FORMALIZED MATHEMATICS
Volume 5, Number 4, 1996
Warsaw University - Bialystok

The SCMpggy, Computer

Andrzej Trybulec Yatsuka Nakamura Piotr Rudnicki
Warsaw University Shinshu University University of Alberta
Biatystok Nagano Edmonton

MML Identifier: SCMFSA_2.

The articles [20], [26], [11], [1], [24], [27], [21], [2], [14], [3], [15], [7], [17], [8], [19],
[18], [10], [5], [9], [6], [25], [4], [12], [13], [22], [16], and [23] provide the notation
and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:

(1) Let N be a non empty set with non empty elements and let S be a
von Neumann definite realistic AMI over N. Then ICg ¢ the instruction
locations of S.

(2) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N, and let s be a state of S, and let ¢ be an instruction-
location of S. Then s(i) is an instruction of S.

(3) Let N be a non empty set with non empty elements, and let S be an
AMI over N, and let s be a state of S. Then the instruction locations of
S C dom s.

(4) Let N be a non empty set with non empty elements, and let S be a von
Neumann AMI over N, and let s be a state of S. Then IC, € dom s.

(5) Let N be a non empty set with non empty elements, and let S be an
AMI over N, and let s be a state of S, and let [be an instruction-location
of S. Then [€ dom s.

© 1996 Warsaw University - Bialystok

519 ISSN 1426-2630

520 ANDRZEJ TRYBULEC et al.

2. THE SCMpspy COMPUTER

The strict AMI SCMpggp over {Z,7*} is defined by:
(Def. 1) SCMypsp = (Z,0(e 7), Instr-LocscMpga > Z13, 0(e Zi3), Instrscmpg s 5
OKsoMpga » Execsonpsa)-
We now state two propositions:

(6) (i) The instruction locations of SCMpgas # 7,

(ii) the instructions of SCMpga # Z,

(iii) the instruction locations of SCMFpga # the instructions of SCMrpga,
(iv) the instruction locations of SCMpga # Z*, and

(v) the instructions of SCMpga # Z*.

(7) ICscMys, =0

3. THE MEMORY STRUCTURE

In the sequel k, ki, ks denote natural numbers.
The subset Int-Locations of the objects of SCMpggy is defined by:

(Def. 2) Int-Locations = Data-LocgcmMpg , -
The subset FinSeq-Locations of the objects of SCMpggy is defined by:
(Def. 3) FinSeq-Locations = Data*-LocscMpg , -
The following proposition is true

(8) The objects of SCMpga = Int-Locations U FinSeq-Locations U
{ICsCMys, U the instruction locations of SCMpsa.

An object of SCMFggy is called an integer location if:
(Def. 4) It € Data-Locscmpg, -
An object of SCMFpg, is said to be a finite sequence location if:
(Def. 5) It € Data*-LocscMypg, -

In the sequel d; denotes an integer location, f; denotes a finite sequence
location, and x is arbitrary.
We now state several propositions:

dy1 € Int-Locations .
f1 € FinSeq-Locations.
If x € Int-Locations, then x is an integer location.

)
)
)
12) If = € FinSeq-Locations, then x is a finite sequence location.
) Int-Locations misses the instruction locations of SCMpga .

) FinSeg-Locations misses the instruction locations of SCMpga .
) Int-Locations misses FinSeqg-Locations.

Let us consider k. The functor intloc(k) yields an integer location and is
defined as follows:

THE SCMpgp COMPUTER 521

(Def. 6) intloc(k) = d.
The functor insloc(k) yields an instruction-location of SCMpga and is defined
by:
(Def. 7) insloc(k) = i.
The functor fsloc(k) yields a finite sequence location and is defined as follows:
(Def. 8) fsloc(k) = —(k +1).
One can prove the following propositions:
(16) For all k1, ko such that k1 # ko holds intloc(k;) # intloc(ks).
(17) For all k1, ko such that k; # kg holds fsloc(kq) # fsloc(kz).
(18) For all kq, ko such that k1 # ko holds insloc(ky) # insloc(kz).
(19)

19 For every integer location ds there exists a natural number ¢ such that

dy = intloc(3).
(20) For every finite sequence location f2 there exists a natural number i
such that fo = fsloc(7).

(21) For every instruction-location i; of SCMpgy there exists a natural num-
ber i such that ¢; = insloc(7).

22
23
24

Int-Locations is infinite.

FinSeq-Locations is infinite.

The instruction locations of SCMyggy is infinite.
Every integer location is a data-location.

N TN N N N N /N
N DN
S Ot

T o=

For every integer location [holds ObjectKind(l) = Z.
For every finite sequence location ! holds ObjectKind(l) = 7 *.
For arbitrary x such that x € Data-Locscmpg, holds x is an integer
location.
(29) For arbitrary = such that x € Data*-Locscmys, holds z is a finite
sequence location.
(30) For arbitrary x such that = € Instr-Locscmyg, holds is an instruction-
location of SCMgga.

Let [; be an instruction-location of SCMpga. The functor Next(l;) yields
an instruction-location of SCMpga and is defined by:

(Def. 9) There exists an element m; of Instr-Locgscmyg, such that m; =1; and
Next(l1) = Next(myq).

Next we state two propositions:

(31) For every instruction-location [; of SCMpga and for every element my
of Instr-Locgcmgg, such that my = Iy holds Next(m) = Next(l).
(32) Next(insloc(k)) = insloc(k + 1).

For simplicity we adopt the following convention: [o, I3 are instructions-
locations of SCMFpsa, L1 is an instruction-location of SCM, i is an instruction
of SCMFsa, I is an instruction of SCM, [is an instruction-location of SCMgga,
f, f1, g are finite sequence locations, A, B are data-locations, and a, b, ¢, dq,
ds3 are integer locations.

522 ANDRZEJ TRYBULEC et al.

We now state the proposition
(33) If I, = Ly, then Next(lg) = Next(Lq).

4. THE INSTRUCTION STRUCTURE

Let I be an instruction of SCMpga. The functor InsCode(I) yielding a
natural number is defined as follows:

(Def. 10) InsCode(l) = I3.
The following propositions are true:

(34) For every instruction I of SCMpga such that InsCode(I) < 8 holds I
is an instruction of SCM.

(35) For every instruction I of SCMpga holds InsCode(I) < 12.

(36) For every instruction i of SCMpga such that InsCode(i) = 0 holds
1= haltSCMFSA-

(37) For every instruction i of SCMpga and for every instruction I of SCM
such that ¢ = I holds InsCode(i) = InsCode(I).

(38) Every instruction of SCM is an instruction of SCMpga .

Let us consider a, b. The functor a:=b yields an instruction of SCMpga and
is defined as follows:

(Def. 11) There exist A, B such that a = A and b = B and a:=b = A:=B.
The functor AddTo(a,b) yields an instruction of SCMpga and is defined by:
(Def. 12) There exist A, B such that « = A and b = B and AddTo(a,b) =
AddTo(A, B).
The functor SubFrom(a,b) yields an instruction of SCMrpga and is defined as
follows:
(Def. 13) There exist A, B such that a = A and b = B and SubFrom(a,b) =
SubFrom(A, B).
The functor MultBy(a,b) yields an instruction of SCMpga and is defined as
follows:
(Def. 14) There exist A, B such that « = A and b = B and MultBy(a,b) =
MultBy (A, B).
The functor Divide(a, b) yielding an instruction of SCMFpgy is defined as follows:
(Def. 15) There exist A, B such that a« = A and b = B and Divide(a,b) =
Divide(A4, B).
We now state the proposition

(39) The instruction locations of SCM = the instruction locations of
SCMpsa .-
Let us consider l5. The functor goto Iy yields an instruction of SCMpga and
is defined as follows:

(Def. 16) There exists L such that lo = L1 and goto lo = goto L.

THE SCMypga COMPUTER

Let us consider a. The functor if @ = 0 goto ls yields an instruction of
SCMpgsa and is defined by:

(Def. 17) There exist A, L; such that a = A and ls = Ly and if a = 0 goto Iy =
if A=0 goto L.
The functor if a > 0 goto ls yields an instruction of SCMpga and is defined
as follows:

(Def. 18) There exist A, Ly such that a = A and Iy = Ly and if a > 0 goto Iy =
if A> 0 goto L.

Let ¢, i be integer locations and let a be a finite sequence location. The
functor c:=a; yielding an instruction of SCMFgsy is defined by:

(Def. 19) c:=a; = (9, (¢, a,1i)).
The functor a;:=c yielding an instruction of SCMFggy is defined by:
(Def. 20) a;:=c = (10, {(c,a,1)).
Let ¢ be an integer location and let a be a finite sequence location. The
functor i:=lena yielding an instruction of SCMFpgy is defined as follows:

(Def. 21) d:=lena = (11, (i,a)).
The functor a:=(0,...,0) yields an instruction of SCMpga and is defined as
———

follows:
(Def. 22) a:=(0,...,0) = (12, (i,a)).
;\'f.—/
7
We now state a number of propositions:

(40) haltSCM = haltSCMFSA‘

(41) InsCode(haltSCMFSA) = 0.

(42) InsCode(a:=b) =

(43) InsCode(AddTo(a,b)) = 2.

(44) InsCode(SubFrom(a,b)) =

(45) InsCode(MultBy(a,b)) =

(46) InsCode(Divide(a,b)) = 5.

(47) InsCode(goto I3) = 6.

(48) InsCode(if a =0 goto I3) = 7.

(49) InsCode(if a >0 goto l3) =8.

(50) InsCode(c:=f,) =

(51) InsCode(f,:=c) = 10.

(52) InsCode(a:=lenf;) =

(563) InsCode(f1:=(0, O>) =12.
NGRS

a
(54) For every instruction is of SCMpga such that InsCode(iz) = 1 there
exist dy, dz such that io = di:=d3.

523

524

ANDRZEJ TRYBULEC et al.

(55) For every instruction iy of SCMpga such that InsCode(ig) = 2 there
exist dy, d3 such that io = AddTo(dy,d3).

(56) For every instruction iy of SCMpga such that InsCode(ig) = 3 there
exist dj, ds such that i = SubFrom(d;,ds).

(57) For every instruction ig of SCMpga such that InsCode(iz) = 4 there
exist dj, ds such that i = MultBy(d;,d3).

(58) For every instruction iy of SCMpga such that InsCode(ig) = 5 there
exist di, d3 such that io = Divide(d, d3).

(59) For every instruction io of SCMpga such that InsCode(iz) = 6 there
exists l3 such that 75 = goto [3.

(60) For every instruction iy of SCMpga such that InsCode(ig) = 7 there
exist I3, dq such that i = if di =0 goto [3.

(61) For every instruction io of SCMpga such that InsCode(iy) = 8 there
exist I3, dy such that i3 = if d; > 0 goto [3.

(62) For every instruction io of SCMpga such that InsCode(iz) = 9 there
exist a, b, fi such that iy = b:=f,.

(63) For every instruction is of SCMpga such that InsCode(iz) = 10 there
exist a, b, fi such that iy = f1,:=b.

(64) For every instruction iy of SCMpga such that InsCode(iz) = 11 there
exist a, fi such that iy = a:=lenf;.

(65) For every instruction is of SCMpga such that InsCode(iz) = 12 there
exist a, f1 such that io = f1:=(0,...,0).

——

a

5. RELATIONSHIP TO SCM

In the sequel S denotes a state of SCM and s, s1 denote states of SCMpga .
We now state a number of propositions:

(66) For every state s of SCMpga and for every integer location d holds
d € doms.

(67) f e doms.

(68) f ¢ domS.

(69) For every state s of SCMpga holds Int-Locations C dom s.

(70) For every state s of SCMpga holds FinSeg-Locations C dom s.

(71) For every state s of SCMpga holds dom(s | Int-Locations) =

Int-Locations .

(72) For every state s of SCMpga holds dom(s | FinSeq-Locations) =
FinSeq-Locations.

(73) For every state s of SCMpga and for every instruction ¢ of SCM holds

s | N+-(Instr-Locgonm —) is a state of SCM.

THE SCMpgp COMPUTER 525

(74) For every state s of SCMpga and for every state s’ of SCM holds
54-8"+-s| Instr-Locscomypg, s a state of SCMpga.

(75) Let i be an instruction of SCM, and let i3 be an instruction of
SCMpsa, and let s be a state of SCM, and let sy be a state of
SCMrpga. If i@ = i3 and s = sy | N+-(Instr-Locgem —— i), then
Exec(i3, s2) = sp+-Exec(i, s)+-s2 | Instr-Locgomypg, -

Let s be a state of SCMpga and let d be an integer location. Then s(d) is
an integer.

Let s be a state of SCMpga and let d be a finite sequence location. Then
s(d) is a finite sequence of elements of 7.

Next we state several propositions:

(76) If S = sIN+-(Instr-Locgcm —— 1), then s = s+-S+-s[Instr-Locscompg, -

(77) For every element I of Instrscmgpg, such that I = ¢ and for
every SCMypga-state S such that S = s holds Exec(i,s) =
Exec-Resscmpga (£59).

(78) If s; = s+-S+-5 | Instr-Locscmyg, » then s1(ICgaMyg,) = STCscm)-

(79) If s = s+-S+-s | Instr-Locsomps, and A = a, then S(A) = s1(a).

(80) If S = s | N+-(Instr-Locgcm — I) and A = a, then S(A) = s(a).

Let us note that SCMpgpa is halting realistic von Neumann data-oriented
definite and steady-programmed.
The following propositions are true:

(81) For every integer location dy holds dz # ICscMy, -

(82) For every finite sequence location dy holds dz # ICscMys, -

(83) For every integer location i; and for every finite sequence location ds
holds il 75 dg.

(84) For every instruction-location i; of SCMpga and for every integer lo-
cation do holds i1 # ds.

(85) For every instruction-location i; of SCMpgs and for every finite se-
quence location ds holds i1 # ds.

(86) Let s1, s3 be states of SCMpga. Suppose that

) IC,) =IC,),

) for every integer location a holds sj(a) = s3(a),

) for every finite sequence location f holds s1(f) = s3(f), and

) for every instruction-location i of SCMpga holds s1(i) = s3(7).
Then s1 = s3.

(87) If S =s, then IC, = ICg.

(88) If S = s | N+-(Instr-Locgcom — I), then IC; = ICg.

6. USERS GUIDE

One can prove the following propositions:

526

ANDRZEJ TRYBULEC et al.
(89) (Exec(a:=b,s))(ICscMys,) = Next(IC,) and (Exec(a:=b,s))(a) =
s(b) and for every ¢ such that ¢ # a holds (Exec(a:=b,s))(c) = s(c

and for every f holds (Exec(a:=b,s))(f) = s(f).

(90) (Exec(AddTo(a,b),s))(ICscmMys,) = Next(IC;) and (Exec(AddTo(a, b),
s$))(a) = s(a) + s(b) and for every ¢ such that ¢ # a
holds (Exec(AddTo(a,b),s))(c) = s(c) and for every f holds
(Exec(AddTo(a,b),s))(f) = s(f)-

(91) (Exec(SubFrom(a,b), s))(ICscM,g,) = Next(IC;) and
(Exec(SubFrom(a,b),s))(a) = s(a) — s(b) and for every ¢ such that
¢ # a holds (Exec(SubFrom(a,b),s))(c) = s(c) and for every f holds
(Exec(SubFrom(a,b), s))(f) = s(f).

(92) (Exec(MultBy(a,b),s))(ICscM;g,) = Next(ICy) and (Exec(MultBy/(a,
b),s))(a) = s(a) - s(b) and for every ¢ such that ¢ # a
holds (Exec(MultBy(a,b),s))(¢) = s(¢) and for every [holds
(Exec(MultBy(a, b), s))(f) = s(f).

(93) Suppose a # b. Then

(i) (Exec(Divide(a,b), s))(ICscMys,) = Next(ICy),

(ii) (Exec(Divide(a,b), s))(a) = s(a) + s(b),

(iii) (Exec(Divide(a,b), s))(b) = s(a) mod s(b),

(iv) for every ¢ such that ¢ # a and ¢ # b holds (Exec(Divide(a, b), s))(c) =
s(c), and
(v) for every f holds (Exec(Divide(a,b), s))(f) = s(f).
(94) (Exec(Divide(a, a), s))(ICscMys,) = Next(ICs) and (Exec(Divide(a,
a),s))(a) = s(a) mod s(a) and for every c¢ such that ¢ #
a holds (Exec(Divide(a,a),s))(c) = s(c) and for every f holds
(Exec(Divide(a, a), s))(f) = s(f).
(95) (Exec(goto [, 5))(ICscMys,) = [and for every c holds (Exec(goto [, s))
(c) = s(c) and for every f holds (Exec(goto I, s))(f) = s(f).
(96) (i) If s(a) = 0, then (Exec(if a = 0 goto [, 5))(ICscMyg,) = I
(ii) if s(a) # 0, then (Exec(if a =0 goto [, s))(ICgcM,s,) = Next(ICy),
(iii) for every ¢ holds (Exec(if a = 0 goto [,s))(c) = s(c), and
(iv) for every f holds (Exec(if a =0 goto [, s))(f) = s(f).

(97) i) If s(a) > 0, then (Exec(if a > 0 goto [, 5))(ICscMyg,) = I
(ii) if s(a) <0, then (Exec(if a > 0 goto [, s))(ICscM,s,) = Next(ICy),
(iii) for every c¢ holds (Exec(if a > 0 goto [,s))(c) = s(c), and
(iv) for every f holds (Exec(if a > 0 goto [, s))(f) = s(f).

(98) (i) (Exec(c:=ga,5))(ICgcMyg,) = Next(ICs),

(ii) there exists k such that k = |s(a)| and (Exec(c:=g4, $))(c) = ms(g),
(ili) for every b such that b # ¢ holds (Exec(c:=gq,5))(b) = s(b), and
(iv) for every f holds (Exec(c:=gq,5))(f) = s(f).

(99) (i) (Exec(ga:=c, 5))(ICgcMyg,) = Next(ICy),

(ii) there exists k such that k = |s(a)| and (Exec(g,:=c, s))(g) = s(g) +-
(k,s(c)),

THE SCMpgp COMPUTER 527

(ili) for every b holds (Exec(gq:=c, s))(b) = s(b), and
(iv) for every f such that f # g holds (Exec(g,:=c, s))(f) = s(f).
(100) (Exec(c:=leng, s))(ICscMys,) = Next(IC) and (Exec(c:=leng, s))(
len s(g) and for every b such that b # ¢ holds (Exec(c:=leng, s))(b) = s
and for every f holds (Exec(c:=leng, s))(f) = s(f).

(101) (i) (Exec(g:=(0,...,0),5))(ICscMys,) = Next(ICy),

c)
(b)

(ii) there exists k such that k& = |s(c)| and (Exec(g:=(0,...,0),s))(g) =

———
k+— 0,
(i) for every b holds (Exec(g:=(0,...,0),s))(b) = s(b), and
——
(iv) for every f such that f # g holds (Exec(g:=(0,...,0),$))(f) = s(f).
———
REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-
ized Mathematics, 5(4):485-492, 1996.

[5] Czestaw Byliniski. A classical first order language. Formalized Mathematics, 1(4):669—
676, 1990.

[6] Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formal-
ized Mathematics, 1(3):529-536, 1990.

[7] Czestaw Byliriski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

[8] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

[9] Cgzestaw Byliniski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(8):521-527, 1990.

[10] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

[13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

[14] Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

[15] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-
ematics, 2(5):623-627, 1991.

[16] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.

[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

[18] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.

[19] Andrzej Trybulec. Function domains and Freenkel operator. Formalized Mathematics,
1(3):495-500, 1990.

528

[20]
21]
22]
[23]

[24]
[25]

[26]

27]

ANDRZEJ TRYBULEC et al.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97-105, 1990.

Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51-56, 1993.

Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of SCM.
Formalized Mathematics, 5(4):507-512, 1996.

Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17-23, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received February 7, 1996

