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Summary. This article is continuation of an article defining prod-
ucts of many sorted algebras [12]. Some properties of notions such as
commute, Frege, Args() are shown in this article. Notions of constant of
operations in many sorted algebras and projection of products of family
of many sorted algebras are defined. There is also introduced the notion
of class of family of many sorted algebras. The main theorem states that
product of family of many sorted algebras and product of class of family
of many sorted algebras are isomorphic.

MML Identifier: PRALG 3.

The terminology and notation used in this paper have been introduced in the
following articles: [20], [22], [14], [23], [7], [8], [16], [9], [17], [6], [15], [4], [2], [1],
[3], [19], [18], [10], [12], [13], [24], [21], [11], and [5].

1. Preliminaries

For simplicity we adopt the following convention: I denotes a non empty set,
J denotes a many sorted set indexed by I, S denotes a non void non empty
many sorted signature, i denotes an element of I, c denotes a set, A denotes an
algebra family of I over S, E1 denotes an equivalence relation of I, U0, U1, U2

denote algebras over S, s denotes a sort symbol of S, o denotes an operation
symbol of S, and f denotes a function.

Let I be a set, let us consider S, and let A1 be an algebra family of I over
S. One can verify that

∏
A1 is non-empty.

Let I be a non empty set and let E1 be an equivalence relation of I. Note
that Classes E1 is non empty.

Let I be a set. Then idI is a many sorted set indexed by I.
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Let us consider I, E1. Note that Classes E1 has non empty elements.
Let X be a set with non empty elements. Then idX is a non-empty many

sorted set indexed by X.
Next we state several propositions:

(1) For all functions f , F and for every set A such that f ∈
∏

F holds
f

�
A ∈

∏
(F

�
A).

(2) Let A be an algebra family of I over S, and let s be a sort symbol of
S, and let a be a non empty subset of I, and let A2 be an algebra family
of a over S. If A

�
a = A2, then Carrier(A2, s) = Carrier(A, s)

�
a.

(3) Let i be a set, and let I be a non empty set, and let E1 be an equivalence
relation of I, and let c1, c2 be elements of Classes E1. If i ∈ c1 and i ∈ c2,

then c1 = c2.

(4) For all sets X, Y and for every function f such that f ∈ Y X holds
dom f = X and rng f ⊆ Y.

(5) Let D be a non empty set, and let F be a many sorted function of D,
and let C be a functional non empty set with common domain. Suppose
C = rng F. Let d be an element of D and let e be a set. If d ∈ dom F and
e ∈ DOM(C), then F (d)(e) = (commute(F ))(e)(d).

2. Constants of Many Sorted Algebras

Let us consider S, U0 and let o be an operation symbol of S. The functor
const(o, U0) is defined by:

(Def. 1) const(o, U0) = (Den(o, U0))(ε).

Next we state four propositions:

(6) If Arity(o) = ε and Result(o, U0) 6= ∅, then const(o, U0) ∈ Result(o, U0).

(7) Suppose (the sorts of U0)(s) 6= ∅. Then Constants(U0, s) =
{const(o, U0) : o ranges over elements of the operation symbols of S,
the result sort of o = s ∧ Arity(o) = ε}.

(8) If Arity(o) = ε, then (commute(OPER(A)))(o) ∈ ((
⋃
{Result(o,A(i′)) :

i′ ranges over elements of I}){ 	 })I .

(9) If Arity(o) = ε, then const(o,
∏

A) ∈ (
⋃
{Result(o,A(i′)) : i′ ranges over

elements of I})I .

Let us consider S, I, o, A. Observe that const(o,
∏

A) is relation-like and
function-like.

One can prove the following three propositions:

(10) For every operation symbol o of S such that Arity(o) = ε holds
(const(o,

∏
A))(i) = const(o,A(i)).

(11) If Arity(o) = ε and dom f = I and for every element i of I holds
f(i) = const(o,A(i)), then f = const(o,

∏
A).
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(12) Let e be an element of Args(o, U1). Suppose e = ε and Arity(o) = ε and
Args(o, U1) 6= ∅ and Args(o, U2) 6= ∅. Let F be a many sorted function
from U1 into U2. Then F#e = ε.

3. Properties of Arguments of Operations in Many Sorted

Algebras

Next we state a number of propositions:

(13) Let U1, U2 be non-empty algebras over S, and let F be a many sorted
function from U1 into U2, and let x be an element of Args(o, U1). Then
x ∈

∏
(domκ(F · Arity(o))(κ)).

(14) Let U1, U2 be non-empty algebras over S, and let F be a many sorted
function from U1 into U2, and let x be an element of Args(o, U1), and let
n be a set. If n ∈ dom Arity(o), then (F#x)(n) = F (πn Arity(o))(x(n)).

(15) Let x be an element of Args(o,
∏

A). Then x ∈ ((
⋃
{(the sorts of

A(i′))(s′) : i′ ranges over elements of I, s′ ranges over elements of the
carrier of S})I)dom Arity(o).

(16) For every element x of Args(o,
∏

A) and for every set n such that n ∈
dom Arity(o) holds x(n) ∈

∏
Carrier(A,πn Arity(o)).

(17) Let i be an element of I and let n be a set. Suppose n ∈ dom Arity(o).
Let s be a sort symbol of S. Suppose s = Arity(o)(n). Let y be an element
of Args(o,

∏
A) and let g be a function. If g = y(n), then g(i) ∈ (the sorts

of A(i))(s).

(18) For every element y of Args(o,
∏

A) such that Arity(o) 6= ε holds
commute(y) ∈

∏
(domκ A(o)(κ)).

(19) For every element y of Args(o,
∏

A) such that Arity(o) 6= ε holds y ∈
dom 
 commute(Frege(A(o))).

(20) Given I, S, A, o and let s be a sort symbol of S. Suppose s = the result
sort of o. Let x be an element of Args(o,

∏
A). Then (Den(o,

∏
A))(x) ∈

∏
Carrier(A, s).

(21) Given I, S, A, i and let o be an operation symbol of S. Suppose
Arity(o) 6= ε. Let U1 be a non-empty algebra over S, and let x be an
element of Args(o,

∏
A), and let F be a many sorted function from

∏
A

into U1. Then (commute(x))(i) is an element of Args(o,A(i)).

(22) Given I, S, A, i, o, and let x be an element of Args(o,
∏

A), and let n be
a set. If n ∈ dom Arity(o), then for every function f such that f = x(n)
holds (commute(x))(i)(n) = f(i).

(23) Let o be an operation symbol of S. Suppose Arity(o) 6= ∅. Let
y be an element of Args(o,

∏
A), and let i′ be an element of I,

and let g be a function. If g = (Den(o,
∏

A))(y), then g(i′) =
(Den(o,A(i′)))((commute(y))(i′)).
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4. The Projection of Family of Many Sorted Algebras

Let f be a function and let x be a set. The functor proj(f, x) yields a function
and is defined as follows:

(Def. 2) dom proj(f, x) =
∏

f and for every function y such that y ∈
domproj(f, x) holds (proj(f, x))(y) = y(x).

Let us consider I, S, let A be an algebra family of I over S, and let i be an
element of I. The functor proj(A, i) yielding a many sorted function from

∏
A

into A(i) is defined by:

(Def. 3) For every element s of the carrier of S holds (proj(A, i))(s) =
proj(Carrier(A, s), i).

Next we state several propositions:

(24) For every element x of Args(o,
∏

A) such that Args(o,
∏

A) 6= ε

and Arity(o) 6= ∅ and for every element i of I holds proj(A, i)#x =
(commute(x))(i).

(25) For every element i of I and for every algebra family A of I over S holds
proj(A, i) is a homomorphism of

∏
A into A(i).

(26) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is
a homomorphism of U1 into A(i) Then F ∈ ({F (i′)(s1) : s1 ranges
over sort symbols of S, i′ ranges over elements of I}the carrier of S)I and
(commute(F ))(s)(i) = F (i)(s).

(27) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is a
homomorphism of U1 into A(i) Then (commute(F ))(s) ∈ ((

⋃
{(the sorts

of A(i′))(s1) : i′ ranges over elements of I, s1 ranges over sort symbols of
S})(the sorts of U1)(s))I .

(28) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is a
homomorphism of U1 into A(i) Let F ′ be a many sorted function from
U1 into A(i). Suppose F ′ = F (i). Let x be a set. Suppose x ∈ (the sorts
of U1)(s). Let f be a function. If f = (commute((commute(F ))(s)))(x),
then f(i) = F ′(s)(x).

(29) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is a
homomorphism of U1 into A(i) Let x be a set. If x ∈ (the sorts of U1)(s),
then (commute((commute(F ))(s)))(x) ∈

∏
Carrier(A, s).
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(30) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is a
homomorphism of U1 into A(i) Then there exists a many sorted function
H from U1 into

∏
A such that H is a homomorphism of U1 into

∏
A and

for every element i of I holds proj(A, i) ◦ H = F (i).

5. The Class of Family of Many Sorted Algebras

Let us consider I, J , S. A many sorted set indexed by I is said to be a
MSAlgebra-Class of S, J if:

(Def. 4) For every set i such that i ∈ I holds it(i) is an algebra family of J(i)
over S.

Let us consider I, S, A, E1. The functor A

E1
yields a MSAlgebra-Class of S,

idClassesE1
and is defined by:

(Def. 5) For every c such that c ∈ Classes E1 holds ( A

E1
)(c) = A

�
c.

Let us consider I, S, let J be a non-empty many sorted set indexed by I,
and let C be a MSAlgebra-Class of S, J . The functor

∏
C yields an algebra

family of I over S and is defined by the condition (Def. 6).

(Def. 6) Given i. Suppose i ∈ I. Then there exists a non empty set J1 and
there exists an algebra family C1 of J1 over S such that J1 = J(i) and
C1 = C(i) and (

∏
C)(i) =

∏
C1.

We now state the proposition

(31) Let A be an algebra family of I over S and let E1 be an equivalence
relation of I. Then

∏
A and

∏ ∏
( A

E1
) are isomorphic.
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