
FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996

Warsaw University - Bia lystok

The SCMFSA Computer

Andrzej Trybulec

Warsaw University

Bia lystok

Yatsuka Nakamura

Shinshu University

Nagano

Piotr Rudnicki

University of Alberta

Edmonton

MML Identifier: SCMFSA 2.

The articles [20], [26], [11], [1], [24], [27], [21], [2], [14], [3], [15], [7], [17], [8], [19],
[18], [10], [5], [9], [6], [25], [4], [12], [13], [22], [16], and [23] provide the notation
and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

(1) Let N be a non empty set with non empty elements and let S be a
von Neumann definite realistic AMI over N . Then ICS /∈ the instruction
locations of S.

(2) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N , and let s be a state of S, and let i be an instruction-
location of S. Then s(i) is an instruction of S.

(3) Let N be a non empty set with non empty elements, and let S be an
AMI over N , and let s be a state of S. Then the instruction locations of
S ⊆ dom s.

(4) Let N be a non empty set with non empty elements, and let S be a von
Neumann AMI over N , and let s be a state of S. Then ICs ∈ dom s.

(5) Let N be a non empty set with non empty elements, and let S be an
AMI over N , and let s be a state of S, and let l be an instruction-location
of S. Then l ∈ dom s.

519
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630

520 andrzej trybulec et al.

2. The SCMFSA Computer

The strict AMI SCMFSA over { � , � ∗} is defined by:

(Def. 1) SCMFSA = 〈 � , 0(∈ �), Instr-LocSCMFSA
, � 13, 0(∈ � 13), InstrSCMFSA

,
OKSCMFSA

,ExecSCMFSA
〉.

We now state two propositions:

(6) (i) The instruction locations of SCMFSA 6= � ,
(ii) the instructions of SCMFSA 6= � ,
(iii) the instruction locations of SCMFSA 6= the instructions of SCMFSA,
(iv) the instruction locations of SCMFSA 6= � ∗, and
(v) the instructions of SCMFSA 6= � ∗.

(7) ICSCMFSA
= 0.

3. The Memory Structure

In the sequel k, k1, k2 denote natural numbers.
The subset Int-Locations of the objects of SCMFSA is defined by:

(Def. 2) Int-Locations = Data-LocSCMFSA
.

The subset FinSeq-Locations of the objects of SCMFSA is defined by:

(Def. 3) FinSeq-Locations = Data∗-LocSCMFSA
.

The following proposition is true

(8) The objects of SCMFSA = Int-Locations∪FinSeq-Locations∪
{ICSCMFSA

} ∪ the instruction locations of SCMFSA.

An object of SCMFSA is called an integer location if:

(Def. 4) It ∈ Data-LocSCMFSA
.

An object of SCMFSA is said to be a finite sequence location if:

(Def. 5) It ∈ Data∗-LocSCMFSA
.

In the sequel d1 denotes an integer location, f1 denotes a finite sequence
location, and x is arbitrary.

We now state several propositions:

(9) d1 ∈ Int-Locations .

(10) f1 ∈ FinSeq-Locations .

(11) If x ∈ Int-Locations, then x is an integer location.

(12) If x ∈ FinSeq-Locations, then x is a finite sequence location.

(13) Int-Locations misses the instruction locations of SCMFSA.

(14) FinSeq-Locations misses the instruction locations of SCMFSA.

(15) Int-Locations misses FinSeq-Locations.

Let us consider k. The functor intloc(k) yields an integer location and is
defined as follows:

the SCMFSA computer 521

(Def. 6) intloc(k) = dk.

The functor insloc(k) yields an instruction-location of SCMFSA and is defined
by:

(Def. 7) insloc(k) = ik.

The functor fsloc(k) yields a finite sequence location and is defined as follows:

(Def. 8) fsloc(k) = −(k + 1).

One can prove the following propositions:

(16) For all k1, k2 such that k1 6= k2 holds intloc(k1) 6= intloc(k2).

(17) For all k1, k2 such that k1 6= k2 holds fsloc(k1) 6= fsloc(k2).

(18) For all k1, k2 such that k1 6= k2 holds insloc(k1) 6= insloc(k2).

(19) For every integer location d2 there exists a natural number i such that
d2 = intloc(i).

(20) For every finite sequence location f2 there exists a natural number i
such that f2 = fsloc(i).

(21) For every instruction-location i1 of SCMFSA there exists a natural num-
ber i such that i1 = insloc(i).

(22) Int-Locations is infinite.

(23) FinSeq-Locations is infinite.

(24) The instruction locations of SCMFSA is infinite.

(25) Every integer location is a data-location.

(26) For every integer location l holds ObjectKind(l) = � .

(27) For every finite sequence location l holds ObjectKind(l) = � ∗.

(28) For arbitrary x such that x ∈ Data-LocSCMFSA
holds x is an integer

location.

(29) For arbitrary x such that x ∈ Data∗-LocSCMFSA
holds x is a finite

sequence location.

(30) For arbitrary x such that x ∈ Instr-LocSCMFSA
holds x is an instruction-

location of SCMFSA.

Let l1 be an instruction-location of SCMFSA. The functor Next(l1) yields
an instruction-location of SCMFSA and is defined by:

(Def. 9) There exists an element m1 of Instr-LocSCMFSA
such that m1 = l1 and

Next(l1) = Next(m1).

Next we state two propositions:

(31) For every instruction-location l1 of SCMFSA and for every element m1

of Instr-LocSCMFSA
such that m1 = l1 holds Next(m1) = Next(l1).

(32) Next(insloc(k)) = insloc(k + 1).

For simplicity we adopt the following convention: l2, l3 are instructions-
locations of SCMFSA, L1 is an instruction-location of SCM, i is an instruction
of SCMFSA, I is an instruction of SCM, l is an instruction-location of SCMFSA,
f , f1, g are finite sequence locations, A, B are data-locations, and a, b, c, d1,
d3 are integer locations.

522 andrzej trybulec et al.

We now state the proposition

(33) If l2 = L1, then Next(l2) = Next(L1).

4. The Instruction Structure

Let I be an instruction of SCMFSA. The functor InsCode(I) yielding a
natural number is defined as follows:

(Def. 10) InsCode(I) = I1.

The following propositions are true:

(34) For every instruction I of SCMFSA such that InsCode(I) ≤ 8 holds I
is an instruction of SCM.

(35) For every instruction I of SCMFSA holds InsCode(I) ≤ 12.

(36) For every instruction i of SCMFSA such that InsCode(i) = 0 holds
i = haltSCMFSA

.

(37) For every instruction i of SCMFSA and for every instruction I of SCM

such that i = I holds InsCode(i) = InsCode(I).

(38) Every instruction of SCM is an instruction of SCMFSA.

Let us consider a, b. The functor a:=b yields an instruction of SCMFSA and
is defined as follows:

(Def. 11) There exist A, B such that a = A and b = B and a:=b = A:=B.

The functor AddTo(a, b) yields an instruction of SCMFSA and is defined by:

(Def. 12) There exist A, B such that a = A and b = B and AddTo(a, b) =
AddTo(A,B).

The functor SubFrom(a, b) yields an instruction of SCMFSA and is defined as
follows:

(Def. 13) There exist A, B such that a = A and b = B and SubFrom(a, b) =
SubFrom(A,B).

The functor MultBy(a, b) yields an instruction of SCMFSA and is defined as
follows:

(Def. 14) There exist A, B such that a = A and b = B and MultBy(a, b) =
MultBy(A,B).

The functor Divide(a, b) yielding an instruction of SCMFSA is defined as follows:

(Def. 15) There exist A, B such that a = A and b = B and Divide(a, b) =
Divide(A,B).

We now state the proposition

(39) The instruction locations of SCM = the instruction locations of
SCMFSA.

Let us consider l2. The functor goto l2 yields an instruction of SCMFSA and
is defined as follows:

(Def. 16) There exists L1 such that l2 = L1 and goto l2 = goto L1.

the SCMFSA computer 523

Let us consider a. The functor if a = 0 goto l2 yields an instruction of
SCMFSA and is defined by:

(Def. 17) There exist A, L1 such that a = A and l2 = L1 and if a = 0 goto l2 =
if A = 0 goto L1.

The functor if a > 0 goto l2 yields an instruction of SCMFSA and is defined
as follows:

(Def. 18) There exist A, L1 such that a = A and l2 = L1 and if a > 0 goto l2 =
if A > 0 goto L1.

Let c, i be integer locations and let a be a finite sequence location. The
functor c:=ai yielding an instruction of SCMFSA is defined by:

(Def. 19) c:=ai = 〈〈9, 〈c, a, i〉〉〉.

The functor ai:=c yielding an instruction of SCMFSA is defined by:

(Def. 20) ai:=c = 〈〈10, 〈c, a, i〉〉〉.

Let i be an integer location and let a be a finite sequence location. The
functor i:=lena yielding an instruction of SCMFSA is defined as follows:

(Def. 21) i:=lena = 〈〈11, 〈i, a〉〉〉.

The functor a:=〈0, . . . , 0
︸ ︷︷ ︸

i

〉 yields an instruction of SCMFSA and is defined as

follows:

(Def. 22) a:=〈0, . . . , 0
︸ ︷︷ ︸

i

〉 = 〈〈12, 〈i, a〉〉〉.

We now state a number of propositions:

(40) haltSCM = haltSCMFSA
.

(41) InsCode(haltSCMFSA
) = 0.

(42) InsCode(a:=b) = 1.

(43) InsCode(AddTo(a, b)) = 2.

(44) InsCode(SubFrom(a, b)) = 3.

(45) InsCode(MultBy(a, b)) = 4.

(46) InsCode(Divide(a, b)) = 5.

(47) InsCode(goto l3) = 6.

(48) InsCode(if a = 0 goto l3) = 7.

(49) InsCode(if a > 0 goto l3) = 8.

(50) InsCode(c:=fa) = 9.

(51) InsCode(fa:=c) = 10.

(52) InsCode(a:=lenf1) = 11.

(53) InsCode(f1:=〈0, . . . , 0
︸ ︷︷ ︸

a

〉) = 12.

(54) For every instruction i2 of SCMFSA such that InsCode(i2) = 1 there
exist d1, d3 such that i2 = d1:=d3.

524 andrzej trybulec et al.

(55) For every instruction i2 of SCMFSA such that InsCode(i2) = 2 there
exist d1, d3 such that i2 = AddTo(d1, d3).

(56) For every instruction i2 of SCMFSA such that InsCode(i2) = 3 there
exist d1, d3 such that i2 = SubFrom(d1, d3).

(57) For every instruction i2 of SCMFSA such that InsCode(i2) = 4 there
exist d1, d3 such that i2 = MultBy(d1, d3).

(58) For every instruction i2 of SCMFSA such that InsCode(i2) = 5 there
exist d1, d3 such that i2 = Divide(d1, d3).

(59) For every instruction i2 of SCMFSA such that InsCode(i2) = 6 there
exists l3 such that i2 = goto l3.

(60) For every instruction i2 of SCMFSA such that InsCode(i2) = 7 there
exist l3, d1 such that i2 = if d1 = 0 goto l3.

(61) For every instruction i2 of SCMFSA such that InsCode(i2) = 8 there
exist l3, d1 such that i2 = if d1 > 0 goto l3.

(62) For every instruction i2 of SCMFSA such that InsCode(i2) = 9 there
exist a, b, f1 such that i2 = b:=f1a.

(63) For every instruction i2 of SCMFSA such that InsCode(i2) = 10 there
exist a, b, f1 such that i2 = f1a:=b.

(64) For every instruction i2 of SCMFSA such that InsCode(i2) = 11 there
exist a, f1 such that i2 = a:=lenf1.

(65) For every instruction i2 of SCMFSA such that InsCode(i2) = 12 there
exist a, f1 such that i2 = f1:=〈0, . . . , 0

︸ ︷︷ ︸

a

〉.

5. Relationship to SCM

In the sequel S denotes a state of SCM and s, s1 denote states of SCMFSA.
We now state a number of propositions:

(66) For every state s of SCMFSA and for every integer location d holds
d ∈ dom s.

(67) f ∈ dom s.

(68) f /∈ dom S.

(69) For every state s of SCMFSA holds Int-Locations ⊆ dom s.

(70) For every state s of SCMFSA holds FinSeq-Locations ⊆ dom s.

(71) For every state s of SCMFSA holds dom(s
�

Int-Locations) =
Int-Locations .

(72) For every state s of SCMFSA holds dom(s
�

FinSeq-Locations) =
FinSeq-Locations .

(73) For every state s of SCMFSA and for every instruction i of SCM holds
s

�
� +·(Instr-LocSCM 7−→ i) is a state of SCM.

the SCMFSA computer 525

(74) For every state s of SCMFSA and for every state s′ of SCM holds
s+·s′+·s

�
Instr-LocSCMFSA

is a state of SCMFSA.

(75) Let i be an instruction of SCM, and let i3 be an instruction of
SCMFSA, and let s be a state of SCM, and let s2 be a state of
SCMFSA. If i = i3 and s = s2

�
� +·(Instr-LocSCM 7−→ i), then

Exec(i3, s2) = s2+·Exec(i, s)+·s2
�
Instr-LocSCMFSA

.

Let s be a state of SCMFSA and let d be an integer location. Then s(d) is
an integer.

Let s be a state of SCMFSA and let d be a finite sequence location. Then
s(d) is a finite sequence of elements of � .

Next we state several propositions:

(76) If S = s
�

� +·(Instr-LocSCM 7−→ I), then s = s+·S+·s
�
Instr-LocSCMFSA

.

(77) For every element I of InstrSCMFSA
such that I = i and for

every SCMFSA-state S such that S = s holds Exec(i, s) =
Exec-ResSCMFSA

(I, S).

(78) If s1 = s+·S+·s
�
Instr-LocSCMFSA

, then s1(ICSCMFSA
) = S(ICSCM).

(79) If s1 = s+·S+·s
�
Instr-LocSCMFSA

and A = a, then S(A) = s1(a).

(80) If S = s
�

� +·(Instr-LocSCM 7−→ I) and A = a, then S(A) = s(a).

Let us note that SCMFSA is halting realistic von Neumann data-oriented
definite and steady-programmed.

The following propositions are true:

(81) For every integer location d2 holds d2 6= ICSCMFSA
.

(82) For every finite sequence location d2 holds d2 6= ICSCMFSA
.

(83) For every integer location i1 and for every finite sequence location d2

holds i1 6= d2.

(84) For every instruction-location i1 of SCMFSA and for every integer lo-
cation d2 holds i1 6= d2.

(85) For every instruction-location i1 of SCMFSA and for every finite se-
quence location d2 holds i1 6= d2.

(86) Let s1, s3 be states of SCMFSA. Suppose that
(i) IC(s1) = IC(s3),
(ii) for every integer location a holds s1(a) = s3(a),
(iii) for every finite sequence location f holds s1(f) = s3(f), and
(iv) for every instruction-location i of SCMFSA holds s1(i) = s3(i).

Then s1 = s3.

(87) If S = s, then ICs = ICS .

(88) If S = s
�

� +·(Instr-LocSCM 7−→ I), then ICs = ICS.

6. Users Guide

One can prove the following propositions:

526 andrzej trybulec et al.

(89) (Exec(a:=b, s))(ICSCMFSA
) = Next(ICs) and (Exec(a:=b, s))(a) =

s(b) and for every c such that c 6= a holds (Exec(a:=b, s))(c) = s(c)
and for every f holds (Exec(a:=b, s))(f) = s(f).

(90) (Exec(AddTo(a, b), s))(ICSCMFSA
) = Next(ICs) and (Exec(AddTo(a, b),

s))(a) = s(a) + s(b) and for every c such that c 6= a
holds (Exec(AddTo(a, b), s))(c) = s(c) and for every f holds
(Exec(AddTo(a, b), s))(f) = s(f).

(91) (Exec(SubFrom(a, b), s))(ICSCMFSA
) = Next(ICs) and

(Exec(SubFrom(a, b), s))(a) = s(a) − s(b) and for every c such that
c 6= a holds (Exec(SubFrom(a, b), s))(c) = s(c) and for every f holds
(Exec(SubFrom(a, b), s))(f) = s(f).

(92) (Exec(MultBy(a, b), s))(ICSCMFSA
) = Next(ICs) and (Exec(MultBy(a,

b), s))(a) = s(a) · s(b) and for every c such that c 6= a
holds (Exec(MultBy(a, b), s))(c) = s(c) and for every f holds
(Exec(MultBy(a, b), s))(f) = s(f).

(93) Suppose a 6= b. Then
(i) (Exec(Divide(a, b), s))(ICSCMFSA

) = Next(ICs),
(ii) (Exec(Divide(a, b), s))(a) = s(a) ÷ s(b),
(iii) (Exec(Divide(a, b), s))(b) = s(a) mod s(b),
(iv) for every c such that c 6= a and c 6= b holds (Exec(Divide(a, b), s))(c) =

s(c), and
(v) for every f holds (Exec(Divide(a, b), s))(f) = s(f).

(94) (Exec(Divide(a, a), s))(ICSCMFSA
) = Next(ICs) and (Exec(Divide(a,

a), s))(a) = s(a) mod s(a) and for every c such that c 6=
a holds (Exec(Divide(a, a), s))(c) = s(c) and for every f holds
(Exec(Divide(a, a), s))(f) = s(f).

(95) (Exec(goto l, s))(ICSCMFSA
) = l and for every c holds (Exec(goto l, s))

(c) = s(c) and for every f holds (Exec(goto l, s))(f) = s(f).

(96) (i) If s(a) = 0, then (Exec(if a = 0 goto l, s))(ICSCMFSA
) = l,

(ii) if s(a) 6= 0, then (Exec(if a = 0 goto l, s))(ICSCMFSA
) = Next(ICs),

(iii) for every c holds (Exec(if a = 0 goto l, s))(c) = s(c), and
(iv) for every f holds (Exec(if a = 0 goto l, s))(f) = s(f).

(97) (i) If s(a) > 0, then (Exec(if a > 0 goto l, s))(ICSCMFSA
) = l,

(ii) if s(a) ≤ 0, then (Exec(if a > 0 goto l, s))(ICSCMFSA
) = Next(ICs),

(iii) for every c holds (Exec(if a > 0 goto l, s))(c) = s(c), and
(iv) for every f holds (Exec(if a > 0 goto l, s))(f) = s(f).

(98) (i) (Exec(c:=ga, s))(ICSCMFSA
) = Next(ICs),

(ii) there exists k such that k = |s(a)| and (Exec(c:=ga, s))(c) = πks(g),
(iii) for every b such that b 6= c holds (Exec(c:=ga, s))(b) = s(b), and
(iv) for every f holds (Exec(c:=ga, s))(f) = s(f).

(99) (i) (Exec(ga:=c, s))(ICSCMFSA
) = Next(ICs),

(ii) there exists k such that k = |s(a)| and (Exec(ga:=c, s))(g) = s(g) +·
(k, s(c)),

the SCMFSA computer 527

(iii) for every b holds (Exec(ga:=c, s))(b) = s(b), and
(iv) for every f such that f 6= g holds (Exec(ga:=c, s))(f) = s(f).

(100) (Exec(c:=leng, s))(ICSCMFSA
) = Next(ICs) and (Exec(c:=leng, s))(c) =

len s(g) and for every b such that b 6= c holds (Exec(c:=leng, s))(b) = s(b)
and for every f holds (Exec(c:=leng, s))(f) = s(f).

(101) (i) (Exec(g:=〈0, . . . , 0
︸ ︷︷ ︸

c

〉, s))(ICSCMFSA
) = Next(ICs),

(ii) there exists k such that k = |s(c)| and (Exec(g:=〈0, . . . , 0
︸ ︷︷ ︸

c

〉, s))(g) =

k 7→ 0,
(iii) for every b holds (Exec(g:=〈0, . . . , 0

︸ ︷︷ ︸

c

〉, s))(b) = s(b), and

(iv) for every f such that f 6= g holds (Exec(g:=〈0, . . . , 0
︸ ︷︷ ︸

c

〉, s))(f) = s(f).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[5] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[6] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[10] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[14] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[15] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-

ematics, 2(5):623–627, 1991.
[16] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[18] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[19] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.

528 andrzej trybulec et al.

[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[21] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[22] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[23] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of SCM.
Formalized Mathematics, 5(4):507–512, 1996.

[24] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[26] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received February 7, 1996

