FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996
Warsaw University - Bialystok

Modifying Addresses of Instructions of
SCMprsa

Andrzej Trybulec Yatsuka Nakamura
Warsaw University Shinshu University
Bialystok Nagano

MML Identifier: SCMFSA_4.

The notation and terminology used in this paper are introduced in the following
papers: [10], (1], [13], [14], [21], [18], [23], [17], [24], [6], [7], [8], [4], [3], [2], [9],
[5], [22], [11], [12], [19], [15], [16], and [20].

1. PRELIMINARIES

Let N be a non empty set with non empty elements and let S be an AMI
over N. One can check that every finite partial state of S is finite.

Let N be a non empty set with non empty elements and let S be an AMI
over N. One can verify that there exists a finite partial state of S which is
programmed.

Next we state the proposition

(1) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N, and let p be a programmed finite partial state of S.
Then rng p C the instructions of S.

Let N be a non empty set with non empty elements, let S be a definite AMI
over N, and let I, J be programmed finite partial states of S. Then I+-J is a
programmed finite partial state of S.

Next we state the proposition

(2) Let N be a non empty set with non empty elements, and let S be a

definite AMI over N, and let f be a function from the instructions of S
into the instructions of S, and let s be a programmed finite partial state
of S. Then dom(f - s) = doms.

@ 1996 Warsaw University - Bialystok
571 ISSN 1426-2630

572 ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

2. INCREMENTING AND DECREMENTING THE INSTRUCTION LOCATIONS

In the sequel i, k, I, m, n, p will denote natural numbers.
Let {1 be an instruction-location of SCMFpga and let k£ be a natural number.
The functor I; + k yielding an instruction-location of SCMpgya is defined by:
(Def. 1) There exists a natural number m such that {; = insloc(m) and [; +k =
insloc(m + k).
The functor I, =k yields an instruction-location of SCMrpga and is defined by:
(Def. 2) There exists a natural number m such that {; = insloc(m) and l; ="k =
insloc(m —' k).
We now state two propositions:
(3) For every instruction-location [of SCMpga and for all m, n holds
(l+m)+n=1+(m+n).
(4) For every instruction-location I; of SCMpga and for every natural num-
ber k holds (I; + k) =" k =1;.
In the sequel L will be an instruction-location of SCM and I will be an
instruction of SCM.
The following three propositions are true:

(5) For every instruction-location [of SCMpga and for every L such that
L=1lholdsl+k=L+k.

(6) For all instructions-locations [z, I3 of SCMpga and for every natural
number k holds Start-At(ly + k) = Start-At(l3 + k) iff Start-At(ly) =
Start-At(l3).

(7) For all instructions-locations [z, I3 of SCMpga and for every natural
number k such that Start-At(ly) = Start-At(l3) holds Start-At(ly —" k) =
Start-At(ls —' k).

3. INCREMENTING ADDRESSES

Let i be an instruction of SCMpgga and let k£ be a natural number. The
functor IncAddr(i, k) yielding an instruction of SCMrpgy is defined as follows:
(Def. 3) (i) There exists an instruction I of SCM such that I = ¢ and
IncAddr(i, k) = IncAddr(I, k) if InsCode(i) € {6,7, 8},
(ii)) IncAddr(i, k) = 4, otherwise.
We now state a number of propositions:
(8) For every natural number k holds IncAddr(haltgcm,g, k) =
haltSCMpg A”

(9) For every natural number k and for all integer locations a, b holds
IncAddr(a:=b, k) = a:=b.

MODIFYING ADDRESSES OF INSTRUCTIONS OF ... 573

(10) For every natural number k and for all integer locations a, b holds
IncAddr(AddTo(a,b), k) = AddTo(a,b).

(11) For every natural number k and for all integer locations a, b holds
IncAddr(SubFrom(a, b), k) = SubFrom(a, b).

(12) For every natural number k and for all integer locations a, b holds
IncAddr(MultBy(a,b), k) = MultBy(a, b).

(13) For every natural number k and for all integer locations a, b holds
IncAddr(Divide(a, b), k) = Divide(a, b).

(14) For every natural number k and for every instruction-location I; of
SCMrpga holds IncAddr(goto I3, k) = goto (I + k).

(15) Let k be a natural number, and let /3 be an instruction-location of
SCMprga, and let a be an integer location. Then IncAddr(if a =
0 goto l1,k) =if a =0 goto 1} + k.

(16) Let k be a natural number, and let /3 be an instruction-location of
SCMprga, and let a be an integer location. Then IncAddr(if a >
0 goto [1,k) =if a > 0 goto [+ k.

(17) Let k be a natural number, and let a, b be integer locations, and let f
be a finite sequence location. Then IncAddr(b:=f,, k) = b:=f,.

(18) Let k be a natural number, and let a, b be integer locations, and let f
be a finite sequence location. Then IncAddr(f,:=b,k) = fq:=0.

(19) Let k be a natural number, and let a be an integer location, and let f
be a finite sequence location. Then IncAddr(a:=lenf, k) = a:=lenf.

(20) Let k be a natural number, and let @ be an integer location, and
let f be a finite sequence location. Then IncAddr(f:=(0,...,0),k) =
—

a

(21) For every instruction ¢ of SCMpga and for every I such that i = I
holds IncAddr(i, k) = IncAddr (I, k).

(22) For every instruction I of SCMpga and for every natural number k
holds InsCode(IncAddr (7, k)) = InsCode([).

Let I; be a finite partial state of SCMpgs. We say that Iy is initial if and
only if:
(Def. 4) For all m, n such that insloc(n) € dom I1 and m < n holds insloc(m) €
dom Il.
The finite partial state Stopgop,g, of SCMrsa is defined as follows:
(Def. 5) Stopscngg, = insloc(0)——haltgcmyg, -

Let us note that Stopgcy,, 18 non empty initial and programmed.

One can verify that there exists a finite partial state of SCMpga which is
initial programmed and non empty.

Let f be a function and let g be a finite function. Note that f - g is finite.

574 ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

Let N be a non empty set with non empty elements, let S be a definite AMI
over N, let s be a programmed finite partial state of S, and let f be a function
from the instructions of S into the instructions of S. Then f-s is a programmed
finite partial state of S.

In the sequel 7 will denote an instruction of SCMpga .

The following proposition is true

(23) IncAddr(IncAddr(i,m),n) = IncAddr(i,m + n).

4. INCREMETING ADDRESSES IN A FINITE PARTIAL STATE

Let p be a programmed finite partial state of SCMFpga and let k& be a natural
number. The functor IncAddr(p, k) yielding a programmed finite partial state
of SCMFpgy is defined by:

(Def. 6) domIncAddr(p,k) = domp and for every m such that insloc(m) €
dom p holds (IncAddr(p, k))(insloc(m)) = IncAddr(Tiygioc(m)Ps k)-

The following propositions are true:

(24) Let p be a programmed finite partial state of SCMpga, and let k be
a natural number, and let [be an instruction-location of SCMpgga. If
[€ domp, then (IncAddr(p, k))(l) = IncAddr(m;p, k).

(25) For all programmed finite partial states I, J of SCMpga holds
IncAddr(/+-J,n) = IncAddr(I,n)+- IncAddr(J, n).

(26) Let f be a function from the instructions of SCMpgy into the instruc-
tions Of SCMFSA' Suppose f = id(thc instructions of SCMFSA)—i—'(haltSCMFSA
——i). Let s be a programmed finite partial state of SCMpga. Then

InCAddr(f " S, Tl) = (id(the instructions of SCMFSA)—i_(haltSCMFSA'—)
IncAddr(i,n))) - IncAddr(s,n).

(27) For every programmed finite partial state I of SCMpga holds
IncAddr(IncAddr(I,m),n) = IncAddr(Z, m + n).

(28) For every state s of SCMpga holds Exec(IncAddr(Curlnstr(s), k), s+-
Start-At(ICs + k)) = Following(s)+- Start- At (ICroowing(s) + K)-

(29) Let Is be an instruction of SCMrpgp, and let s be a state of SCMpga,
and let p be a finite partial state of SCMyga, and let ¢, j, k£ be natural
numbers. If IC; = insloc(j + k), then Exec(Is, s+- Start-At(IC; —' k)) =
Exec(IncAddr (I3, k), s)+- Start-At (ICEXCC(IncAddr(Ig,k),s) -~/ k).

5. SHIFTING THE FINITE PARTIAL STATE

Let p be a programmed finite partial state of SCMpga and let k£ be a natural
number. The functor Shift(p, k) yields a programmed finite partial state of
SCMypga and is defined as follows:

MODIFYING ADDRESSES OF INSTRUCTIONS OF ... 575

(Def. 7) dom Shift(p, k) = {insloc(m + k) : insloc(m) € domp} and for ev-
ery m such that insloc(m) € domp holds (Shift(p, k))(insloc(m + k)) =
p(insloc(m)).

The following propositions are true:

(30) Let [be an instruction-location of SCMrpga, and let k be a natural
number, and let p be a programmed finite partial state of SCMpga. If
l € dom p, then (Shift(p, k))(l + k) = p(I).

(31) Let p be a programmed finite partial state of SCMpgs and let &k be
a natural number. Then dom Shift(p,k) = {i1 + k : ¢; ranges over
instructions-locations of SCMpga, i1 € dom p}.

(32) For every programmed finite partial state I of SCMpga holds
Shift(Shift(I, m),n) = Shift(I,m + n).

(33) Let s be a programmed finite partial state of SCMpga, and let f
be a function from the instructions of SCMpg into the instructions of
SCMp sy, and given n. Then Shift(f - s,n) = f - Shift(s, n).

(34) For all programmed finite partial states I, J of SCMpga holds
Shift(I+4-J,n) = Shift(I, n)+- Shift(J, n).

(35) For all natural numbers i, j and for every programmed finite partial
state p of SCMpga holds Shift(IncAddr(p, i), j) = IncAddr(Shift(p, 5), 7).

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-
ized Mathematics, 5(4):485-492, 1996.

[4] Czestaw Byliniski. A classical first order language. Formalized Mathematics, 1(4):669—
676, 1990.

[6] Czestaw Byliniski. Finite sequences and tuples of elements of a non-empty sets. Formal-
ized Mathematics, 1(3):529-536, 1990.

[6] Czestaw Byliriski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

[7] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

[8] Czestaw Byliniski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(8):521-527, 1990.

[9] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

[14] Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

576

[15]
[16]
[17]
18]
[19]
[20]

[21]
22]

23]

24]

ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.

Yasushi Tanaka. Relocatability. Formalized Mathematics, 5(1):103-108, 1996.

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51-56, 1993.

Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMpgsa computer.
Formalized Mathematics, 5(4):519-528, 1996.

Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17-23, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received February 14, 1996

