
FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996

Warsaw University - Bia lystok

More on the Lattice of Many Sorted

Equivalence Relations

Robert Milewski

Warsaw University

Bia lystok

MML Identifier: MSUALG 7.

The notation and terminology used here are introduced in the following papers:
[26], [28], [7], [2], [10], [27], [29], [30], [23], [5], [6], [21], [20], [4], [25], [31], [1],
[8], [9], [17], [11], [24], [3], [15], [16], [18], [22], [19], [12], [14], and [13].

1. Lattice of Many Sorted Equivalence Relations is Complete

For simplicity we adopt the following convention: I will be a non empty set,
M will be a many sorted set indexed by I, x will be arbitrary, and r1, r2 will
be real numbers.

We now state several propositions:

(1) For every set X holds x ∈ the carrier of EqRelLatt(X) iff x is an
equivalence relation of X.

(2) idM is an equivalence relation of M .

(3) [[M,M ]] is an equivalence relation of M .

(4) ⊥EqRelLatt(M) = idM .

(5) ⊤EqRelLatt(M) = [[M,M ]].

Let us consider I, M . Note that EqRelLatt(M) is bounded.
One can prove the following propositions:

(6) Every subset of the carrier of EqRelLatt(M) is a family of many sorted
subsets of [[M,M ]].

(7) Let a, b be elements of the carrier of EqRelLatt(M) and let A, B be
equivalence relations of M . If a = A and b = B, then a ⊑ b iff A ⊆ B.
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(8) Let X be a subset of the carrier of EqRelLatt(M) and let X1 be a
family of many sorted subsets of [[M,M ]]. Suppose X1 = X. Let a, b be
equivalence relations of M . If a =

⋂
|:X1:| and b ∈ X, then a ⊆ b.

(9) Let X be a subset of the carrier of EqRelLatt(M) and let X1 be a family
of many sorted subsets of [[M,M ]]. If X1 = X and X is non empty, then
⋂
|:X1:| is an equivalence relation of M .

Let L be a non empty lattice structure. Let us observe that L is complete if
and only if the condition (Def. 1) is satisfied.

(Def. 1) Let X be a subset of the carrier of L. Then there exists an element a

of the carrier of L such that X ⊑ a and for every element b of the carrier
of L such that X ⊑ b holds a ⊑ b.

Next we state the proposition

(10) EqRelLatt(M) is complete.

Let us consider I, M . Observe that EqRelLatt(M) is complete.
We now state the proposition

(11) Let X be a subset of the carrier of EqRelLatt(M) and let X1 be a
family of many sorted subsets of [[M,M ]]. Suppose X1 = X and X is
non empty. Let a, b be equivalence relations of M . If a =

⋂
|:X1:| and

b = ⌈−⌉EqRelLatt(M)X, then a = b.

2. Sublattices inheriting SUP’s and INF’s

Let L be a lattice and let I1 be a sublattice of L. We say that I1 is ⌈−⌉-
inheriting if and only if:

(Def. 2) For every subset X of the carrier of I1 holds ⌈−⌉LX ∈ the carrier of I1.

We say that I1 is
⊔

-inheriting if and only if:

(Def. 3) For every subset X of the carrier of I1 holds
⊔

L
X ∈ the carrier of I1.

The following propositions are true:

(12) Let L be a lattice, and let L′ be a sublattice of L, and let a, b be
elements of the carrier of L, and let a′, b′ be elements of the carrier of L′.
If a = a′ and b = b′, then a ⊔ b = a′ ⊔ b′ and a ⊓ b = a′ ⊓ b′.

(13) Let L be a lattice, and let L′ be a sublattice of L, and let X be a subset
of the carrier of L′, and let a be an element of the carrier of L, and let a′

be an element of the carrier of L′. If a = a′, then a ⊑ X iff a′ ⊑ X.

(14) Let L be a lattice, and let L′ be a sublattice of L, and let X be a subset
of the carrier of L′, and let a be an element of the carrier of L, and let a′

be an element of the carrier of L′. If a = a′, then X ⊑ a iff X ⊑ a′.

(15) Let L be a complete lattice and let L′ be a sublattice of L. If L′ is
⌈−⌉-inheriting, then L′ is complete.

(16) Let L be a complete lattice and let L′ be a sublattice of L. If L′ is
⊔

-inheriting, then L′ is complete.
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Let L be a complete lattice. Note that there exists a sublattice of L which
is complete.

Let L be a complete lattice. One can verify that every sublattice of L which
is ⌈−⌉-inheriting is also complete and every sublattice of L which is

⊔
-inheriting

is also complete.

Next we state four propositions:

(17) Let L be a complete lattice and let L′ be a sublattice of L. Suppose L′ is
⌈−⌉-inheriting. Let A′ be a subset of the carrier of L′. Then ⌈−⌉LA′ = ⌈−⌉L′A′.

(18) Let L be a complete lattice and let L′ be a sublattice of L. Suppose L′ is
⊔

-inheriting. Let A′ be a subset of the carrier of L′. Then
⊔

L
A′ =

⊔
L′ A′.

(19) Let L be a complete lattice and let L′ be a sublattice of L. Suppose
L′ is ⌈−⌉-inheriting. Let A be a subset of the carrier of L and let A′ be a
subset of the carrier of L′. If A = A′, then ⌈−⌉A = ⌈−⌉A′.

(20) Let L be a complete lattice and let L′ be a sublattice of L. Suppose
L′ is

⊔
-inheriting. Let A be a subset of the carrier of L and let A′ be a

subset of the carrier of L′. If A = A′, then
⊔

A =
⊔

A′.

3. Segment of Real Numbers as a Complete Lattice

Let us consider r1, r2. Let us assume that r1 ≤ r2. The functor
RealSubLatt(r1, r2) yields a strict lattice and is defined by the conditions
(Def. 4).

(Def. 4) (i) The carrier of RealSubLatt(r1, r2) = [r1, r2],

(ii) the join operation of RealSubLatt(r1, r2) = max �
�
([: [r1, r2],

[r1, r2] :] qua set), and

(iii) the meet operation of RealSubLatt(r1, r2) = min �
�
([: [r1, r2],

[r1, r2] :] qua set).

One can prove the following propositions:

(21) For all r1, r2 such that r1 ≤ r2 holds RealSubLatt(r1, r2) is complete.

(22) There exists sublattice of RealSubLatt(0, 1) which is
⊔

-inheriting and
non ⌈−⌉-inheriting.

(23) There exists a complete lattice L such that there exists sublattice of L

which is
⊔

-inheriting and non ⌈−⌉-inheriting.

(24) There exists sublattice of RealSubLatt(0, 1) which is ⌈−⌉-inheriting and
non

⊔
-inheriting.

(25) There exists a complete lattice L such that there exists sublattice of L

which is ⌈−⌉-inheriting and non
⊔

-inheriting.
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