The \mathbf{SCM}_{FSA} Computer

Andrzej Trybulec Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano Piotr Rudnicki University of Alberta Edmonton

 ${\rm MML} \ {\rm Identifier:} \ {\tt SCMFSA_2}.$

The articles [20], [26], [11], [1], [24], [27], [21], [2], [14], [3], [15], [7], [17], [8], [19], [18], [10], [5], [9], [6], [25], [4], [12], [13], [22], [16], and [23] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

- (1) Let N be a non empty set with non empty elements and let S be a von Neumann definite realistic AMI over N. Then $\mathbf{IC}_S \notin$ the instruction locations of S.
- (2) Let N be a non empty set with non empty elements, and let S be a definite AMI over N, and let s be a state of S, and let i be an instruction-location of S. Then s(i) is an instruction of S.
- (3) Let N be a non empty set with non empty elements, and let S be an AMI over N, and let s be a state of S. Then the instruction locations of $S \subseteq \text{dom } s$.
- (4) Let N be a non empty set with non empty elements, and let S be a von Neumann AMI over N, and let s be a state of S. Then $\mathbf{IC}_s \in \operatorname{dom} s$.
- (5) Let N be a non empty set with non empty elements, and let S be an AMI over N, and let s be a state of S, and let l be an instruction-location of S. Then $l \in \text{dom } s$.

C 1996 Warsaw University - Białystok ISSN 1426-2630

2. The SCM_{FSA} Computer

The strict AMI **SCM**_{FSA} over $\{\mathbb{Z}, \mathbb{Z}^*\}$ is defined by:

(Def. 1) $\mathbf{SCM}_{\text{FSA}} = \langle \mathbb{Z}, 0 \in \mathbb{Z} \rangle$, Instr-Loc_{SCM_{FSA}, $\mathbb{Z}_{13}, 0 \in \mathbb{Z}_{13}$, Instr_{SCM_{FSA}, OK_{SCM_{FSA}, Exec_{SCM_{FSA}} \rangle .}}}

We now state two propositions:

- (6) (i) The instruction locations of $\mathbf{SCM}_{\text{FSA}} \neq \mathbb{Z}$,
- (ii) the instructions of $\mathbf{SCM}_{\text{FSA}} \neq \mathbb{Z}$,
- (iii) the instruction locations of $\mathbf{SCM}_{\text{FSA}} \neq \text{the instructions of } \mathbf{SCM}_{\text{FSA}}$,
- (iv) the instruction locations of $\mathbf{SCM}_{FSA} \neq \mathbb{Z}^*$, and
- (v) the instructions of $\mathbf{SCM}_{FSA} \neq \mathbb{Z}^*$.
- (7) $\mathbf{IC}_{\mathbf{SCM}_{\mathrm{FSA}}} = 0.$

3. The Memory Structure

In the sequel k, k_1, k_2 denote natural numbers.

The subset Int-Locations of the objects of SCM_{FSA} is defined by:

(Def. 2) Int-Locations = $Data-Loc_{SCM_{FSA}}$.

The subset FinSeq-Locations of the objects of SCM_{FSA} is defined by:

(Def. 3) FinSeq-Locations = $Data^*-Loc_{SCM_{FSA}}$.

The following proposition is true

(8) The objects of $\mathbf{SCM}_{FSA} = \text{Int-Locations} \cup \text{FinSeq-Locations} \cup \{\mathbf{IC}_{\mathbf{SCM}_{FSA}}\} \cup \text{the instruction locations of } \mathbf{SCM}_{FSA}.$

An object of \mathbf{SCM}_{FSA} is called an integer location if:

(Def. 4) It \in Data-Loc_{SCMFSA}.

An object of \mathbf{SCM}_{FSA} is said to be a finite sequence location if:

(Def. 5) It \in Data*-Loc_{SCM_{FSA}.}

In the sequel d_1 denotes an integer location, f_1 denotes a finite sequence location, and x is arbitrary.

We now state several propositions:

- (9) $d_1 \in \text{Int-Locations}.$
- (10) $f_1 \in \text{FinSeq-Locations}$.
- (11) If $x \in$ Int-Locations, then x is an integer location.
- (12) If $x \in \text{FinSeq-Locations}$, then x is a finite sequence location.
- (13) Int-Locations misses the instruction locations of $\mathbf{SCM}_{\text{FSA}}$.
- (14) FinSeq-Locations misses the instruction locations of \mathbf{SCM}_{FSA} .
- (15) Int-Locations misses FinSeq-Locations.

Let us consider k. The functor intloc(k) yields an integer location and is defined as follows:

(Def. 6) $\operatorname{intloc}(k) = \mathbf{d}_k.$

The functor insloc(k) yields an instruction-location of \mathbf{SCM}_{FSA} and is defined by:

(Def. 7) $\operatorname{insloc}(k) = \mathbf{i}_k$.

The functor fsloc(k) yields a finite sequence location and is defined as follows:

(Def. 8) fsloc(k) = -(k+1).

One can prove the following propositions:

- (16) For all k_1 , k_2 such that $k_1 \neq k_2$ holds $intloc(k_1) \neq intloc(k_2)$.
- (17) For all k_1, k_2 such that $k_1 \neq k_2$ holds $fsloc(k_1) \neq fsloc(k_2)$.
- (18) For all k_1, k_2 such that $k_1 \neq k_2$ holds $\operatorname{insloc}(k_1) \neq \operatorname{insloc}(k_2)$.
- (19) For every integer location d_2 there exists a natural number *i* such that $d_2 = \operatorname{intloc}(i)$.
- (20) For every finite sequence location f_2 there exists a natural number i such that $f_2 = \text{fsloc}(i)$.
- (21) For every instruction-location i_1 of **SCM**_{FSA} there exists a natural number i such that $i_1 = \text{insloc}(i)$.
- (22) Int-Locations is infinite.
- (23) FinSeq-Locations is infinite.
- (24) The instruction locations of $\mathbf{SCM}_{\text{FSA}}$ is infinite.
- (25) Every integer location is a data-location.
- (26) For every integer location l holds $ObjectKind(l) = \mathbb{Z}$.
- (27) For every finite sequence location l holds $ObjectKind(l) = \mathbb{Z}^*$.
- (28) For arbitrary x such that $x \in \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}$ holds x is an integer location.
- (29) For arbitrary x such that $x \in \text{Data}^*-\text{Loc}_{\text{SCM}_{\text{FSA}}}$ holds x is a finite sequence location.
- (30) For arbitrary x such that $x \in \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}$ holds x is an instructionlocation of $\mathbf{SCM}_{\text{FSA}}$.

Let l_1 be an instruction-location of **SCM**_{FSA}. The functor Next(l_1) yields an instruction-location of **SCM**_{FSA} and is defined by:

(Def. 9) There exists an element m_1 of Instr-Loc_{SCMFSA} such that $m_1 = l_1$ and Next $(l_1) = Next(m_1)$.

Next we state two propositions:

- (31) For every instruction-location l_1 of $\mathbf{SCM}_{\text{FSA}}$ and for every element m_1 of Instr-Loc_{SCM_{FSA} such that $m_1 = l_1$ holds $\text{Next}(m_1) = \text{Next}(l_1)$.}
- (32) $\operatorname{Next}(\operatorname{insloc}(k)) = \operatorname{insloc}(k+1).$

For simplicity we adopt the following convention: l_2 , l_3 are instructionslocations of $\mathbf{SCM}_{\text{FSA}}$, L_1 is an instruction-location of \mathbf{SCM} , i is an instruction of $\mathbf{SCM}_{\text{FSA}}$, I is an instruction of \mathbf{SCM} , l is an instruction-location of $\mathbf{SCM}_{\text{FSA}}$, f, f_1 , g are finite sequence locations, A, B are data-locations, and a, b, c, d_1 , d_3 are integer locations. We now state the proposition

(33) If $l_2 = L_1$, then $Next(l_2) = Next(L_1)$.

4. The Instruction Structure

Let I be an instruction of **SCM**_{FSA}. The functor InsCode(I) yielding a natural number is defined as follows:

(Def. 10) $\operatorname{InsCode}(I) = I_1.$

The following propositions are true:

- (34) For every instruction I of $\mathbf{SCM}_{\text{FSA}}$ such that $\text{InsCode}(I) \leq 8$ holds I is an instruction of \mathbf{SCM} .
- (35) For every instruction I of $\mathbf{SCM}_{\text{FSA}}$ holds $\text{InsCode}(I) \leq 12$.
- (36) For every instruction i of $\mathbf{SCM}_{\text{FSA}}$ such that InsCode(i) = 0 holds $i = \text{halt}_{\mathbf{SCM}_{\text{FSA}}}$.
- (37) For every instruction i of \mathbf{SCM}_{FSA} and for every instruction I of \mathbf{SCM} such that i = I holds $\operatorname{InsCode}(i) = \operatorname{InsCode}(I)$.
- (38) Every instruction of SCM is an instruction of SCM_{FSA} .

Let us consider a, b. The functor a:=b yields an instruction of \mathbf{SCM}_{FSA} and is defined as follows:

(Def. 11) There exist A, B such that a = A and b = B and a:=b = A:=B.

The functor AddTo(a, b) yields an instruction of SCM_{FSA} and is defined by:

(Def. 12) There exist A, B such that a = A and b = B and AddTo(a, b) = AddTo(A, B).

The functor SubFrom(a, b) yields an instruction of **SCM**_{FSA} and is defined as follows:

(Def. 13) There exist A, B such that a = A and b = B and SubFrom(a, b) =SubFrom(A, B).

The functor MultBy(a, b) yields an instruction of **SCM**_{FSA} and is defined as follows:

(Def. 14) There exist A, B such that a = A and b = B and MultBy(a, b) = MultBy(A, B).

The functor Divide(a, b) yielding an instruction of SCM_{FSA} is defined as follows:

(Def. 15) There exist A, B such that a = A and b = B and Divide(a, b) = Divide(A, B).

We now state the proposition

(39) The instruction locations of \mathbf{SCM} = the instruction locations of $\mathbf{SCM}_{\text{FSA}}$.

Let us consider l_2 . The functor goto l_2 yields an instruction of **SCM**_{FSA} and is defined as follows:

(Def. 16) There exists L_1 such that $l_2 = L_1$ and go to $l_2 = \text{go to } L_1$.

522

Let us consider a. The functor if a = 0 goto l_2 yields an instruction of **SCM**_{FSA} and is defined by:

(Def. 17) There exist A, L_1 such that a = A and $l_2 = L_1$ and **if** a = 0 **goto** $l_2 =$ **if** A = 0 **goto** L_1 .

The functor if a > 0 goto l_2 yields an instruction of **SCM**_{FSA} and is defined as follows:

(Def. 18) There exist A, L_1 such that a = A and $l_2 = L_1$ and if a > 0 goto $l_2 =$ if A > 0 goto L_1 .

Let c, i be integer locations and let a be a finite sequence location. The functor $c:=a_i$ yielding an instruction of \mathbf{SCM}_{FSA} is defined by:

(Def. 19) $c:=a_i = \langle 9, \langle c, a, i \rangle \rangle.$

The functor $a_i := c$ yielding an instruction of **SCM**_{FSA} is defined by:

(Def. 20)
$$a_i := c = \langle 10, \langle c, a, i \rangle \rangle.$$

Let *i* be an integer location and let *a* be a finite sequence location. The functor *i*:=len*a* yielding an instruction of \mathbf{SCM}_{FSA} is defined as follows:

(Def. 21)
$$i:=\text{len}a = \langle 11, \langle i, a \rangle \rangle.$$

The functor $a:=\langle \underbrace{0,\ldots,0}_{i} \rangle$ yields an instruction of **SCM**_{FSA} and is defined as

follows:

(Def. 22)
$$a:=\langle \underbrace{0,\ldots,0}_{\cdot}\rangle = \langle 12, \langle i,a \rangle \rangle$$

We now state a number of propositions:

- (40) $halt_{SCM} = halt_{SCM_{FSA}}$.
- (41) InsCode(halt_{SCM_{FSA}) = 0.}
- (42) $\operatorname{InsCode}(a:=b) = 1.$
- (43) $\operatorname{InsCode}(\operatorname{AddTo}(a, b)) = 2.$
- (44) $\operatorname{InsCode}(\operatorname{SubFrom}(a, b)) = 3.$
- (45) $\operatorname{InsCode}(\operatorname{MultBy}(a, b)) = 4.$
- (46) $\operatorname{InsCode}(\operatorname{Divide}(a, b)) = 5.$
- (47) InsCode(goto l_3) = 6.
- (48) InsCode(if a = 0 goto l_3) = 7.
- (49) InsCode(if a > 0 goto $l_3) = 8$.
- (50) InsCode($c := f_a$) = 9.
- (51) InsCode($f_a := c$) = 10.
- (52) InsCode($a := \text{len} f_1$) = 11.
- (53) InsCode $(f_1:=\langle \underbrace{0,\ldots,0}_{a}\rangle)=12.$
- (54) For every instruction i_2 of **SCM**_{FSA} such that $\text{InsCode}(i_2) = 1$ there exist d_1 , d_3 such that $i_2 = d_1 := d_3$.

- (55) For every instruction i_2 of $\mathbf{SCM}_{\text{FSA}}$ such that $\text{InsCode}(i_2) = 2$ there exist d_1 , d_3 such that $i_2 = \text{AddTo}(d_1, d_3)$.
- (56) For every instruction i_2 of **SCM**_{FSA} such that InsCode $(i_2) = 3$ there exist d_1 , d_3 such that $i_2 =$ SubFrom (d_1, d_3) .
- (57) For every instruction i_2 of $\mathbf{SCM}_{\text{FSA}}$ such that $\text{InsCode}(i_2) = 4$ there exist d_1, d_3 such that $i_2 = \text{MultBy}(d_1, d_3)$.
- (58) For every instruction i_2 of $\mathbf{SCM}_{\text{FSA}}$ such that $\text{InsCode}(i_2) = 5$ there exist d_1 , d_3 such that $i_2 = \text{Divide}(d_1, d_3)$.
- (59) For every instruction i_2 of **SCM**_{FSA} such that $\text{InsCode}(i_2) = 6$ there exists l_3 such that $i_2 = \text{goto } l_3$.
- (60) For every instruction i_2 of **SCM**_{FSA} such that InsCode $(i_2) = 7$ there exist l_3 , d_1 such that $i_2 = \mathbf{if} d_1 = 0$ goto l_3 .
- (61) For every instruction i_2 of $\mathbf{SCM}_{\text{FSA}}$ such that $\text{InsCode}(i_2) = 8$ there exist l_3 , d_1 such that $i_2 = \mathbf{if} \ d_1 > 0$ goto l_3 .
- (62) For every instruction i_2 of \mathbf{SCM}_{FSA} such that $\operatorname{InsCode}(i_2) = 9$ there exist a, b, f_1 such that $i_2 = b := f_{1a}$.
- (63) For every instruction i_2 of $\mathbf{SCM}_{\text{FSA}}$ such that $\text{InsCode}(i_2) = 10$ there exist a, b, f_1 such that $i_2 = f_{1a} := b$.
- (64) For every instruction i_2 of $\mathbf{SCM}_{\text{FSA}}$ such that $\text{InsCode}(i_2) = 11$ there exist a, f_1 such that $i_2 = a := \text{len} f_1$.
- (65) For every instruction i_2 of **SCM**_{FSA} such that $\text{InsCode}(i_2) = 12$ there exist a, f_1 such that $i_2 = f_1 := (0, \dots, 0)$.

5. Relationship to **SCM**

In the sequel S denotes a state of **SCM** and s, s_1 denote states of **SCM**_{FSA}. We now state a number of propositions:

- (66) For every state s of $\mathbf{SCM}_{\text{FSA}}$ and for every integer location d holds $d \in \text{dom } s$.
- (67) $f \in \operatorname{dom} s.$
- (68) $f \notin \operatorname{dom} S$.
- (69) For every state s of $\mathbf{SCM}_{\text{FSA}}$ holds $\text{Int-Locations} \subseteq \text{dom } s$.
- (70) For every state s of $\mathbf{SCM}_{\text{FSA}}$ holds FinSeq-Locations $\subseteq \text{dom } s$.
- (71) For every state s of $\mathbf{SCM}_{\text{FSA}}$ holds $\operatorname{dom}(s \upharpoonright \text{Int-Locations}) =$ Int-Locations.
- (72) For every state s of $\mathbf{SCM}_{\text{FSA}}$ holds $\operatorname{dom}(s \upharpoonright \operatorname{FinSeq-Locations}) = \operatorname{FinSeq-Locations}$.
- (73) For every state s of $\mathbf{SCM}_{\text{FSA}}$ and for every instruction i of \mathbf{SCM} holds $s \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{\text{SCM}} \longmapsto i)$ is a state of \mathbf{SCM} .

- (74) For every state s of $\mathbf{SCM}_{\text{FSA}}$ and for every state s' of \mathbf{SCM} holds $s + \cdot s' + \cdot s \upharpoonright \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}$ is a state of $\mathbf{SCM}_{\text{FSA}}$.
- (75) Let *i* be an instruction of **SCM**, and let i_3 be an instruction of **SCM**_{FSA}, and let *s* be a state of **SCM**, and let s_2 be a state of **SCM**_{FSA}. If $i = i_3$ and $s = s_2 \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{\text{SCM}} \longmapsto i)$, then $\text{Exec}(i_3, s_2) = s_2 + \cdot \text{Exec}(i, s) + \cdot s_2 \upharpoonright \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}$.

Let s be a state of $\mathbf{SCM}_{\text{FSA}}$ and let d be an integer location. Then s(d) is an integer.

Let s be a state of $\mathbf{SCM}_{\text{FSA}}$ and let d be a finite sequence location. Then s(d) is a finite sequence of elements of \mathbb{Z} .

Next we state several propositions:

(76) If $S = s \upharpoonright \mathbb{N} + (\text{Instr-Loc}_{\text{SCM}} \longmapsto I)$, then $s = s + S + s \upharpoonright \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}$.

- (77) For every element I of $\text{Instr}_{\text{SCM}_{\text{FSA}}}$ such that I = i and for every SCM_{FSA} -state S such that S = s holds Exec(i, s) = $\text{Exec-Res}_{\text{SCM}_{\text{FSA}}}(I, S).$
- (78) If $s_1 = s + \cdot S + \cdot s \upharpoonright \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}$, then $s_1(\mathbf{IC}_{\mathbf{SCM}_{\text{FSA}}}) = S(\mathbf{IC}_{\mathbf{SCM}})$.
- (79) If $s_1 = s + \cdot S + \cdot s \upharpoonright \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}$ and A = a, then $S(A) = s_1(a)$.
- (80) If $S = s \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{\text{SCM}} \longmapsto I)$ and A = a, then S(A) = s(a).

Let us note that $\mathbf{SCM}_{\text{FSA}}$ is halting realistic von Neumann data-oriented definite and steady-programmed.

The following propositions are true:

- (81) For every integer location d_2 holds $d_2 \neq \mathbf{IC}_{\mathbf{SCM}_{\text{FSA}}}$.
- (82) For every finite sequence location d_2 holds $d_2 \neq \mathbf{IC}_{\mathbf{SCM}_{\text{FSA}}}$.
- (83) For every integer location i_1 and for every finite sequence location d_2 holds $i_1 \neq d_2$.
- (84) For every instruction-location i_1 of **SCM**_{FSA} and for every integer location d_2 holds $i_1 \neq d_2$.
- (85) For every instruction-location i_1 of **SCM**_{FSA} and for every finite sequence location d_2 holds $i_1 \neq d_2$.
- (86) Let s_1, s_3 be states of **SCM**_{FSA}. Suppose that

(i)
$$\mathbf{IC}_{(s_1)} = \mathbf{IC}_{(s_3)},$$

- (ii) for every integer location a holds $s_1(a) = s_3(a)$,
- (iii) for every finite sequence location f holds $s_1(f) = s_3(f)$, and
- (iv) for every instruction-location *i* of **SCM**_{FSA} holds $s_1(i) = s_3(i)$. Then $s_1 = s_3$.
- (87) If S = s, then $\mathbf{IC}_s = \mathbf{IC}_S$.
- (88) If $S = s \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{\text{SCM}} \longmapsto I)$, then $\mathbf{IC}_s = \mathbf{IC}_S$.

6. Users Guide

One can prove the following propositions:

- (89) $(\operatorname{Exec}(a:=b,s))(\operatorname{IC}_{\operatorname{SCM}_{\mathrm{FSA}}}) = \operatorname{Next}(\operatorname{IC}_s)$ and $(\operatorname{Exec}(a:=b,s))(a) = s(b)$ and for every c such that $c \neq a$ holds $(\operatorname{Exec}(a:=b,s))(c) = s(c)$ and for every f holds $(\operatorname{Exec}(a:=b,s))(f) = s(f)$.
- (90) $(\operatorname{Exec}(\operatorname{AddTo}(a, b), s))(\operatorname{IC}_{\operatorname{SCM}_{\mathrm{FSA}}}) = \operatorname{Next}(\operatorname{IC}_s) \text{ and } (\operatorname{Exec}(\operatorname{AddTo}(a, b), s))(a) = s(a) + s(b) \text{ and for every } c \text{ such that } c \neq a \text{ holds } (\operatorname{Exec}(\operatorname{AddTo}(a, b), s))(c) = s(c) \text{ and for every } f \text{ holds } (\operatorname{Exec}(\operatorname{AddTo}(a, b), s))(f) = s(f).$
- (91) $(\text{Exec}(\text{SubFrom}(a, b), s))(\mathbf{IC}_{\mathbf{SCM}_{\text{FSA}}}) = \text{Next}(\mathbf{IC}_s)$ and (Exec(SubFrom(a, b), s))(a) = s(a) - s(b) and for every c such that $c \neq a$ holds (Exec(SubFrom(a, b), s))(c) = s(c) and for every f holds (Exec(SubFrom(a, b), s))(f) = s(f).
- (92) (Exec(MultBy(a, b), s))(**IC**_{SCM_{FSA}) = Next(**IC**_s) and (Exec(MultBy(a, b), s))(a) = $s(a) \cdot s(b)$ and for every c such that $c \neq a$ holds (Exec(MultBy(a, b), s))(c) = s(c) and for every f holds (Exec(MultBy(a, b), s))(f) = s(f).}
- (93) Suppose $a \neq b$. Then
 - (i) $(\text{Exec}(\text{Divide}(a, b), s))(\mathbf{IC}_{\mathbf{SCM}_{\text{FSA}}}) = \text{Next}(\mathbf{IC}_s),$
 - (ii) $(\text{Exec}(\text{Divide}(a,b),s))(a) = s(a) \div s(b),$
 - (iii) $(\operatorname{Exec}(\operatorname{Divide}(a, b), s))(b) = s(a) \mod s(b),$
 - (iv) for every c such that $c \neq a$ and $c \neq b$ holds (Exec(Divide(a, b), s))(c) = s(c), and
 - (v) for every f holds (Exec(Divide(a, b), s))(f) = s(f).
- (94) $(\text{Exec}(\text{Divide}(a, a), s))(\mathbf{IC}_{\mathbf{SCM}_{\text{FSA}}}) = \text{Next}(\mathbf{IC}_s)$ and $(\text{Exec}(\text{Divide}(a, a), s))(a) = s(a) \mod s(a)$ and for every c such that $c \neq a$ holds (Exec(Divide(a, a), s))(c) = s(c) and for every f holds (Exec(Divide(a, a), s))(f) = s(f).
- (95) $(\text{Exec}(\text{goto } l, s))(\mathbf{IC}_{\mathbf{SCM}_{FSA}}) = l \text{ and for every } c \text{ holds } (\text{Exec}(\text{goto } l, s))$ (c) = s(c) and for every f holds (Exec(goto l, s))(f) = s(f).
- (96) (i) If s(a) = 0, then $(\text{Exec}(\text{if } a = 0 \text{ goto } l, s))(\text{IC}_{\text{SCM}_{\text{FSA}}}) = l$,
 - (ii) if $s(a) \neq 0$, then $(\text{Exec}(\text{if } a = 0 \text{ goto } l, s))(\text{IC}_{\text{SCM}_{\text{FSA}}}) = \text{Next}(\text{IC}_s)$,
 - (iii) for every c holds (Exec(if a = 0 goto l, s))(c) = s(c), and
- (iv) for every f holds (Exec(if a = 0 goto l, s))(f) = s(f).
- (97) (i) If s(a) > 0, then $(\text{Exec}(\text{if } a > 0 \text{ goto } l, s))(\text{IC}_{\mathbf{SCM}_{\text{FSA}}}) = l$,
 - (ii) if $s(a) \leq 0$, then $(\text{Exec}(\text{if } a > 0 \text{ goto } l, s))(\text{IC}_{\text{SCM}_{\text{FSA}}}) = \text{Next}(\text{IC}_s)$,
- (iii) for every c holds (Exec(if a > 0 goto l, s))(c) = s(c), and
- (iv) for every f holds (Exec(if a > 0 goto l, s))(f) = s(f).
- (98) (i) $(\operatorname{Exec}(c:=g_a, s))(\mathbf{IC}_{\mathbf{SCM}_{\mathrm{FSA}}}) = \operatorname{Next}(\mathbf{IC}_s),$
- (ii) there exists k such that k = |s(a)| and $(\operatorname{Exec}(c:=g_a,s))(c) = \pi_k s(g)$,
- (iii) for every b such that $b \neq c$ holds $(\text{Exec}(c:=g_a, s))(b) = s(b)$, and
- (iv) for every f holds $(\text{Exec}(c:=g_a,s))(f) = s(f)$.
- (99) (i) $(\operatorname{Exec}(g_a := c, s))(\operatorname{\mathbf{IC}}_{\operatorname{\mathbf{SCM}}_{\operatorname{FSA}}}) = \operatorname{Next}(\operatorname{\mathbf{IC}}_s),$
 - (ii) there exists k such that k = |s(a)| and $(\text{Exec}(g_a := c, s))(g) = s(g) + (k, s(c)),$

- (iii) for every b holds $(\text{Exec}(g_a := c, s))(b) = s(b)$, and
- (iv) for every f such that $f \neq g$ holds $(\text{Exec}(g_a := c, s))(f) = s(f)$.
- (100) $(\operatorname{Exec}(c:=\operatorname{len} g, s))(\mathbf{IC}_{\mathbf{SCM}_{\mathrm{FSA}}}) = \operatorname{Next}(\mathbf{IC}_s) \text{ and } (\operatorname{Exec}(c:=\operatorname{len} g, s))(c) = \operatorname{len} s(g) \text{ and for every } b \text{ such that } b \neq c \text{ holds } (\operatorname{Exec}(c:=\operatorname{len} g, s))(b) = s(b) \text{ and for every } f \text{ holds } (\operatorname{Exec}(c:=\operatorname{len} g, s))(f) = s(f).$

(101) (i)
$$(\operatorname{Exec}(g:=\langle \underbrace{0,\ldots,0}{}\rangle,s))(\mathbf{IC}_{\mathbf{SCM}_{\mathrm{FSA}}}) = \operatorname{Next}(\mathbf{IC}_s),$$

(ii) there exists k such that k = |s(c)| and $(\text{Exec}(g:=\langle \underbrace{0,\ldots,0}_{c}\rangle,s))(g) =$

(iii)
$$k \mapsto 0$$
,
(iii) for every b holds $(\text{Exec}(g:=\langle \underbrace{0,\ldots,0}_{c} \rangle, s))(b) = s(b)$, and

(iv) for every
$$f$$
 such that $f \neq g$ holds $(\text{Exec}(g:=\langle \underbrace{0,\ldots,0}_c \rangle, s))(f) = s(f)$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [5] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.
- Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151–160, 1992.
- Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241–250, 1992.
- [14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [15] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Mathematics, 2(5):623–627, 1991.
- [16] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics, 5(1):1–8, 1996.
- [17] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329–334, 1990.
- [18] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
- [19] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.

- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [21] Andrzej Trybulec. Tuples, projections and Cartesian products. *Formalized Mathematics*, 1(1):97–105, 1990.
- [22] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51–56, 1993.
- [23] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of SCM. Formalized Mathematics, 5(4):507–512, 1996.
- [24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [26] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [27] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.

Received February 7, 1996