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Summary. We prove a number of auxiliary facts about graphs,
mainly about vertex sequences of chains and oriented chains. Then we
define a graph to be well-founded if for each vertex in the graph the length
of oriented chains ending at the vertex is bounded. A well-founded graph
does not have directed cycles or infinite descending chains. In the second
part of the article we prove some auxiliary facts about free algebras and
locally-finite algebras.

MML Identifier: MSSCYC 1.

The papers [32], [34], [17], [21], [3], [1], [27], [7], [35], [14], [16], [15], [29], [19],
[11], [33], [22], [24], [20], [4], [6], [8], [2], [5], [18], [12], [31], [30], [13], [23], [28],
[26], [25], [9], and [10] provide the notation and terminology for this paper.

1. Some properties of graphs

The following proposition is true

(1) For every finite function f such that for every set x such that x ∈ dom f

holds f(x) is finite holds
∏

f is finite.

In the sequel G will denote a graph and m, n will denote natural numbers.
Let G be a graph. Let us note that the chain of G can be characterized by

the following (equivalent) condition:

(Def. 1) It is a finite sequence of elements of the edges of G and there exists
finite sequence of elements of the vertices of G which is vertex sequence
of it.
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One can prove the following proposition

(2) For all finite sequences p, q such that 1 ≤ n and n ≤ len p holds
〈p(1), . . . , p(n)〉 = 〈(p � q)(1), . . . , (p � q)(n)〉.

Let G be a graph and let I1 be a chain of G. We introduce I1 is directed as
a synonym of I1 is oriented.

Let G be a graph and let I1 be a chain of G. We say that I1 is cyclic if and
only if:

(Def. 2) There exists a finite sequence p of elements of the vertices of G such
that p is vertex sequence of I1 and p(1) = p(len p).

Let I1 be a graph. We say that I1 is empty if and only if:

(Def. 3) The edges of I1 is empty.

One can verify that there exists a graph which is empty.
Next we state the proposition

(3) For every graph G holds rng (the source of G)∪ rng (the target of G) ⊆
the vertices of G.

Let us observe that there exists a graph which is finite simple connected non
empty and strict.

Let G be a non empty graph. Note that the edges of G is non empty.
We now state two propositions:

(4) Let e be arbitrary. Suppose e ∈ the edges of G. Let s, t be elements of
the vertices of G. Suppose s = (the source of G)(e) and t = (the target
of G)(e). Then 〈s, t〉 is vertex sequence of 〈e〉.

(5) For arbitrary e such that e ∈ the edges of G holds 〈e〉 is a directed chain
of G.

In the sequel G is a non empty graph.
Let us consider G. Observe that there exists a chain of G which is directed

non empty and path-like.
The following propositions are true:

(6) Let c be a chain of G and let p be a finite sequence of elements of the
vertices of G. If c is cyclic and p is vertex sequence of c, then p(1) =
p(len p).

(7) Let G be a graph and let e be arbitrary. Suppose e ∈ the edges of G.
Let f1 be a directed chain of G. If f1 = 〈e〉, then vertex-seq(f1) = 〈(the
source of G)(e), (the target of G)(e)〉.

(8) For every finite sequence f holds len〈f(m), . . . , f(n)〉 ≤ len f.

(9) For every directed chain c of G such that 1 ≤ m and m ≤ n and
n ≤ len c holds 〈c(m), . . . , c(n)〉 is a directed chain of G.

(10) For every non empty directed chain o1 of G holds len vertex-seq(o1) =
len o1 + 1.

Let us consider G and let o1 be a directed non empty chain of G. Observe
that vertex-seq(o1) is non empty.

One can prove the following propositions:
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(11) Let o1 be a directed non empty chain of G and given n. Suppose 1 ≤ n

and n ≤ len o1. Then (vertex-seq(o1))(n) = (the source of G)(o1(n)) and
(vertex-seq(o1))(n + 1) = (the target of G)(o1(n)).

(12) For every non empty finite sequence f such that 1 ≤ m and m ≤ n and
n ≤ len f holds 〈f(m), . . . , f(n)〉 is non empty.

(13) For all directed chains c, c1 of G such that 1 ≤ m and m ≤
n and n ≤ len c and c1 = 〈c(m), . . . , c(n)〉 holds vertex-seq(c1) =
〈(vertex-seq(c))(m), . . . , (vertex-seq(c))(n + 1)〉.

(14) For every directed non empty chain o1 of G holds (vertex-seq(o1))(len o1+
1) = (the target of G)(o1(len o1)).

(15) For all directed non empty chains c1, c2 of G holds (vertex-seq(c1))(len c1+
1) = (vertex-seq(c2))(1) iff c1

� c2 is a directed non empty chain of G.

(16) For all directed non empty chains c, c1, c2 of G such that c = c1
� c2 holds

(vertex-seq(c))(1) = (vertex-seq(c1))(1) and (vertex-seq(c))(len c + 1) =
(vertex-seq(c2))(len c2 + 1).

(17) For every directed non empty chain o1 of G such that o1 is cyclic holds
(vertex-seq(o1))(1) = (vertex-seq(o1))(len o1 + 1).

(18) Let c be a directed non empty chain of G. Suppose c is cyclic. Given n.
Then there exists a directed chain c3 of G such that len c3 = n and c3

� c

is a directed non empty chain of G.

Let I1 be a graph. We say that I1 is directed cycle-less if and only if:

(Def. 4) For every directed chain d1 of I1 such that d1 is non empty holds d1 is
non cyclic.

We introduce I1 has directed cycle as an antonym of I1 is directed cycle-less.

Let us mention that every graph which is empty is also directed cycle-less.

Let I1 be a graph. We say that I1 is well-founded if and only if the condition
(Def. 5) is satisfied.

(Def. 5) Let v be an element of the vertices of I1. Then there exists n such that
for every directed chain c of I1 if c is non empty and (vertex-seq(c))(len c+
1) = v, then len c ≤ n.

Let G be an empty graph. Note that every chain of G is empty.

One can check that every graph which is empty is also well-founded.

Let us observe that every graph which is non well-founded is also non empty.

One can check that there exists a graph which is well-founded.

Let us note that every graph which is well-founded is also directed cycle-less.

Let us note that there exists a graph which is non well-founded.

One can verify that there exists a graph which is directed cycle-less.

We now state the proposition

(19) For every decorated tree t and for every node p of t and for every natural
number k holds p

�
k is a node of t.
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2. Some properties of many sorted algebras

Next we state two propositions:

(20) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let t be a
term of S over X. Suppose t is not root. Then there exists an operation
symbol o of S such that t(ε) = 〈〈o, the carrier of S〉〉.

(21) Let S be a non void non empty many sorted signature, and let A be an
algebra over S, and let G be a generator set of A, and let B be a subset
of A. If G ⊆ B, then B is a generator set of A.

Let S be a non void non empty many sorted signature and let A be a finitely-
generated non-empty algebra over S. Note that there exists a generator set of
A which is non-empty and locally-finite.

One can prove the following two propositions:

(22) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let X be a non-empty generator set of A.
Then there exists many sorted function from Free(X) into A which is an
epimorphism of Free(X) onto A

(23) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let X be a non-empty generator set of A.
If A is non locally-finite, then Free(X) is non locally-finite.

Let S be a non void non empty many sorted signature, let X be a non-empty
locally-finite many sorted set indexed by the carrier of S, and let v be a sort
symbol of S. One can check that FreeGenerator(v,X) is finite.

One can prove the following propositions:

(24) Let S be a non void non empty many sorted signature, and let X be a
non-empty locally-finite many sorted set indexed by the carrier of S, and
let v be a sort symbol of S. Then FreeGenerator(v,X) is finite.

(25) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let o be an operation symbol of S. If (the
arity of S)(o) = ε, then dom Den(o,A) = {ε}.

Let I1 be a non void non empty many sorted signature. We say that I1 is
finitely operated if and only if:

(Def. 6) For every sort symbol s of I1 holds {o : o ranges over operation symbols
of I1, the result sort of o = s} is finite.

Next we state three propositions:

(26) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let v be a sort symbol of S. If S is finitely
operated, then Constants(A, v) is finite.

(27) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set indexed by the carrier of S, and let v be a sort
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symbol of S Then {t : t ranges over elements of (the sorts of Free(X))(v),
depth(t) = 0} = FreeGenerator(v,X) ∪ Constants(Free(X), v).

(28) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v, v1

be sort symbols of S, and let o be an operation symbol of S, and let
t be an element of (the sorts of Free(X))(v), and let a be an argument
sequence of Sym(o,X), and let k be a natural number, and let a1 be an
element of (the sorts of Free(X))(v1). If t = 〈〈o, the carrier of S〉〉-tree(a)
and k ∈ dom a and a1 = a(k), then depth(a1) < depth(t).
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