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Summary. The basic purpose of this article is to prove the im-
portant Weierstrass’ theorem which states that a real valued continuous
function f on a topological space T assumes a maximum and a minimum
value on the compact subset S of T , i.e., there exist points x1, x2 of T
being elements of S, such that f(x1) and f(x2) are the supremum and the
infimum, respectively, of f(S), which is the image of S under the func-
tion f . The paper is divided into three parts. In the first part, we prove
some auxiliary theorems concerning properties of balls in metric spaces
and define special families of subsets of topological spaces. These con-
cepts are used in the next part of the paper which contains the essential
part of the article, namely the formalization of the proof of Weierstrass’
theorem. Here, we also prove a theorem concerning the compactness of
images of compact sets of T under a continuous function. The final part
of this work is developed for the purpose of defining some measures of
the distance between compact subsets of topological metric spaces. Some
simple theorems about these measures are also proved.

MML Identifier: WEIERSTR.

The papers [31], [36], [9], [32], [30], [35], [29], [37], [7], [8], [5], [6], [27], [2], [15],
[1], [14], [17], [10], [21], [19], [20], [18], [25], [33], [34], [3], [13], [22], [24], [38],
[12], [26], [11], [4], [23], [28], and [16] provide the notation and terminology for
this paper.

1. Preliminaries

One can prove the following propositions:

(1) Let M be a metric space, and let x1, x2 be points of M , and let r1, r2

be real numbers. Then there exists a point x of M and there exists a real
number r such that Ball(x1, r1) ∪ Ball(x2, r2) ⊆ Ball(x, r).
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(2) Let M be a metric space, and let n be a natural number, and let F be
a family of subsets of M , and let p be a finite sequence. Suppose F is
finite and a family of balls and rng p = F and dom p = Seg(n + 1). Then
there exists a family G of subsets of M such that

(i) G is finite and a family of balls, and
(ii) there exists a finite sequence q such that rng q = G and dom q = Seg n

and there exists a point x of M and there exists a real number r such
that

⋃
F ⊆

⋃
G ∪ Ball(x, r).

(3) Let M be a metric space and let F be a family of subsets of M . Suppose
F is finite and a family of balls. Then there exists a point x of M and
there exists a real number r such that

⋃
F ⊆ Ball(x, r).

Let T , S be topological spaces, let f be a map from T into S, and let G be
a family of subsets of S. The functor f −1 G yields a family of subsets of T and
is defined by the condition (Def.1).

(Def.1) Let A be a subset of the carrier of T . Then A ∈ f −1 G if and only if
there exists a subset B of the carrier of S such that B ∈ G and A = f −1B.

Next we state two propositions:

(4) Let T , S be topological spaces, and let f be a map from T into S, and
let A, B be families of subsets of S. If A ⊆ B, then f −1 A ⊆ f −1 B.

(5) Let T , S be topological spaces, and let f be a map from T into S, and
let B be a family of subsets of S. If f is continuous and B is open, then
f −1 B is open.

Let T , S be topological spaces, let f be a map from T into S, and let G be
a family of subsets of T . The functor f ◦G yields a family of subsets of S and is
defined by the condition (Def.2).

(Def.2) Let A be a subset of the carrier of S. Then A ∈ f ◦G if and only if there
exists a subset B of the carrier of T such that B ∈ G and A = f ◦B.

One can prove the following propositions:

(6) Let T , S be topological spaces, and let f be a map from T into S, and
let A, B be families of subsets of T . If A ⊆ B, then f ◦A ⊆ f ◦B.

(7) Let T , S be topological spaces, and let f be a map from T into S, and
let B be a family of subsets of S, and let P be a subset of the carrier of
S. If f ◦f −1 B is a cover of P , then B is a cover of P .

(8) Let T , S be topological spaces, and let f be a map from T into S, and
let B be a family of subsets of T , and let P be a subset of the carrier of
T . If B is a cover of P , then f −1 f◦B is a cover of P .

(9) Let T , S be topological spaces, and let f be a map from T into S, and
let Q be a family of subsets of S. Then

⋃
(f◦f −1 Q) ⊆

⋃
Q.

(10) Let T , S be topological spaces, and let f be a map from T into S, and
let P be a family of subsets of T . Then

⋃
P ⊆

⋃
(f −1 f◦P ).

(11) Let T , S be topological spaces, and let f be a map from T into S, and
let Q be a family of subsets of S. If Q is finite, then f −1 Q is finite.
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(12) Let T , S be topological spaces, and let f be a map from T into S, and
let P be a family of subsets of T . If P is finite, then f ◦P is finite.

(13) Let T , S be topological spaces, and let f be a map from T into S, and
let P be a subset of the carrier of T , and let F be a family of subsets of
S. Given a family B of subsets of T such that B ⊆ f −1 F and B is a
cover of P and finite. Then there exists a family G of subsets of S such
that G ⊆ F and G is a cover of f ◦P and finite.

2. The Weierstrass’ Theorem

One can prove the following three propositions:

(14) Let T , S be topological spaces, and let f be a map from T into S, and
let P be a subset of the carrier of T . If P is compact and f is continuous,
then f ◦P is compact.

(15) Let T be a topological space, and let f be a map from T into � 1 , and
let P be a subset of the carrier of T . If P is compact and f is continuous,
then f ◦P is compact.

(16) Let f be a map from E2
T into � 1 and let P be a subset of the carrier of

E2
T. If P is compact and f is continuous, then f ◦P is compact.

Let P be a subset of the carrier of � 1 . The functor ΩP yields a subset of �
and is defined as follows:

(Def.3) ΩP = P.

Next we state three propositions:

(17) For every subset P of the carrier of � 1 such that P is compact holds
ΩP is bounded.

(18) For every subset P of the carrier of � 1 such that P is compact holds
ΩP is closed.

(19) For every subset P of the carrier of � 1 such that P is compact holds
ΩP is compact.

Let P be a subset of the carrier of � 1 . The functor supP yields a real number
and is defined as follows:

(Def.4) supP = sup(ΩP ).

The functor inf P yielding a real number is defined by:

(Def.5) inf P = inf(ΩP ).

We now state two propositions:

(20) Let T be a topological space, and let f be a map from T into � 1 , and
let P be a subset of the carrier of T . Suppose P 6= ∅ and P is compact
and f is continuous. Then there exists a point x1 of T such that x1 ∈ P

and f(x1) = sup(f ◦P ).
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(21) Let T be a topological space, and let f be a map from T into � 1 , and
let P be a subset of the carrier of T . Suppose P 6= ∅ and P is compact
and f is continuous. Then there exists a point x2 of T such that x2 ∈ P

and f(x2) = inf(f ◦P ).

3. The Measure of the Distance Between Compact Sets

Let M be a metric space and let x be a point of M . The functor dist(x)
yielding a map from Mtop into � 1 is defined by:

(Def.6) For every point y of M holds (dist(x))(y) = ρ(y, x).

The following three propositions are true:

(22) For every metric space M and for every point x of M holds dist(x) is
continuous.

(23) Let M be a metric space, and let x be a point of M , and let P be a subset
of the carrier of Mtop. Suppose P 6= ∅ and P is compact. Then there exists
a point x1 of Mtop such that x1 ∈ P and (dist(x))(x1) = sup((dist(x))◦P ).

(24) Let M be a metric space, and let x be a point of M , and let P be a subset
of the carrier of Mtop. Suppose P 6= ∅ and P is compact. Then there exists
a point x2 of Mtop such that x2 ∈ P and (dist(x))(x2) = inf((dist(x))◦P ).

Let M be a metric space and let P be a subset of the carrier of Mtop. Let us
assume that P 6= ∅ and P is compact. The functor distmax(P ) yielding a map
from Mtop into � 1 is defined by:

(Def.7) For every point x of M holds (distmax(P ))(x) = sup((dist(x))◦P ).

The functor distmin(P ) yields a map from Mtop into � 1 and is defined by:

(Def.8) For every point x of M holds (distmin(P ))(x) = inf((dist(x))◦P ).

One can prove the following propositions:

(25) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M . If p1 ∈ P,

then ρ(p1, p2) ≤ sup((dist(p2))
◦P ) and inf((dist(p2))

◦P ) ≤ ρ(p1, p2).

(26) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M . Then
| sup((dist(p1))

◦P ) − sup((dist(p2))
◦P )| ≤ ρ(p1, p2).

(27) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M and let x1,
x2 be real numbers. If x1 = (distmax(P ))(p1) and x2 = (distmax(P ))(p2),
then |x1 − x2| ≤ ρ(p1, p2).

(28) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M . Then
| inf((dist(p1))

◦P ) − inf((dist(p2))
◦P )| ≤ ρ(p1, p2).

(29) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M and let x1,
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x2 be real numbers. If x1 = (distmin(P ))(p1) and x2 = (distmin(P ))(p2),
then |x1 − x2| ≤ ρ(p1, p2).

(30) Let M be a metric space and let X be a subset of the carrier of Mtop.
If X 6= ∅ and X is compact, then distmax(X) is continuous.

(31) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Then
there exists a point x1 of Mtop such that x1 ∈ Q and (distmax(P ))(x1) =
sup((distmax(P ))◦Q).

(32) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Then
there exists a point x2 of Mtop such that x2 ∈ Q and (distmax(P ))(x2) =
inf((distmax(P ))◦Q).

(33) Let M be a metric space and let X be a subset of the carrier of Mtop.
If X 6= ∅ and X is compact, then distmin(X) is continuous.

(34) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Then
there exists a point x1 of Mtop such that x1 ∈ Q and (distmin(P ))(x1) =
sup((distmin(P ))◦Q).

(35) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Then
there exists a point x2 of Mtop such that x2 ∈ Q and (distmin(P ))(x2) =
inf((distmin(P ))◦Q).

Let M be a metric space and let P , Q be subsets of the carrier of Mtop. Let
us assume that P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. The
functor distmin

min(P,Q) yields a real number and is defined as follows:

(Def.9) distmin
min(P,Q) = inf((distmin(P ))◦Q).

The functor distmax
min (P,Q) yielding a real number is defined as follows:

(Def.10) distmax
min (P,Q) = sup((distmin(P ))◦Q).

The functor distmin
max(P,Q) yielding a real number is defined as follows:

(Def.11) distmin
max(P,Q) = inf((distmax(P ))◦Q).

The functor distmax
max(P,Q) yielding a real number is defined as follows:

(Def.12) distmax
max(P,Q) = sup((distmax(P ))◦Q).

One can prove the following propositions:

(36) Let M be a metric space and let P , Q be subsets of the carrier of
Mtop. Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact.
Then there exist points x1, x2 of M such that x1 ∈ P and x2 ∈ Q and
ρ(x1, x2) = distmin

min(P,Q).

(37) Let M be a metric space and let P , Q be subsets of the carrier of
Mtop. Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact.
Then there exist points x1, x2 of M such that x1 ∈ P and x2 ∈ Q and
ρ(x1, x2) = distmin

max(P,Q).
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(38) Let M be a metric space and let P , Q be subsets of the carrier of
Mtop. Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact.
Then there exist points x1, x2 of M such that x1 ∈ P and x2 ∈ Q and
ρ(x1, x2) = distmax

min (P,Q).

(39) Let M be a metric space and let P , Q be subsets of the carrier of
Mtop. Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact.
Then there exist points x1, x2 of M such that x1 ∈ P and x2 ∈ Q and
ρ(x1, x2) = distmax

max(P,Q).

(40) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Let x1,
x2 be points of M . If x1 ∈ P and x2 ∈ Q, then distmin

min(P,Q) ≤ ρ(x1, x2)
and ρ(x1, x2) ≤ distmax

max(P,Q).
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