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Summary. We prove a number of auxiliary facts about graphs,
mainly about vertex sequences of chains and oriented chains. Then we
define a graph to be well-founded if for each vertex in the graph the length
of oriented chains ending at the vertex is bounded. A well-founded graph
does not have directed cycles or infinite descending chains. In the second
part of the article we prove some auxiliary facts about free algebras and
locally-finite algebras.

MML Identifier: MSSCYC_1.

The papers [32], [34], [17], [21], [3], [1], [27], [7], [35], [14], [16], [15], [29], [19],
[11], [33], [22], [24], [20], [4], [6], [8], [2], [5], [18], [12], [31], [30], [13], [23], [28],
[26], [25], [9], and [10] provide the notation and terminology for this paper.

1. SOME PROPERTIES OF GRAPHS

The following proposition is true
(1)  For every finite function f such that for every set x such that z € dom f
holds f(x) is finite holds [] f is finite.
In the sequel G will denote a graph and m, n will denote natural numbers.
Let G be a graph. Let us note that the chain of G can be characterized by
the following (equivalent) condition:
(Def. 1) It is a finite sequence of elements of the edges of G and there exists
finite sequence of elements of the vertices of G which is vertex sequence
of it.
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One can prove the following proposition
(2) For all finite sequences p, ¢ such that 1 < n and n < lenp holds
(p(1),...,p(n)) ={(p~a)1),....(p" q)(n)).
Let G be a graph and let I; be a chain of G. We introduce I; is directed as
a synonym of I is oriented.
Let G be a graph and let I; be a chain of G. We say that I is cyclic if and
only if:
(Def. 2)  There exists a finite sequence p of elements of the vertices of G such
that p is vertex sequence of I; and p(1) = p(lenp).
Let I be a graph. We say that I is empty if and only if:
(Def. 3)  The edges of I; is empty.

One can verify that there exists a graph which is empty.

Next we state the proposition

(3)  For every graph G holds rng (the source of G) Urng (the target of G) C

the vertices of G.

Let us observe that there exists a graph which is finite simple connected non
empty and strict.

Let G be a non empty graph. Note that the edges of G is non empty.

We now state two propositions:

(4)  Let e be arbitrary. Suppose e € the edges of G. Let s, t be elements of
the vertices of G. Suppose s = (the source of G)(e) and ¢t = (the target
of G)(e). Then (s,t) is vertex sequence of (e).

(5)  For arbitrary e such that e € the edges of G holds (e) is a directed chain
of G.

In the sequel G is a non empty graph.

Let us consider GG. Observe that there exists a chain of G which is directed

non empty and path-like.

The following propositions are true:

(6) Let ¢ be a chain of G and let p be a finite sequence of elements of the
vertices of G. If ¢ is cyclic and p is vertex sequence of ¢, then p(1) =
p(lenp).

(7)  Let G be a graph and let e be arbitrary. Suppose e € the edges of G.
Let f1 be a directed chain of G. If f; = (e), then vertex-seq(f1) = ((the
source of G)(e), (the target of G)(e)).

(8)  For every finite sequence f holds len(f(m),..., f(n)) <len f.

(9) For every directed chain ¢ of G such that 1 < m and m < n and

n < lenc holds (c(m),...,c(n)) is a directed chain of G.
(10)  For every non empty directed chain o; of G holds len vertex-seq(o1) =
leno; + 1.

Let us consider GG and let 01 be a directed non empty chain of G. Observe
that vertex-seq(o1) is non empty.
One can prove the following propositions:



THE CORRESPONDENCE BETWEEN MONOTONIC MANY ... 579

(11)  Let o1 be a directed non empty chain of G and given n. Suppose 1 < n
and n < leno;. Then (vertex-seq(o1))(n) = (the source of G)(01(n)) and
(vertex-seq(o1))(n + 1) = (the target of G)(01(n)).

(12)  For every non empty finite sequence f such that 1 < m and m < n and
n <len f holds (f(m),..., f(n)) is non empty.

(13)  For all directed chains ¢, ¢; of G such that 1 < m and m <
n and n < lenc and ¢; = (¢(m),...,c(n)) holds vertex-seq(c;) =
((vertex-seq(c))(m), ..., (vertex-seq(c))(n + 1)).

(14)  For every directed non empty chain o; of G holds (vertex-seq(o1))(len o1+
1) = (the target of G)(o1(lenoy)).

(15)  For all directed non empty chains ¢, co of G holds (vertex-seq(c1))(len ¢+
1) = (vertex-seq(c2))(1) iff ¢ ™ ¢o is a directed non empty chain of G.

(16)  For all directed non empty chains ¢, ¢1, co of G such that ¢ = ¢ ¢o holds
(vertex-seq(c))(1) = (vertex-seq(c1))(1) and (vertex-seq(c))(lenc + 1) =
(vertex-seq(cz))(lency + 1).

(17)  For every directed non empty chain o of G such that o; is cyclic holds
(vertex-seq(01))(1) = (vertex-seq(o1))(leno; + 1).

(18)  Let ¢ be a directed non empty chain of G. Suppose c is cyclic. Given n.
Then there exists a directed chain c3 of G such that lencs =n and ¢3 "¢
is a directed non empty chain of G.

Let I; be a graph. We say that I is directed cycle-less if and only if:
(Def. 4)  For every directed chain dj of I; such that d; is non empty holds d; is
non cyclic.
We introduce I; has directed cycle as an antonym of I; is directed cycle-less.
Let us mention that every graph which is empty is also directed cycle-less.

Let I7 be a graph. We say that I; is well-founded if and only if the condition
(Def. 5) is satisfied.

(Def. 5)  Let v be an element of the vertices of I;. Then there exists n such that

for every directed chain c of I if ¢ is non empty and (vertex-seq(c))(len c+
1) = v, then lenc < n.
Let G be an empty graph. Note that every chain of G is empty.
One can check that every graph which is empty is also well-founded.
Let us observe that every graph which is non well-founded is also non empty.
One can check that there exists a graph which is well-founded.
Let us note that every graph which is well-founded is also directed cycle-less.
Let us note that there exists a graph which is non well-founded.
One can verify that there exists a graph which is directed cycle-less.
We now state the proposition

(19)  For every decorated tree ¢ and for every node p of ¢ and for every natural
number k£ holds p | k£ is a node of ¢.
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2. SOME PROPERTIES OF MANY SORTED ALGEBRAS

Next we state two propositions:

(20) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let ¢ be a
term of S over X. Suppose t is not root. Then there exists an operation
symbol o of S such that ¢(g) = (o, the carrier of S).

(21)  Let S be a non void non empty many sorted signature, and let A be an
algebra over S, and let GG be a generator set of A, and let B be a subset
of A. If G C B, then B is a generator set of A.

Let S be a non void non empty many sorted signature and let A be a finitely-
generated non-empty algebra over S. Note that there exists a generator set of
A which is non-empty and locally-finite.

One can prove the following two propositions:

(22) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let X be a non-empty generator set of A.
Then there exists many sorted function from Free(X) into A which is an
epimorphism of Free(X) onto A

(23) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let X be a non-empty generator set of A.
If A is non locally-finite, then Free(X) is non locally-finite.

Let S be a non void non empty many sorted signature, let X be a non-empty
locally-finite many sorted set indexed by the carrier of S, and let v be a sort
symbol of S. One can check that FreeGenerator (v, X) is finite.

One can prove the following propositions:

(24) Let S be a non void non empty many sorted signature, and let X be a
non-empty locally-finite many sorted set indexed by the carrier of S, and
let v be a sort symbol of S. Then FreeGenerator (v, X) is finite.

(25) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let o be an operation symbol of S. If (the
arity of S)(o) = ¢, then dom Den(o, A) = {e}.

Let I; be a non void non empty many sorted signature. We say that I is
finitely operated if and only if:
(Def. 6)  For every sort symbol s of I1 holds {o : o ranges over operation symbols
of I, the result sort of o = s} is finite.
Next we state three propositions:

(26) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let v be a sort symbol of S. If S is finitely
operated, then Constants(A4,v) is finite.

(27)  Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set indexed by the carrier of .S, and let v be a sort
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symbol of S Then {¢ : t ranges over elements of (the sorts of Free(X))(v),
depth(t) = 0} = FreeGenerator (v, X) U Constants(Free(X), v).

(28) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v, vq
be sort symbols of S, and let o be an operation symbol of S, and let
t be an element of (the sorts of Free(X))(v), and let a be an argument
sequence of Sym(o, X), and let k£ be a natural number, and let a; be an
element of (the sorts of Free(X))(vy). If t = (o, the carrier of S)-tree(a)
and k € doma and a1 = a(k), then depth(a;) < depth(t).
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