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Summary. The concept of indexing of a category (a part of in-
dexed category, see [18]) is introduced as a pair formed by a many sorted
category and a many sorted functor. The indexing of a category C' against
to [18] is not a functor but it can be treated as a functor from C into
some categorial category (see [1]). The goal of the article is to work out
the notation necessary to define institutions (see [13]).

MML Identifier: INDEX_1.

The articles 23], [25], [11], [24], [26], [4], [5], [19], [9], [7], [22], [20], [21], [15], [16],
[14], [3], [6], [12], [8], [2], [10], [17], and [1] provide the notation and terminology
for this paper.

1. CATEGORY-YIELDING FUNCTIONS

Let A be a non empty set. One can check that there exists a many sorted
set indexed by A which is non empty yielding.

Let A be a non empty set. One can verify that every many sorted set indexed
by A which is non-empty is also non empty yielding.

Let C be a categorial category and let f be a morphism of C. Then fg is a
functor from f11 to f1,2.

We now state two propositions:

(1)  For every categorial category C and for all morphisms f, g of C' such
that dom g = cod f holds g - f = ({dom f, cod g), g2 - f2).

(2) Let C be a category, and let D, E be categorial categories, and let F’
be a functor from C to D, and let G be a functor from C to E. If F = G,
then Obj F' = ObjG.

A function is category-yielding if:
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(Def.1)  For arbitrary x such that = € domit holds it(z) is a category.

Let us note that there exists a function which is category-yielding.

Let X be a set. Observe that there exists a many sorted set indexed by X
which is category-yielding.

Let A be a set. A many sorted category indexed by A is a category-yielding
many sorted set indexed by A.

Let C be a category. A many sorted set indexed by C' is a many sorted set
indexed by the objects of C. A many sorted category indexed by C' is a many
sorted category indexed by the objects of C.

Let X be a set and let = be a category. One can verify that X —— z is
category-yielding.

Let X be a set and let = be a function. One can check that X —— z is
function yielding.

Let X be a non empty set. One can check that every many sorted set indexed
by X is non empty.

Let f be a non empty function. One can check that rng f is non empty.

Let f be a category-yielding function. Observe that rng f is categorial.

Let X be a non empty set, let f be a many sorted category indexed by X,
and let x be an element of X. Then f(z) is a category.

Let B be a set, let A be a non empty set, let f be a function from B into
A, and let g be a many sorted category indexed by A. Observe that g - f is
category-yielding.

Let F be a category-yielding function. The functor Objs(F') yields a non-
empty function and is defined by the conditions (Def.2).

(Def.2) (i) domObjs(F) = dom F, and
(ii)  for every set x such that x € dom F' and for every category C' such
that C' = F(x) holds (Objs(F'))(z) = the objects of C.
The functor Mphs(F') yields a non-empty function and is defined by the condi-
tions (Def.3).
(Def.3) (i) domMphs(F) = dom F, and
(ii)  for every set x such that x € dom F and for every category C such
that C'= F(x) holds (Mphs(F'))(z) = the morphisms of C.

Let A be a non empty set and let £’ be a many sorted category indexed by A.
Then Objs(F') is a non-empty many sorted set indexed by A. Then Mphs(F) is
a non-empty many sorted set indexed by A.

The following proposition is true

(3) For every set X and for every category C holds Objs(X — C) =
X —— the objects of C' and Mphs(X —— C) = X —— the morphisms of
C.
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2. PAIRS OF MANY SORTED SETS

Let A, B be sets. Pair of many sorted sets indexed by A and B is defined
by:

(Def.4)  There exists a many sorted set f indexed by A and there exists a many
sorted set g indexed by B such that it = (f, g).

Let A, B be sets, let f be a many sorted set indexed by A, and let g be a
many sorted set indexed by B. Then (f, g) is a pair of many sorted sets indexed
by A and B.

Let A, B be sets and let X be a pair of many sorted sets indexed by A and
B. Then X7 is a many sorted set indexed by A. Then X9 is a many sorted set
indexed by B.

Let A, B be sets. A pair of many sorted sets indexed by A and B is category-
yielding on first if:

(Def.5) ity is category-yielding.
A pair of many sorted sets indexed by A and B is function-yielding on second
if:

(Def.6) ito is function yielding.

Let A, B be sets. One can check that there exists a pair of many sorted sets
indexed by A and B which is category-yielding on first and function-yielding on
second.

Let A, B be sets and let X be a category-yielding on first pair of many sorted
sets indexed by A and B. Then X7 is a many sorted category indexed by A.

Let A, B be sets and let X be a function-yielding on second pair of many
sorted sets indexed by A and B. Then X9 is a many sorted function of B.

Let f be a function yielding function. One can check that rng f is functional.

Let A, B be sets, let f be a many sorted category indexed by A, and let
g be a many sorted function of B. Then (f, g) is a category-yielding on first
function-yielding on second pair of many sorted sets indexed by A and B.

Let A be a non empty set and let ', G be many sorted categories indexed
by A. A many sorted function of A is called a many sorted functor from F' to
G if:

(Def.7)  For every element a of A holds it(a) is a functor from F'(a) to G(a).

The scheme LambdaMSFr deals with a non empty set A, many sorted cat-
egories B, C indexed by A, and a unary functor F yielding a set, and states
that:

There exists a many sorted functor F' from B to C such that for
every element a of A holds F'(a) = F(a)
provided the parameters meet the following requirement:

e For every element a of A holds F(a) is a functor from B(a) to C(a).

Let A be a non empty set, let F', G be many sorted categories indexed by
A, let f be a many sorted functor from F' to G, and let a be an element of A.
Then f(a) is a functor from F'(a) to G(a).
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3. INDEXING

Let A, B be non empty sets and let F', G be functions from B into A. A
category-yielding on first pair of many sorted sets indexed by A and B is said
to be an indexing of F' and G if:

(Def.8) itg is a many sorted functor from ity - F' to ity - G.
Next we state two propositions:

(4) Let A, B be non empty sets, and let F', G be functions from B into A,
and let I be an indexing of F' and G, and let m be an element of B. Then
Iz(m) is a functor from I (F(m)) to I1(G(m)).

(5) Let C be a category, and let I be an indexing of the dom-map of C
and the cod-map of C, and let m be a morphism of C. Then Ia(m) is a
functor from I3 (domm) to I3 (cod m).

Let A, B be non empty sets, let F', G be functions from B into A, and let
I be an indexing of F' and G. Then I2 is a many sorted functor from I - F' to
I - G.

Let A, B be non empty sets, let F', G be functions from B into A, and let [
be an indexing of F' and G. A categorial category is called a target category of
I if it satisfies the conditions (Def.9).

(Def.9) (i)  For every element a of A holds I7(a) is an object of it, and

(ii)  for every element b of B holds ({I1(F(b)), I1(G(b))), I2(b)) is a mor-

phism of it.

Let A, B be non empty sets, let F', G be functions from B into A, and let [
be an indexing of F' and GG. One can verify that there exists a target category
of I which is full and strict.

Let A, B be non empty sets, let ', G be functions from B into A, let ¢ be
a partial function from [ B, B] to B, and let i be a function from A into B.
Let us assume that there exists a category C such that C = (A, B, F,G,c,1i).
An indexing of F' and G is called an indexing of F', G, ¢ and ¢ if it satisfies the
conditions (Def.10).

(Def.10) (i) ~ For every element a of A holds it2(i(a)) = idj (), and

(ii)  for all elements mj, mg of B such that F'(msy) = G(m;1) holds ita(c({ma,
ml))) = itz(mg) . itz(ml).

Let C be a category. An indexing of C is an indexing of the dom-map of C,
the cod-map of C, the composition of C' and the id-map of C. A coindexing of
C is an indexing of the cod-map of C, the dom-map of C, ~(the composition
of C) and the id-map of C.

One can prove the following propositions:

(6) Let C be a category and let I be an indexing of the dom-map of C' and
the cod-map of C'. Then [ is an indexing of C if and only if the following
conditions are satisfied:

(i)  for every object a of C holds Ia(id,) = idy (a), and
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(ii)  for all morphisms my, ms of C such that domms = codm; holds
Iz(mQ . ’I’)’Ll) = Iz(mg) . Iz(ml).

(7)  Let C be a category and let I be an indexing of the cod-map of C and
the dom-map of C'. Then [ is a coindexing of C'if and only if the following
conditions are satisfied:

(i)  for every object a of C holds Ia(id,) = id, (a), and

(ii)  for all morphisms my, mg of C such that dommsg = codm; holds

12(m2 . ml) = 12(?77,1) . IQ(mg).

(8)  For every category C and for every set x holds x is a coindexing of C'
iff z is an indexing of C°P.

(9) Let C be a category, and let I be an indexing of C, and let ¢y, c2 be
objects of C'. Suppose hom(cy, ¢z) is non empty. Let m be a morphism
from ¢; to co. Then Ia(m) is a functor from I7(cq) to I7(c2).

(10) Let C be a category, and let I be a coindexing of C, and let ¢1, ¢ be
objects of C'. Suppose hom(cy, ¢z) is non empty. Let m be a morphism
from ¢; to ca. Then Ia(m) is a functor from I7(cg) to I7(ey).

Let C be a category, let I be an indexing of C, and let T be a target category
of I. The functor I -functor(C,T') yielding a functor from C to T is defined as
follows:

(Def.11)  For every morphism f of C holds (I -functor(C,T))(f) = ({I1(dom f),
I1(cod )}, I2(f))-

We now state three propositions:

(11) Let C be a category, and let I be an indexing of C, and let Ty, Th
be target categories of I. Then I -functor(C,T}) = I-functor(C,T5) and
Obj(I -functor(C, T1)) = Obj(I -functor(C, T5)).

(12)  For every category C and for every indexing I of C' and for every target
category T' of I holds Obj(/ -functor(C,T)) = I3.

(13)  Let C be a category, and let I be an indexing of C', and let T be a target
category of I, and let « be an object of C'. Then (I -functor(C,T))(z) =
Ii(z).

Let C be a category and let I be an indexing of C'. The functor rng I yielding
a strict target category of I is defined by:

(Def.12)  For every target category T' of I holds rng I = Im(/ -functor(C,T)).

Next we state the proposition

(14) Let C be a category, and let I be an indexing of C, and let D be a
categorial category. Then rng/l is a subcategory of D if and only if D is
a target category of I.

Let C be a category, let I be an indexing of C', and let m be a morphism of
C. The functor I(m) yielding a functor from I1(domm) to I3 (cod m) is defined
by:

(Def.13)  I(m) = Ia(m).
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Let C be a category, let I be a coindexing of C, and let m be a morphism of
C'. The functor I(m) yielding a functor from Iy (cod m) to I3 (domm) is defined
as follows:
(Def.14)  I(m) = Iz(m).
The following proposition is true
(15)  Let C, D be categories. Then
(i)  ((the objects of C') — (D), (the morphisms of C) — idp) is an
indexing of C, and
(ii)  ((the objects of C') — (D), (the morphisms of C') — idp) is a
coindexing of C.

4. INDEXING VS FUNCTORS

Let A be a set and let B be a non empty set. We see that the function from
A into B is a many sorted set indexed by A.

Let C, D be categories and let ' be a function from the morphisms of C'
into the morphisms of D. Then Obj F is a function from the objects of C' into
the objects of D.

Let C' be a category, let D be a categorial category, and let F' be a functor
from C to D. Note that Obj F' is category-yielding.

Let C' be a category, let D be a categorial category, and let F' be a functor
from C to D. Then pr2(F) is a many sorted functor from Obj F - (the dom-map
of C') to Obj F - (the cod-map of C).

Next we state the proposition

(16) Let C be a category, and let D be a categorial category, and let F' be a
functor from C to D. Then ( Obj F, pr2(F)) is an indexing of C'.

Let C be a category, let D be a categorial category, and let F' be a functor
from C to D. The functor F-indexing of C' yields an indexing of C and is
defined by:

(Def.15)  F-indexing of C' = (Obj F, pr2(F)).

One can prove the following propositions:

(17)  Let C be a category, and let D be a categorial category, and let F' be a
functor from C to D. Then D is a target category of F-indexing of C.

(18) Let C be a category, and let D be a categorial category, and let F' be a
functor from C to D, and let T be a target category of F-indexing of C.
Then F' = F-indexing of C-functor(C,T).

(19) Let C be a category, and let D, E be categorial categories, and let F'
be a functor from C to D, and let G be a functor from C to E. If F' = G,
then F-indexing of C' = G-indexing of C.

(20)  For every category C and for every indexing I of C' and for every target
category T of I holds pr2(I -functor(C,T)) = Ia.
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(21)  For every category C and for every indexing I of C' and for every target
category T' of I holds (I -functor(C,T"))-indexing of C' = I.

5. COMPOSING INDEXINGS AND FUNCTORS

Let C, D, E be categories, let F' be a functor from C' to D, and let I be an
indexing of F. Let us assume that Im £ is a subcategory of E. The functor I - F
yielding an indexing of C' is defined by:

(Def.16)  For every functor F’ from C to E such that F/ = F holds I - F =
((I-functor(E,rngI)) - F')-indexing of C.

Next we state several propositions:

(22) Let C, D1, Dy, E be categories, and let I be an indexing of E, and
let F' be a functor from C to D1, and let G be a functor from C to Ds.
Suppose Im F' is a subcategory of E and Im G is a subcategory of E and
F=G. ThenI -F=1-G.

(23) Let C, D be categories, and let F' be a functor from C to D, and
let I be an indexing of D, and let T" be a target category of I. Then
I-F = (({-functor(D,T)) - F)-indexing of C.

(24) Let C, D be categories, and let F' be a functor from C to D, and let I
be an indexing of D. Then every target category of I is a target category
of I-F.

(25) Let C, D be categories, and let F' be a functor from C to D, and let I
be an indexing of D, and let T be a target category of I. Then rng(I - F')
is a subcategory of T

(26) Let C, D, E be categories, and let F' be a functor from C to D, and
let G be a functor from D to FE, and let I be an indexing of £. Then
(I-G)-F=1-(G-F).

Let C be a category, let I be an indexing of C, and let D be a categorial
category. Let us assume that D is a target category of I. Let E be a categorial
category and let F' be a functor from D to E. The functor F - I yielding an
indexing of C' is defined as follows:

(Def.17)  For every target category T of I and for every functor G from
T to E such that T = D and G = F holds F -1 = (G -
(I -functor(C, T)))-indexing of C.

One can prove the following propositions:

(27) Let C be a category, and let I be an indexing of C, and let T' be a
target category of I, and let D, E be categorial categories, and let F' be
a functor from T to D, and let G be a functor from 7T to E. If F' = G,
then - I =G - 1.

(28) Let C be a category, and let I be an indexing of C, and let T" be a
target category of I, and let D be a categorial category, and let F' be a
functor from T to D. Then Im F is a target category of F'- I.
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(29) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F' be a
functor from T to D. Then D is a target category of F - I.

(30) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F' be a
functor from T to D. Then rng(F - I) is a subcategory of Im F.

(31) Let C be a category, and let I be an indexing of C, and let T' be a
target category of I, and let D, FE be categorial categories, and let F
be a functor from T to D, and let G be a functor from D to E. Then
(G-F)-I=G-(F-1I).

Let C, D be categories, let I; be an indexing of C, and let I be an indexing
of D. The functor Is - I yielding an indexing of C' is defined as follows:

(Def.18) Iy - I} = Iy - (I; -functor(C,rng I)).
We now state several propositions:

(32) Let C be a category, and let D be a categorial category, and let I
be an indexing of C, and let Is be an indexing of D, and let T be a
target category of Iy. If D is a target category of Iy, then Iy - I; =
I5 - (I; -functor(C, T)).

(33) Let C be a category, and let D be a categorial category, and let I
be an indexing of C, and let Is be an indexing of D, and let T be a
target category of I,. If D is a target category of Iy, then Iy - I; =
(Iz -functor(D,T)) - I;.

(34) Let C, D be categories, and let F' be a functor from C' to D, and let
I be an indexing of D, and let T be a target category of I, and let E
be a categorial category, and let G be a functor from T to E. Then
(G-I)-F=G-(I-F).

(35)  Let C be a category, and let I be an indexing of C, and let T be a target
category of I, and let D be a categorial category, and let F' be a functor
from T to D, and let J be an indexing of D. Then (J-F)-I=J-(F-I).

(36) Let C be a category, and let I be an indexing of C, and let T} be a
target category of I, and let J be an indexing of 77, and let T be a target
category of J, and let D be a categorial category, and let F’ be a functor
from T5 to D. Then (F-J)-I=F-(J-I).

(37) Let C, D be categories, and let F' be a functor from C to D, and let I
be an indexing of D, and let T" be a target category of I, and let J be an
indexing of T. Then (J-I)-F=J-(I-F).

(38) Let C be a category, and let I be an indexing of C, and let D be a

target category of I, and let J be an indexing of D, and let F be a target
category of J, and let K be an indexing of E. Then (K-J)-I = K-(J-I).
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