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The notation and terminology used here are introduced in the following papers:
[26], [28], [7], [2], [10], [27], [29], [30], [23], [5], [6], [21], [20], [4], [25], [31], [1],
8], [9], [17], [11], [24], [3], [15], [16], [18], [22], [19], [12], [14], and [13].

1. LATTICE OF MANY SORTED EQUIVALENCE RELATIONS 1S COMPLETE

For simplicity we adopt the following convention: I will be a non empty set,
M will be a many sorted set indexed by I, x will be arbitrary, and rq, ro will
be real numbers.

We now state several propositions:

(1) For every set X holds x € the carrier of EqRelLatt(X) iff z is an
equivalence relation of X.

(2) idjs is an equivalence relation of M.

(3) [M,M] is an equivalence relation of M.
(4)  LiqReiLate(ar) = ida-

(5)  TeqRelLatt(m) = [M, M].

Let us consider I, M. Note that EqRelLatt(A/) is bounded.
One can prove the following propositions:

(6) Every subset of the carrier of EqRelLatt(M) is a family of many sorted
subsets of [M, M].

(7)  Let a, b be elements of the carrier of EqRelLatt(M) and let A, B be
equivalence relations of M. If a = A and b = B, then a C b iff A C B.
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(8) Let X be a subset of the carrier of EqRelLatt(M) and let X; be a
family of many sorted subsets of [M, M]. Suppose X; = X. Let a, b be
equivalence relations of M. If a = (N ]:X1:| and b € X, then a C b.

(9)  Let X be asubset of the carrier of EqRelLatt(M) and let X; be a family
of many sorted subsets of [M, M]. If X; = X and X is non empty, then
N |:X1:| is an equivalence relation of M.

Let L be a non empty lattice structure. Let us observe that L is complete if
and only if the condition (Def. 1) is satisfied.

(Def. 1)  Let X be a subset of the carrier of L. Then there exists an element a
of the carrier of L such that X C a and for every element b of the carrier
of L such that X C b holds a C b.

Next we state the proposition
(10)  EqRelLatt(M) is complete.

Let us consider I, M. Observe that EqRelLatt(M) is complete.
We now state the proposition

(11) Let X be a subset of the carrier of EqRelLatt(M) and let X; be a
family of many sorted subsets of [M,M]. Suppose X; = X and X is
non empty. Let a, b be equivalence relations of M. If a = N |:X;:| and

b= [ lgqRelLate(a) X then a = b.

2. SUBLATTICES INHERITING SUP’s AND INF’s

Let L be a lattice and let I; be a sublattice of L. We say that I is [ }
inheriting if and only if:
(Def. 2)  For every subset X of the carrier of I; holds [ |, X € the carrier of I;.
We say that I is | J-inheriting if and only if:
(Def. 3)  For every subset X of the carrier of I; holds | |;, X € the carrier of [;.
The following propositions are true:

(12) Let L be a lattice, and let L’ be a sublattice of L, and let a, b be
elements of the carrier of L, and let a’, b’ be elements of the carrier of L'.
Ifa=ad and b="V,thenalb=d UV andalb=ad N¥v.

(13)  Let L be a lattice, and let L’ be a sublattice of L, and let X be a subset
of the carrier of L', and let a be an element of the carrier of L, and let a’
be an element of the carrier of L. If a = a/, then a C X iff o’ C X.

(14)  Let L be a lattice, and let L’ be a sublattice of L, and let X be a subset
of the carrier of L', and let a be an element of the carrier of L, and let a’
be an element of the carrier of L’. If a = o/, then X C a iff X C d’.

(15) Let L be a complete lattice and let L’ be a sublattice of L. If L’ is
[ Finheriting, then L’ is complete.

(16) Let L be a complete lattice and let L’ be a sublattice of L. If L’ is
| Finheriting, then L’ is complete.



MORE ON THE LATTICE OF MANY SORTED ... 567

Let L be a complete lattice. Note that there exists a sublattice of L which
is complete.

Let L be a complete lattice. One can verify that every sublattice of L which
is [ Hnheriting is also complete and every sublattice of L which is | J-inheriting
is also complete.

Next we state four propositions:

(17)  Let L be a complete lattice and let L’ be a sublattice of L. Suppose L' is
[ Hinheriting. Let A’ be a subset of the carrier of L. Then [ A" = [ ]/ A’.

(18)  Let L be a complete lattice and let L’ be a sublattice of L. Suppose L' is
| -inheriting. Let A’ be a subset of the carrier of L. Then | |; A" =[], A'.

(19) Let L be a complete lattice and let L’ be a sublattice of L. Suppose
L’ is [ Finheriting. Let A be a subset of the carrier of L and let A" be a
subset of the carrier of L'. If A = A’ then [ ]A = [ ]A'.

(20) Let L be a complete lattice and let L’ be a sublattice of L. Suppose
L’ is | |-inheriting. Let A be a subset of the carrier of L and let A’ be a
subset of the carrier of L'. If A= A’, then | |A =[] A’

3. SEGMENT OF REAL NUMBERS AS A COMPLETE LATTICE

Let us consider 71, ro. Let us assume that r; < r9. The functor
RealSubLatt(rq,r2) yields a strict lattice and is defined by the conditions
(Def. 4).

(Def. 4) (i)  The carrier of RealSubLatt(ry,r2) = [r1,72],
(i)  the join operation of RealSubLatt(ri,re) = maxg [(f[r1, 2],
[r1,72] ] qua set), and
(ili))  the meet operation of RealSubLatt(ri,r2) = ming [(}[r1,r2],
[r1,72] ] qua set).

One can prove the following propositions:

(21)  For all r1, ro such that r; < 7y holds RealSubLatt(ry,72) is complete.

(22)  There exists sublattice of RealSubLatt(0,1) which is | |-inheriting and
non [ [nheriting.

(23)  There exists a complete lattice L such that there exists sublattice of L
which is | |-inheriting and non [ Finheriting.

(24)  There exists sublattice of RealSubLatt(0, 1) which is [ Finheriting and
non | |-inheriting.

(25)  There exists a complete lattice L such that there exists sublattice of L
which is [ Fnheriting and non | J-inheriting.
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