An Extension of SCM

Andrzej Trybulec Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano Piotr Rudnicki University of Alberta Edmonton

MML Identifier: SCMFSA_1.

The articles [19], [25], [9], [20], [11], [14], [2], [18], [26], [6], [7], [17], [16], [22], [3], [8], [10], [23], [1], [15], [5], [24], [12], [13], [21], and [4] provide the notation and terminology for this paper.

In this paper x will be arbitrary and k will denote a natural number. The subset Data-Loc_{SCMFSA} of \mathbb{Z} is defined as follows:

(Def. 1) Data-Loc_{SCMFSA} = Data-Loc_{SCM}.

The subset $\text{Data}^*\text{-}\text{Loc}_{\text{SCM}_{\text{FSA}}}$ of \mathbb{Z} is defined as follows:

(Def. 2) Data*-Loc_{SCMFSA} = $\mathbb{Z} \setminus \mathbb{N}$.

The subset Instr-Loc_{\rm SCM_{FSA}} of $\mathbb Z$ is defined as follows:

(Def. 3) Instr-Loc_{SCMFSA} = Instr-Loc_{SCM}.

One can check the following observations:

- * $Data^*-Loc_{SCM_{FSA}}$ is non empty,
- * Data-Loc_{SCMFSA} is non empty, and
- * Instr-Loc_{SCM_{FSA} is non empty.}

For simplicity we adopt the following convention: J, K are elements of \mathbb{Z}_{13} , a is an element of Instr-Loc_{SCMFSA}, b, c, c_1 are elements of Data-Loc_{SCMFSA}, and f, f_1 are elements of Data*-Loc_{SCMFSA}.

The subset $\text{Instr}_{\text{SCM}_{\text{FSA}}}$ of $[\mathbb{Z}_{13}, (\bigcup \{\mathbb{Z}, \mathbb{Z}^*\} \cup \mathbb{Z})^*]$ is defined by:

 $\begin{array}{ll} (\text{Def. 4}) & \text{Instr}_{\text{SCM}_{\text{FSA}}} = \text{Instr}_{\text{SCM}} \cup \{ \langle J, \, \langle c, f, b \rangle \rangle : J \in \{9, 10\} \} \cup \{ \langle K, \, \langle c_1, f_1 \rangle \rangle : \\ & K \in \{11, 12\} \}. \end{array}$

The following two propositions are true:

- (1) $\operatorname{Instr}_{\operatorname{SCM}_{FSA}} = \operatorname{Instr}_{\operatorname{SCM}} \cup \{ \langle J, \langle c, f, b \rangle \rangle : J \in \{9, 10\} \} \cup \{ \langle K, \langle c_1, f_1 \rangle \rangle : K \in \{11, 12\} \}.$
- (2) $\operatorname{Instr}_{SCM} \subseteq \operatorname{Instr}_{SCM_{FSA}}$.

C 1996 Warsaw University - Białystok ISSN 1426-2630 Let us observe that $Instr_{SCM_{FSA}}$ is non empty.

Let I be an element of $\text{Instr}_{\text{SCM}_{\text{FSA}}}$. The functor InsCode(I) yielding a natural number is defined by:

(Def. 5) InsCode(I) = I_1 .

The following two propositions are true:

- (3) For every element I of $\text{Instr}_{\text{SCM}_{\text{FSA}}}$ such that $\text{InsCode}(I) \leq 8$ holds $I \in \text{Instr}_{\text{SCM}}$.
- (4) $\langle 0, \varepsilon \rangle \in \text{Instr}_{\text{SCM}_{\text{FSA}}}.$

The function $OK_{SCM_{FSA}}$ from \mathbb{Z} into $\{\mathbb{Z}, \mathbb{Z}^*\} \cup \{Instr_{SCM_{FSA}}, Instr-Loc_{SCM_{FSA}}\}$ is defined by:

One can prove the following propositions:

- (5) $OK_{SCM_{FSA}} = (\mathbb{Z} \longmapsto \mathbb{Z}^*) + OK_{SCM} + (Instr_{SCM} \mapsto Instr_{SCM_{FSA}}) \cdot (OK_{SCM} \upharpoonright Instr-Loc_{SCM}).$
- (6) If $x \in \{9, 10\}$, then $\langle x, \langle c, f, b \rangle \rangle \in \text{Instr}_{\text{SCM}_{\text{FSA}}}$.
- (7) If $x \in \{11, 12\}$, then $\langle x, \langle c, f \rangle \rangle \in \text{Instr}_{\text{SCM}_{\text{FSA}}}$.
- (8) $\mathbb{Z} = \{0\} \cup \text{Data-Loc}_{\text{SCM}_{\text{FSA}}} \cup \text{Data^*-Loc}_{\text{SCM}_{\text{FSA}}} \cup \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}.$
- (9) $OK_{SCM_{FSA}}(0) = Instr-Loc_{SCM_{FSA}}$.
- (10) $\operatorname{OK}_{\operatorname{SCM}_{\operatorname{FSA}}}(b) = \mathbb{Z}.$
- (11) $OK_{SCM_{FSA}}(a) = Instr_{SCM_{FSA}}.$
- (12) $\operatorname{OK}_{\operatorname{SCM}_{\operatorname{FSA}}}(f) = \mathbb{Z}^*.$
- (13) Instr-Loc_{SCM_{FSA} $\neq \mathbb{Z}$ and Instr_{SCM_{FSA} $\neq \mathbb{Z}$ and Instr-Loc_{SCM_{FSA} $\neq \mathbb{Z}$ and Instr-Loc_{SCM_{FSA} $\neq \mathbb{Z}^*$ and Instr_{SCM_{FSA} $\neq \mathbb{Z}^*$.}}}}}
- (14) For every integer *i* such that $OK_{SCM_{FSA}}(i) = Instr-Loc_{SCM_{FSA}}$ holds i = 0.
- (15) For every integer i such that $OK_{SCM_{FSA}}(i) = \mathbb{Z}$ holds $i \in Data-Loc_{SCM_{FSA}}$.
- (16) For every integer *i* such that $OK_{SCM_{FSA}}(i) = Instr_{SCM_{FSA}}$ holds $i \in Instr-Loc_{SCM_{FSA}}$.
- (17) For every integer i such that $OK_{SCM_{FSA}}(i) = \mathbb{Z}^*$ holds $i \in Data^*-Loc_{SCM_{FSA}}$.

An **SCM**_{FSA}-state is an element of $\prod(OK_{SCM_{FSA}})$. Next we state two propositions:

- (18) For every **SCM**_{FSA}-state *s* and for every element *I* of Instr_{SCM} holds $s \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{SCM} \longmapsto I)$ is a state _{SCM}.
- (19) For every $\mathbf{SCM}_{\text{FSA}}$ -state *s* and for every state $_{\text{SCM}}$ *s'* holds $s + \cdot s' + \cdot s \upharpoonright$ Instr-Loc_{SCM_{FSA} is an $\mathbf{SCM}_{\text{FSA}}$ -state.}

In the sequel s is an **SCM**_{FSA}-state.

Let s be an $\mathbf{SCM}_{\text{FSA}}$ -state and let u be an element of Instr-Loc_{SCMFSA}. The functor $\text{Chg}_{\text{SCM}_{\text{FSA}}}(s, u)$ yields an $\mathbf{SCM}_{\text{FSA}}$ -state and is defined as follows:

(Def. 7) $\operatorname{Chg}_{\operatorname{SCM}_{\operatorname{FSA}}}(s, u) = s + \cdot (0 \mapsto u).$

Let s be an **SCM**_{FSA}-state, let t be an element of Data-Loc_{SCM_{FSA}, and let u be an integer. The functor $Chg_{SCM_{FSA}}(s,t,u)$ yielding an **SCM**_{FSA}-state is defined as follows:}

(Def. 8) $\operatorname{Chg}_{\operatorname{SCM}_{FSA}}(s, t, u) = s + (t \mapsto u).$

Let s be an **SCM**_{FSA}-state, let t be an element of Data*-Loc_{SCM_{FSA}, and let u be a finite sequence of elements of \mathbb{Z} The functor $\operatorname{Chg}_{\operatorname{SCM}_{\operatorname{FSA}}}(s, t, u)$ yielding an **SCM**_{FSA}-state is defined as follows:}

(Def. 9) $\operatorname{Chg}_{\operatorname{SCM}_{\operatorname{FSA}}}(s, t, u) = s + (t \mapsto u).$

Let s be an **SCM**_{FSA}-state and let a be an element of Data-Loc_{SCM_{FSA}. Then s(a) is an integer.}

Let s be an SCM_{FSA}-state and let a be an element of Data*-Loc_{SCM_{FSA}. Then s(a) is a finite sequence of elements of \mathbb{Z} .}

Let x be an element of $\text{Instr}_{\text{SCM}_{\text{FSA}}}$. Let us assume that there exist c, f, b, J such that $x = \langle J, \langle c, f, b \rangle \rangle$. The functor x int-addr₁ yielding an element of Data-Loc_{SCMFSA} is defined by:

(Def. 10) There exist c, f, b such that $\langle c, f, b \rangle = x_2$ and x int-addr₁ = c.

The functor x int-addr₂ yielding an element of Data-Loc_{SCMFSA} is defined as follows:

(Def. 11) There exist c, f, b such that $\langle c, f, b \rangle = x_2$ and x int-addr₂ = b. The functor x coll-addr₁ yields an element of Data*-Loc_{SCMFSA} and is defined as follows:

- (Def. 12) There exist c, f, b such that $\langle c, f, b \rangle = x_2$ and x coll-addr₁ = f. Let x be an element of $\text{Instr}_{\text{SCM}_{\text{FSA}}}$. Let us assume that there exist c, f, J such that $x = \langle J, \langle c, f \rangle \rangle$. The functor x int-addr₃ yielding an element of Data-Loc_{SCMFSA} is defined as follows:
- (Def. 13) There exist c, f such that $\langle c, f \rangle = x_2$ and x int-addr₃ = c. The functor x coll-addr₂ yields an element of Data*-Loc_{SCMFSA} and is defined as follows:
- (Def. 14) There exist c, f such that $\langle c, f \rangle = x_2$ and x coll-addr₂ = f. Let l be an element of Instr-Loc_{SCMFSA}. The functor Next(l) yielding an element of Instr-Loc_{SCMFSA} is defined as follows:
- (Def. 15) There exists an element L of Instr-Loc_{SCM} such that L = l and Next(l) = Next(L).

Let s be an **SCM**_{FSA}-state. The functor IC_s yielding an element of Instr-Loc_{SCM_{FSA} is defined by:}

(Def. 16) $IC_s = s(0).$

Let x be an element of $\text{Instr}_{\text{SCM}_{\text{FSA}}}$ and let s be an SCM_{FSA} -state. The functor $\text{Exec-Res}_{\text{SCM}_{\text{FSA}}}(x, s)$ yielding an SCM_{FSA} -state is defined by:

(Def. 17) (i) There exists an element x' of $\text{Instr}_{\text{SCM}}$ and there exists a state $_{\text{SCM}}$ s' such that x = x' and $s' = s \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{\text{SCM}} \longmapsto x')$ and Exec-Res_{SCMFSA} $(x, s) = s + \cdot \text{Exec-Res}_{SCM}(x', s') + \cdot s \upharpoonright \text{Instr-Loc}_{SCMFSA}$ if InsCode $(x) \le 8$,

- (ii) there exists an integer i and there exists k such that $k = |s(x \text{ int-addr}_2)|$ and $i = \pi_k s(x \text{ coll-addr}_1)$ and Exec-Res_{SCMFSA}(x, s) =Chg_{SCMFSA} $(Chg_{SCMFSA}(s, x \text{ int-addr}_1, i), Next(\mathbf{IC}_s))$ if InsCode(x) = 9,
- (iii) there exists a finite sequence f of elements of \mathbb{Z} and there exists k such that $k = |s(x \text{ int-addr}_2)|$ and $f = s(x \text{ coll-addr}_1) + (k, s(x \text{ int-addr}_1))$ and $\text{Exec-Res}_{SCM_{FSA}}(x, s) = \text{Chg}_{SCM_{FSA}}(\text{Chg}_{SCM_{FSA}}(s, x \text{ coll-addr}_1, f), \text{Next}(\mathbf{IC}_s))$ if InsCode(x) = 10,
- (iv) Exec-Res_{SCMFSA} $(x, s) = Chg_{SCMFSA}(Chg_{SCMFSA}(s, x \text{ int-addr}_3, len s(x \text{ coll-addr}_2)), Next(IC_s))$ if InsCode(x) = 11,
- (v) there exists a finite sequence f of elements of \mathbb{Z} and there exists k such that $k = |s(x \text{ int-addr}_3)|$ and $f = k \mapsto 0$ and $\text{Exec-Res}_{SCM_{FSA}}(x, s) = \text{Chg}_{SCM_{FSA}}(\text{Chg}_{SCM_{FSA}}(s, x \text{ coll-addr}_2, f), \text{Next}(\mathbf{IC}_s))$ if InsCode(x) = 12,
- (vi) Exec-Res_{SCM_{FSA}(x, s) = s, otherwise.}

The function $\text{Exec}_{\text{SCM}_{\text{FSA}}}$ from $\text{Instr}_{\text{SCM}_{\text{FSA}}}$ into $(\prod(\text{OK}_{\text{SCM}_{\text{FSA}}}))\prod(\text{OK}_{\text{SCM}_{\text{FSA}}})$ is defined by:

(Def. 18) For every element x of $\text{Instr}_{\text{SCM}_{\text{FSA}}}$ and for every $\mathbf{SCM}_{\text{FSA}}$ -state y holds $(\text{Exec}_{\text{SCM}_{\text{FSA}}}(x)$ qua element of $(\prod(\text{OK}_{\text{SCM}_{\text{FSA}}}))\prod^{(\text{OK}_{\text{SCM}_{\text{FSA}}})}(y) =$ Exec-Res_{SCM_{\text{FSA}}}(x, y).

One can prove the following propositions:

- (20) For every $\mathbf{SCM}_{\text{FSA}}$ -state *s* and for every element *u* of Instr-Loc_{SCMFSA} holds $(\text{Chg}_{\text{SCM}_{\text{FSA}}}(s, u))(0) = u$.
- (21) For every **SCM**_{FSA}-state *s* and for every element *u* of Instr-Loc_{SCMFSA} and for every element m_1 of Data-Loc_{SCMFSA} holds $(Chg_{SCMFSA}(s, u))(m_1) = s(m_1)$.
- (22) For every **SCM**_{FSA}-state *s* and for every element *u* of Instr-Loc_{SCMFSA} and for every element *p* of Data*-Loc_{SCMFSA} holds $(Chg_{SCMFSA}(s, u))(p) = s(p)$.
- (23) For every $\mathbf{SCM}_{\text{FSA}}$ -state *s* and for all elements *u*, *v* of Instr-Loc_{SCMFSA} holds $(\text{Chg}_{\text{SCM}_{\text{FSA}}}(s, u))(v) = s(v).$
- (24) For every **SCM**_{FSA}-state *s* and for every element *t* of Data-Loc_{SCM_{FSA} and for every integer *u* holds $(Chg_{SCM_{FSA}}(s, t, u))(0) = s(0).$}
- (25) For every **SCM**_{FSA}-state *s* and for every element *t* of Data-Loc_{SCMFSA} and for every integer *u* holds $(Chg_{SCM_{FSA}}(s,t,u))(t) = u$.
- (26) Let s be an **SCM**_{FSA}-state, and let t be an element of Data-Loc_{SCM_{FSA}, and let u be an integer, and let m_1 be an element of Data-Loc_{SCM_{FSA}. If $m_1 \neq t$, then $(\text{Chg}_{\text{SCM}_{\text{FSA}}}(s, t, u))(m_1) = s(m_1)$.}}
- (27) Let s be an **SCM**_{FSA}-state, and let t be an element of Data-Loc_{SCM_{FSA}, and let u be an integer, and let f be an element of Data*-Loc_{SCM_{FSA}. Then $(Chg_{SCM_{FSA}}(s,t,u))(f) = s(f).$}}

- (28) Let s be an **SCM**_{FSA}-state, and let t be an element of Data-Loc_{SCM_{FSA}, and let u be an integer, and let v be an element of Instr-Loc_{SCM_{FSA}. Then $(Chg_{SCM_{FSA}}(s,t,u))(v) = s(v).$}}
- (29) Let s be an **SCM**_{FSA}-state, and let t be an element of Data*-Loc_{SCM_{FSA}, and let u be a finite sequence of elements of \mathbb{Z} . Then $(Chg_{SCM_{FSA}}(s,t,u))(t) = u$.}
- (30) Let s be an **SCM**_{FSA}-state, and let t be an element of Data*-Loc_{SCM_{FSA}, and let u be a finite sequence of elements of \mathbb{Z} , and let m_1 be an element of Data*-Loc_{SCM_{FSA}. If $m_1 \neq t$, then $(\text{Chg}_{\text{SCM}_{\text{FSA}}}(s, t, u))(m_1) = s(m_1)$.}}
- (31) Let s be an **SCM**_{FSA}-state, and let t be an element of Data*-Loc_{SCM_{FSA}, and let u be a finite sequence of elements of Z, and let a be an element of Data-Loc_{SCM_{FSA}. Then $(Chg_{SCM_{FSA}}(s,t,u))(a) = s(a)$.}}
- (32) Let s be an **SCM**_{FSA}-state, and let t be an element of Data*-Loc_{SCM_{FSA}, and let u be a finite sequence of elements of Z, and let v be an element of Instr-Loc_{SCM_{FSA}. Then $(Chg_{SCM_{FSA}}(s,t,u))(v) = s(v)$.}}

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Grzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973–977, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [5] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151–160, 1992.
- Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241–250, 1992.
- [14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [15] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Mathematics, 2(5):623-627, 1991.
- [16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [17] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [18] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.

- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [20] Andrzej Trybulec. Tuples, projections and Cartesian products. *Formalized Mathematics*, 1(1):97–105, 1990.
- [21] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51–56, 1993.
- [22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [25] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received February 3, 1996