
FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996

Warsaw University - Bia lystok

Modifying Addresses of Instructions of

SCMFSA

Andrzej Trybulec

Warsaw University

Bia lystok

Yatsuka Nakamura

Shinshu University

Nagano

MML Identifier: SCMFSA 4.

The notation and terminology used in this paper are introduced in the following
papers: [10], [1], [13], [14], [21], [18], [23], [17], [24], [6], [7], [8], [4], [3], [2], [9],
[5], [22], [11], [12], [19], [15], [16], and [20].

1. Preliminaries

Let N be a non empty set with non empty elements and let S be an AMI
over N . One can check that every finite partial state of S is finite.

Let N be a non empty set with non empty elements and let S be an AMI
over N . One can verify that there exists a finite partial state of S which is
programmed.

Next we state the proposition

(1) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N , and let p be a programmed finite partial state of S.
Then rng p ⊆ the instructions of S.

Let N be a non empty set with non empty elements, let S be a definite AMI
over N , and let I, J be programmed finite partial states of S. Then I+·J is a
programmed finite partial state of S.

Next we state the proposition

(2) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N , and let f be a function from the instructions of S

into the instructions of S, and let s be a programmed finite partial state
of S. Then dom(f · s) = dom s.

571
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630



572 andrzej trybulec and yatsuka nakamura

2. Incrementing and decrementing the instruction locations

In the sequel i, k, l, m, n, p will denote natural numbers.
Let l1 be an instruction-location of SCMFSA and let k be a natural number.

The functor l1 + k yielding an instruction-location of SCMFSA is defined by:

(Def. 1) There exists a natural number m such that l1 = insloc(m) and l1 + k =
insloc(m + k).

The functor l1 −
′ k yields an instruction-location of SCMFSA and is defined by:

(Def. 2) There exists a natural number m such that l1 = insloc(m) and l1−
′ k =

insloc(m −′ k).

We now state two propositions:

(3) For every instruction-location l of SCMFSA and for all m, n holds
(l + m) + n = l + (m + n).

(4) For every instruction-location l1 of SCMFSA and for every natural num-
ber k holds (l1 + k) −′ k = l1.

In the sequel L will be an instruction-location of SCM and I will be an
instruction of SCM.

The following three propositions are true:

(5) For every instruction-location l of SCMFSA and for every L such that
L = l holds l + k = L + k.

(6) For all instructions-locations l2, l3 of SCMFSA and for every natural
number k holds Start-At(l2 + k) = Start-At(l3 + k) iff Start-At(l2) =
Start-At(l3).

(7) For all instructions-locations l2, l3 of SCMFSA and for every natural
number k such that Start-At(l2) = Start-At(l3) holds Start-At(l2 −

′ k) =
Start-At(l3 −

′ k).

3. Incrementing addresses

Let i be an instruction of SCMFSA and let k be a natural number. The
functor IncAddr(i, k) yielding an instruction of SCMFSA is defined as follows:

(Def. 3) (i) There exists an instruction I of SCM such that I = i and
IncAddr(i, k) = IncAddr(I, k) if InsCode(i) ∈ {6, 7, 8},

(ii) IncAddr(i, k) = i, otherwise.

We now state a number of propositions:

(8) For every natural number k holds IncAddr(haltSCMFSA
, k) =

haltSCMFSA
.

(9) For every natural number k and for all integer locations a, b holds
IncAddr(a:=b, k) = a:=b.



modifying addresses of instructions of . . . 573

(10) For every natural number k and for all integer locations a, b holds
IncAddr(AddTo(a, b), k) = AddTo(a, b).

(11) For every natural number k and for all integer locations a, b holds
IncAddr(SubFrom(a, b), k) = SubFrom(a, b).

(12) For every natural number k and for all integer locations a, b holds
IncAddr(MultBy(a, b), k) = MultBy(a, b).

(13) For every natural number k and for all integer locations a, b holds
IncAddr(Divide(a, b), k) = Divide(a, b).

(14) For every natural number k and for every instruction-location l1 of
SCMFSA holds IncAddr(goto l1, k) = goto (l1 + k).

(15) Let k be a natural number, and let l1 be an instruction-location of
SCMFSA, and let a be an integer location. Then IncAddr(if a =
0 goto l1, k) = if a = 0 goto l1 + k.

(16) Let k be a natural number, and let l1 be an instruction-location of
SCMFSA, and let a be an integer location. Then IncAddr(if a >

0 goto l1, k) = if a > 0 goto l1 + k.

(17) Let k be a natural number, and let a, b be integer locations, and let f

be a finite sequence location. Then IncAddr(b:=fa, k) = b:=fa.

(18) Let k be a natural number, and let a, b be integer locations, and let f

be a finite sequence location. Then IncAddr(fa:=b, k) = fa:=b.

(19) Let k be a natural number, and let a be an integer location, and let f

be a finite sequence location. Then IncAddr(a:=lenf, k) = a:=lenf.

(20) Let k be a natural number, and let a be an integer location, and
let f be a finite sequence location. Then IncAddr(f :=〈0, . . . , 0

︸ ︷︷ ︸

a

〉, k) =

f :=〈0, . . . , 0
︸ ︷︷ ︸

a

〉.

(21) For every instruction i of SCMFSA and for every I such that i = I

holds IncAddr(i, k) = IncAddr(I, k).

(22) For every instruction I of SCMFSA and for every natural number k

holds InsCode(IncAddr(I, k)) = InsCode(I).

Let I1 be a finite partial state of SCMFSA. We say that I1 is initial if and
only if:

(Def. 4) For all m, n such that insloc(n) ∈ dom I1 and m < n holds insloc(m) ∈
dom I1.

The finite partial state StopSCMFSA
of SCMFSA is defined as follows:

(Def. 5) StopSCMFSA
= insloc(0)7−→. haltSCMFSA

.

Let us note that StopSCMFSA
is non empty initial and programmed.

One can verify that there exists a finite partial state of SCMFSA which is
initial programmed and non empty.

Let f be a function and let g be a finite function. Note that f · g is finite.



574 andrzej trybulec and yatsuka nakamura

Let N be a non empty set with non empty elements, let S be a definite AMI
over N , let s be a programmed finite partial state of S, and let f be a function
from the instructions of S into the instructions of S. Then f ·s is a programmed
finite partial state of S.

In the sequel i will denote an instruction of SCMFSA.
The following proposition is true

(23) IncAddr(IncAddr(i,m), n) = IncAddr(i,m + n).

4. Incremeting addresses in a finite partial state

Let p be a programmed finite partial state of SCMFSA and let k be a natural
number. The functor IncAddr(p, k) yielding a programmed finite partial state
of SCMFSA is defined by:

(Def. 6) dom IncAddr(p, k) = dom p and for every m such that insloc(m) ∈
dom p holds (IncAddr(p, k))(insloc(m)) = IncAddr(πinsloc(m)p, k).

The following propositions are true:

(24) Let p be a programmed finite partial state of SCMFSA, and let k be
a natural number, and let l be an instruction-location of SCMFSA. If
l ∈ dom p, then (IncAddr(p, k))(l) = IncAddr(πlp, k).

(25) For all programmed finite partial states I, J of SCMFSA holds
IncAddr(I+·J, n) = IncAddr(I, n)+· IncAddr(J, n).

(26) Let f be a function from the instructions of SCMFSA into the instruc-
tions of SCMFSA. Suppose f = id(the instructions of SCMFSA)+·(haltSCMFSA

7−→. i). Let s be a programmed finite partial state of SCMFSA. Then
IncAddr(f · s, n) = (id(the instructions of SCMFSA)+·(haltSCMFSA

7−→.

IncAddr(i, n))) · IncAddr(s, n).

(27) For every programmed finite partial state I of SCMFSA holds
IncAddr(IncAddr(I,m), n) = IncAddr(I,m + n).

(28) For every state s of SCMFSA holds Exec(IncAddr(CurInstr(s), k), s+·
Start-At(ICs + k)) = Following(s)+·Start-At(ICFollowing(s) + k).

(29) Let I2 be an instruction of SCMFSA, and let s be a state of SCMFSA,
and let p be a finite partial state of SCMFSA, and let i, j, k be natural
numbers. If ICs = insloc(j + k), then Exec(I2, s+·Start-At(ICs −

′ k)) =
Exec(IncAddr(I2, k), s)+·Start-At(ICExec(IncAddr(I2,k),s) −

′ k).

5. Shifting the finite partial state

Let p be a programmed finite partial state of SCMFSA and let k be a natural
number. The functor Shift(p, k) yields a programmed finite partial state of
SCMFSA and is defined as follows:



modifying addresses of instructions of . . . 575

(Def. 7) dom Shift(p, k) = {insloc(m + k) : insloc(m) ∈ dom p} and for ev-
ery m such that insloc(m) ∈ dom p holds (Shift(p, k))(insloc(m + k)) =
p(insloc(m)).

The following propositions are true:

(30) Let l be an instruction-location of SCMFSA, and let k be a natural
number, and let p be a programmed finite partial state of SCMFSA. If
l ∈ dom p, then (Shift(p, k))(l + k) = p(l).

(31) Let p be a programmed finite partial state of SCMFSA and let k be
a natural number. Then dom Shift(p, k) = {i1 + k : i1 ranges over
instructions-locations of SCMFSA, i1 ∈ dom p}.

(32) For every programmed finite partial state I of SCMFSA holds
Shift(Shift(I,m), n) = Shift(I,m + n).

(33) Let s be a programmed finite partial state of SCMFSA, and let f

be a function from the instructions of SCMFSA into the instructions of
SCMFSA, and given n. Then Shift(f · s, n) = f · Shift(s, n).

(34) For all programmed finite partial states I, J of SCMFSA holds
Shift(I+·J, n) = Shift(I, n)+·Shift(J, n).

(35) For all natural numbers i, j and for every programmed finite partial
state p of SCMFSA holds Shift(IncAddr(p, i), j) = IncAddr(Shift(p, j), i).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[4] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[5] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[7] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[9] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[14] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.



576 andrzej trybulec and yatsuka nakamura

[15] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[16] Yasushi Tanaka. Relocatability. Formalized Mathematics, 5(1):103–108, 1996.
[17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[20] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.

Formalized Mathematics, 5(4):519–528, 1996.
[21] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[23] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received February 14, 1996


