(Def.2) (i) (q,w)-admissible(1) = q,

(ii) len((q,w)-admissible) = len w + 1, and
(iii) for every i such that 1 ≤ i and i ≤ len w there exists an element w3

of I1 and there exist states q4, q5 of f3 such that w3 = w(i) and q4 =
(q,w)-admissible(i) and q5 = (q,w)-admissible(i + 1) and w3-succ(q4) =
q5.

The following proposition is true

(16) (q, ε(I1))-admissible = 〈q〉.

Let us consider I1, f3, w, q1, q2. The predicate q1
w

−→ q2 is defined as follows:

(Def.3) (q1, w)-admissible(len w + 1) = q2.

We now state the proposition

(17) q
ε(I1)
−→ q.

Let us consider I1, f3, w, q3. We say that q3 is admissible for w if and only
if:

(Def.4) There exists q1 such that q1 = q3(1) and (q1, w)-admissible = q3.

We now state the proposition

(18) 〈q〉 is admissible for ε(I1).

Let us consider I1, f3, q, w. The functor w-succ(q) yields a state of f3 and
is defined by:

(Def.5) q
w

−→ w-succ(q).

One can prove the following propositions:

(19) (q,w)-admissible(len((q,w)-admissible)) = q ′ iff q
w

−→ q′.

(20) For every k such that 1 ≤ k and k ≤ len w1 holds (q1, w1 �
w2)-admissible(k) = (q1, w1)-admissible(k).
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(21) If q1
w1−→ q2, then (q1, w1 � w2)-admissible(len w1 + 1) = q2.

(22) If q1
w1−→ q2, then for every k such that 1 ≤ k and k ≤ len w2 + 1 holds

(q1, w1 � w2)-admissible(len w1 + k) = (q2, w2)-admissible(k).

(23) If q1
w1−→ q2, then (q1, w1 � w2)-admissible = ((q1, w1)-admissible 	 len w1+1 ) �

(q2, w2)-admissible.

3. Mealy and Moore Machines

Let I1, O1 be non empty sets. We consider Mealy-FSM over I1, O1 as
extensions of FSM over I1 as systems

〈 states, a Tran, a OFun, a InitS 〉,
where the states constitute a finite non empty set, the Tran is a function from
[: the states, I1 :] into the states, the OFun is a function from [: the states, I1 :]
into O1, and the InitS is an element of the states. We introduce Moore-FSM
over I1, O1 which are extensions of FSM over I1 and are systems

〈 states, a Tran, a OFun, a InitS 〉,
where the states constitute a finite non empty set, the Tran is a function from
[: the states, I1 :] into the states, the OFun is a function from the states into O1,
and the InitS is an element of the states.

For simplicity we adopt the following convention: t1, t2, t3, t4 will denote
Mealy-FSM over I1, O1, s1 will denote a Moore-FSM over I1, O1, q6 will denote
a state of s1, q, q1, q2, q7, q8, q9, q10, q′1, q11, q12, q13 will denote states of t1,
q14, q15 will denote states of t2, and q21, q22 will denote states of t3.

Let us consider I1, O1, t1, q11, w. The functor (q11, w)-response yields a finite
sequence of elements of O1 and is defined as follows:

(Def.6) len((q11, w)-response) = len w and for every i such that i ∈ dom w holds
(q11, w)-response(i) = (the OFun of t1)(〈〈(q11, w)-admissible(i), w(i)〉〉).

The following proposition is true

(24) (q11, ε(I1))-response = ε(O1).

Let us consider I1, O1, s1, q6, w. The functor (q6, w)-response yields a finite
sequence of elements of O1 and is defined by:

(Def.7) len((q6, w)-response) = len w + 1 and for every i such that
i ∈ Seg(len w + 1) holds (q6, w)-response(i) = (the OFun of
s1)((q6, w)-admissible(i)).

One can prove the following propositions:

(25) (q6, w)-response(1) = (the OFun of s1)(q6).

(26) If q12
w1−→ q13, then (q12, w1 � w2)-response = (q12, w1)-response �

(q13, w2)-response.

(27) If q14
w1−→ q15 and q21

w1−→ q22 and (q15, w2)-response 6=
(q22, w2)-response, then (q14, w1 � w2)-response 6= (q21, w1 � w2)-response.
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In the sequel O2 is a finite non empty set, t5 is a Mealy-FSM over I1, O2,
and s2 is a Moore-FSM over I1, O2.

Let us consider I1, O1, t1, s1. We say that t1 is similar to s1 if and only if
the condition (Def.8) is satisfied.

(Def.8) Let t6 be a finite sequence of elements of I1. Then 〈(the OFun of s1)(the
InitS of s1)〉 � (the InitS of t1, t6)-response = (the InitS of s1, t6)-response.

The following propositions are true:

(28) There exists t1 which is similar to s1.

(29) There exists s2 such that t5 is similar to s2.

4. Equivalence of States and Machines

Let us consider I1, O1, t2, t3. We say that t2 and t3 are equivalent if and
only if:

(Def.9) For every w holds (the InitS of t2, w)-response = (the InitS of t3,
w)-response.

Let us observe that the predicate introduced above is reflexive and symmetric.
We now state the proposition

(30) If t2 and t3 are equivalent and t3 and t4 are equivalent, then t2 and t4
are equivalent.

Let us consider I1, O1, t1, q8, q9. We say that q8 and q9 are equivalent if and
only if:

(Def.10) For every w holds (q8, w)-response = (q9, w)-response.

We now state several propositions:

(31) q and q are equivalent.

(32) If q1 and q2 are equivalent, then q2 and q1 are equivalent.

(33) If q1 and q2 are equivalent and q2 and q7 are equivalent, then q1 and q7

are equivalent.

(34) If q′1 = (the Tran of t1)(〈〈q8, s〉〉), then for every i such that i ∈
Seg(len w+1) holds (q8, 〈s〉 � w)-admissible(i+1) = (q′1, w)-admissible(i).

(35) If q′1 = (the Tran of t1)(〈〈q8, s〉〉), then (q8, 〈s〉 � w)-response = 〈(the
OFun of t1)(〈〈q8, s〉〉)〉 � (q′1, w)-response.

(36) q8 and q9 are equivalent if and only if for every s holds (the OFun of
t1)(〈〈q8, s〉〉) = (the OFun of t1)(〈〈q9, s〉〉) and (the Tran of t1)(〈〈q8, s〉〉) and
(the Tran of t1)(〈〈q9, s〉〉) are equivalent.

(37) Suppose q8 and q9 are equivalent. Given w, i. Suppose i ∈ dom w.

Then there exist states q16, q17 of t1 such that q16 = (q8, w)-admissible(i)
and q17 = (q9, w)-admissible(i) and q16 and q17 are equivalent.

Let us consider I1, O1, t1, q8, q9, k. We say that q8 and q9 are k-equivalent
if and only if:
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(Def.11) For every w such that len w ≤ k holds (q8, w)-response =
(q9, w)-response.

One can prove the following propositions:

(38) q8 and q8 are k-equivalent.

(39) If q8 and q9 are k-equivalent, then q9 and q8 are k-equivalent.

(40) If q8 and q9 are k-equivalent and q9 and q10 are k-equivalent, then q8

and q10 are k-equivalent.

(41) If q8 and q9 are equivalent, then q8 and q9 are k-equivalent.

(42) q8 and q9 are 0-equivalent.

(43) If q8 and q9 are k + m-equivalent, then q8 and q9 are k-equivalent.

(44) Suppose 1 ≤ k. Then q8 and q9 are k-equivalent if and only if the
following conditions are satisfied:

(i) q8 and q9 are 1-equivalent, and
(ii) for every element s of I1 and for every natural number k1 such that

k1 = k−1 holds (the Tran of t1)(〈〈q8, s〉〉) and (the Tran of t1)(〈〈q9, s〉〉) are
k1-equivalent.

Let us consider I1, O1, t1, i. The functor i-EqS-Rel(t1) yielding an equiva-
lence relation of the states of t1 is defined as follows:

(Def.12) For all q8, q9 holds 〈〈q8, q9〉〉 ∈ i-EqS-Rel(t1) iff q8 and q9 are i-equivalent.

Let us consider I1, O1, t1, i. The functor i-EqS-Part(t1) yields a non empty
finite partition of the states of t1 and is defined by:

(Def.13) i-EqS-Part(t1) = Classes(i-EqS-Rel(t1)).

One can prove the following propositions:

(45) (k + 1)-EqS-Part(t1) is finer than k-EqS-Part(t1).

(46) If Classes(k-EqS-Rel(t1)) = Classes((k+1)-EqS-Rel(t1)), then for every
m holds Classes((k + m)-EqS-Rel(t1)) = Classes(k-EqS-Rel(t1)).

(47) If k-EqS-Part(t1) = (k + 1)-EqS-Part(t1), then for every m holds (k +
m)-EqS-Part(t1) = k-EqS-Part(t1).

(48) If (k + 1)-EqS-Part(t1) 6= k-EqS-Part(t1), then for every i such that
i ≤ k holds (i + 1)-EqS-Part(t1) 6= i-EqS-Part(t1).

(49) k-EqS-Part(t1) = (k + 1)-EqS-Part(t1) or card(k-EqS-Part(t1)) <

card((k + 1)-EqS-Part(t1)).

(50) [q]0-EqS-Rel(t1) = the states of t1.

(51) 0-EqS-Part(t1) = {the states of t1}.

(52) If n + 1 = card (the states of t1), then (n + 1)-EqS-Part(t1) =
n-EqS-Part(t1).

Let us consider I1, O1, t1. A partition of the states of t1 is final if:

(Def.14) For all q8, q9 holds q8 and q9 are equivalent iff there exists an element
X of it such that q8 ∈ X and q9 ∈ X.

Next we state three propositions:

(53) If k-EqS-Part(t1) is final, then (k + 1)-EqS-Rel(t1) = k-EqS-Rel(t1).
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(54) k-EqS-Part(t1) = (k + 1)-EqS-Part(t1) iff k-EqS-Part(t1) is final.

(55) If n + 1 = card (the states of t1), then there exists a natural number k

such that k ≤ n and k-EqS-Part(t1) is final.

Let us consider I1, O1, t1. The functor final-Partition(t1) yields a partition
of the states of t1 and is defined by:

(Def.15) final-Partition(t1) is final.

We now state the proposition

(56) If n + 1 = card (the states of t1), then final-Partition(t1) =
n-EqS-Part(t1).

5. The Reduction of a Mealy Machine

In the sequel r1 will be a Mealy-FSM over I1, O1, q18 will be a state of r1,
and q19 will be an element of final-Partition(t1).

Let us consider I1, O1, t1, q19, s. The functor (s, q19)-C-succ yields an element
of final-Partition(t1) and is defined by:

(Def.16) There exist q, n such that q ∈ q19 and n + 1 = card (the states of t1)
and (s, q19)-C-succ = [(the Tran of t1)(〈〈q, s〉〉)]

n-EqS-Rel(t1).

Let us consider I1, O1, t1, q19, s. The functor (q19, s)-C-response yielding an
element of O1 is defined by:

(Def.17) There exists q such that q ∈ q19 and (q19, s)-C-response = (the OFun
of t1)(〈〈q, s〉〉).

Let us consider I1, O1, t1. The reduction of t1 yielding a strict Mealy-FSM
over I1, O1 is defined by the conditions (Def.18).

(Def.18) (i) The states of the reduction of t1 = final-Partition(t1),
(ii) for every state Q of the reduction of t1 and for all s, q such that q ∈ Q

holds (the Tran of t1)(〈〈q, s〉〉) ∈ (the Tran of the reduction of t1)(〈〈Q, s〉〉)
and (the OFun of t1)(〈〈q, s〉〉) = (the OFun of the reduction of t1)(〈〈Q, s〉〉),
and

(iii) the InitS of t1 ∈ the InitS of the reduction of t1.

The following two propositions are true:

(57) If r1 = the reduction of t1 and q ∈ q18, then for every k such that
k ∈ Seg(len w + 1) holds (q,w)-admissible(k) ∈ (q18, w)-admissible(k).

(58) t1 and the reduction of t1 are equivalent.

6. Machine Isomorphism

In the sequel q20, q23 will denote states of r1 and T1 will denote a function
from the states of t2 into the states of t3.
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Let us consider I1, O1, t2, t3. We say that t2 and t3 are isomorphic if and
only if the condition (Def.19) is satisfied.

(Def.19) There exists T1 such that
(i) T1 is bijective,
(ii) T1(the InitS of t2) = the InitS of t3, and
(iii) for all q14, s holds T1((the Tran of t2)(〈〈q14, s〉〉)) = (the Tran

of t3)(〈〈T1(q14), s〉〉) and (the OFun of t2)(〈〈q14, s〉〉) = (the OFun of
t3)(〈〈T1(q14), s〉〉).

Let us observe that the predicate introduced above is reflexive and symmetric.
We now state four propositions:

(59) If t2 and t3 are isomorphic and t3 and t4 are isomorphic, then t2 and t4
are isomorphic.

(60) Suppose that for every state q of t2 and for every s holds T1((the Tran
of t2)(〈〈q, s〉〉)) = (the Tran of t3)(〈〈T1(q), s〉〉). Given k. If 1 ≤ k and k ≤
len w + 1, then T1((q14, w)-admissible(k)) = (T1(q14), w)-admissible(k).

(61) Suppose that
(i) T1(the InitS of t2) = the InitS of t3, and
(ii) for every state q of t2 and for every s holds T1((the Tran of t2)(〈〈q,

s〉〉)) = (the Tran of t3)(〈〈T1(q), s〉〉) and (the OFun of t2)(〈〈q, s〉〉) = (the
OFun of t3)(〈〈T1(q), s〉〉).
Then q14 and q15 are equivalent if and only if T1(q14) and T1(q15) are
equivalent.

(62) If r1 = the reduction of t1 and q20 6= q23, then q20 and q23 are not
equivalent.

7. Reduced and Connected Machines

Let I1, O1 be non empty sets. A Mealy-FSM over I1, O1 is reduced if:

(Def.20) For all states q8, q9 of it such that q8 6= q9 holds q8 and q9 are not
equivalent.

One can prove the following proposition

(63) The reduction of t1 is reduced.

Let us consider I1, O1. Note that there exists a Mealy-FSM over I1, O1

which is reduced.
In the sequel R1 will denote a reduced Mealy-FSM over I1, O1.
Next we state two propositions:

(64) R1 and the reduction of R1 are isomorphic.

(65) t1 is reduced iff there exists a Mealy-FSM M over I1, O1 such that t1
and the reduction of M are isomorphic.

Let us consider I1, O1, t1. A state of t1 is accessible if:

(Def.21) There exists w such that the InitS of t1
w

−→ it.
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Let us consider I1, O1. A Mealy-FSM over I1, O1 is connected if:

(Def.22) Every state of it is accessible.

Let us consider I1, O1. One can check that there exists a Mealy-FSM over
I1, O1 which is connected.

In the sequel C1, C2, C3 will be connected Mealy-FSM over I1, O1.
We now state the proposition

(66) The reduction of C1 is connected.

Let us consider I1, O1. Note that there exists a Mealy-FSM over I1, O1

which is connected and reduced.
Let us consider I1, O1, t1. The functor accessible-States(t1) yields a finite

non empty set and is defined as follows:

(Def.23) accessible-States(t1) = {q : q ranges over states of t1, q is accessible}.

The following propositions are true:

(67) accessible-States(t1) ⊆ the states of t1 and for every q holds q ∈
accessible-States(t1) iff q is accessible.

(68) (The Tran of t1)
�

[: accessible-States(t1), I1 :] is a function from
[: accessible-States(t1), I1 :] into accessible-States(t1).

(69) Let c1 be a function from [: accessible-States(t1), I1 :] into
accessible-States(t1), and let c2 be a function from [: accessible-States(t1),
I1 :] into O1, and let c3 be an element of accessible-States(t1). Suppose
c1 = (the Tran of t1)

�
[: accessible-States(t1), I1 :] and c2 = (the OFun

of t1)
�
[: accessible-States(t1), I1 :] and c3 = the InitS of t1. Then t1 and

Mealy-FSM〈accessible-States(t1), c1, c2, c3〉 are equivalent.

(70) There exists C1 such that
(i) the Tran of C1 = (the Tran of t1)

�
[: accessible-States(t1), I1 :],

(ii) the OFun of C1 = (the OFun of t1)
�
[: accessible-States(t1), I1 :],

(iii) the InitS of C1 = the InitS of t1, and
(iv) t1 and C1 are equivalent.

8. Machine Union

Let us consider I1, O1, t2, t3. The functor Mealy-U(t2, t3) yields a strict
Mealy-FSM over I1, O1 and is defined by the conditions (Def.24).

(Def.24) (i) The states of Mealy-U(t2, t3) = (the states of t2)∪ (the states of t3),
(ii) the Tran of Mealy-U(t2, t3) = (the Tran of t2) +· (the Tran of t3),
(iii) the OFun of Mealy-U(t2, t3) = (the OFun of t2) +· (the OFun of t3),

and
(iv) the InitS of Mealy-U(t2, t3) = the InitS of t2.

One can prove the following propositions:

(71) If t1 = Mealy-U(t2, t3) and (the states of t2)∩ (the states of t3) = ∅ and
q14 = q, then (q14, w)-admissible = (q,w)-admissible.
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(72) If t1 = Mealy-U(t2, t3) and (the states of t2)∩ (the states of t3) = ∅ and
q14 = q, then (q14, w)-response = (q,w)-response.

(73) If t1 = Mealy-U(t2, t3) and (the states of t2)∩ (the states of t3) = ∅ and
q21 = q, then (q21, w)-admissible = (q,w)-admissible.

(74) If t1 = Mealy-U(t2, t3) and (the states of t2)∩ (the states of t3) = ∅ and
q21 = q, then (q21, w)-response = (q,w)-response.

In the sequel R2, R3 will be reduced Mealy-FSM over I1, O1.
The following proposition is true

(75) Suppose t1 = Mealy-U(R2, R3) and (the states of R2) ∩ (the states of
R3) = ∅ and R2 and R3 are equivalent. Then there exists a state Q of
the reduction of t1 such that the InitS of R2 ∈ Q and the InitS of R3 ∈ Q

and Q = the InitS of the reduction of t1.

For simplicity we follow a convention: C4, C5 will denote connected reduced
Mealy-FSM over I1, O1, c11, c12 will denote states of C4, c21, c22 will denote
states of C5, and q24, q25 will denote states of t1.

The following propositions are true:

(76) Suppose that
(i) c11 = q24,

(ii) c12 = q25,

(iii) (the states of C4) ∩ (the states of C5) = ∅,
(iv) C4 and C5 are equivalent,
(v) t1 = Mealy-U(C4, C5), and
(vi) c11 and c12 are not equivalent.

Then q24 and q25 are not equivalent.

(77) Suppose that
(i) c21 = q24,

(ii) c22 = q25,

(iii) (the states of C4) ∩ (the states of C5) = ∅,
(iv) C4 and C5 are equivalent,
(v) t1 = Mealy-U(C4, C5), and
(vi) c21 and c22 are not equivalent.

Then q24 and q25 are not equivalent.

(78) Suppose (the states of C4) ∩ (the states of C5) = ∅ and C4 and C5 are
equivalent and t1 = Mealy-U(C4, C5). Let Q be a state of the reduction of
t1. Then there do not exist elements q1, q2 of Q such that q1 ∈ the states
of C4 and q2 ∈ the states of C4 and q1 6= q2.

(79) Suppose (the states of C4) ∩ (the states of C5) = ∅ and C4 and C5 are
equivalent and t1 = Mealy-U(C4, C5). Let Q be a state of the reduction of
t1. Then there do not exist elements q1, q2 of Q such that q1 ∈ the states
of C5 and q2 ∈ the states of C5 and q1 6= q2.

(80) Suppose (the states of C4) ∩ (the states of C5) = ∅ and C4 and C5 are
equivalent and t1 = Mealy-U(C4, C5). Let Q be a state of the reduction
of t1. Then there exist elements q1, q2 of Q such that q1 ∈ the states of
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C4 and q2 ∈ the states of C5 and for every element q of Q holds q = q1 or
q = q2.

9. The Minimization Theorem

We now state several propositions:

(81) There exist Mealy-FSM f4, f5 over I1, O1 such that (the states of
f4) ∩ (the states of f5) = ∅ and f4 and t2 are isomorphic and f5 and t3
are isomorphic.

(82) If t2 and t3 are isomorphic, then t2 and t3 are equivalent.

(83) If (the states of C4)∩(the states of C5) = ∅ and C4 and C5 are equivalent,
then C4 and C5 are isomorphic.

(84) If C2 and C3 are equivalent, then the reduction of C2 and the reduction
of C3 are isomorphic.

(85) Let M1, M2 be connected reduced Mealy-FSM over I1, O1. Then M1

and M2 are isomorphic if and only if M1 and M2 are equivalent.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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