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The terminology and notation used in this paper are introduced in the following
papers: [10], [2], [14], [13], [18], [22], [6], [16], [21], [1], [15], [3], [9], [7], [20], [4],
[19], [8], [5], [11], [12], and [17].
In this paper m will be a natural number.
Let us note that every finite partial state of SCMFpga is finite.
Let p be a finite sequence and let x, y be arbitrary. Note that p +- (z,y) is
finite sequence-like.
Let i be an integer. Then [i] is a natural number.
Let D be a set. Note that D* is non empty.
The following four propositions are true:
(1)  For every natural number k holds |k| = k.
(2)  For all natural numbers a, b, ¢ such that a > cand b > cand a —' ¢ =
b—'c holds a = b.
(3)  For all natural numbers a, b such that a > b holds a —' b = a — b.
(4) For all integers a, b such that a < b holds a < b — 1.
The scheme CardMono” concerns a set A, a non empty set 13, and a unary
functor F yielding arbitrary, and states that:
A~ {F(d) : d ranges over elements of B, d € A}
provided the parameters satisfy the following conditions:
° A g B?
e For all elements dq, dy of B such that d; € A and dy € A and
F(d1) = F(dz2) holds dy = ds.
One can prove the following propositions:
(5) For all finite sequences p1, p2, ¢ such that p; C ¢ and p2 C ¢ and
len p; = len po holds p1 = po.

@ 1996 Warsaw University - Bialystok
615 ISSN 1426-2630



616

(D

NORIKO ASAMOTO

(6)  For all finite sequences p, ¢ such that p ~ ¢ = p holds ¢ = e.
(7)  For every finite sequence p and for arbitrary = holds len(p ~ (z)) =
lenp + 1.
(8)  For all finite sequences p, ¢ such that p C ¢ holds lenp < leng.
(9) For all finite sequences p, ¢ and for every natural number ¢ such that
1 <iand i <lenp holds (p ™ q)(i) = p(i).
(10)  For all finite sequences p, ¢ and for every natural number i such that
1<iandi<lenqgholds (p~ q)(lenp+1i) = q(i).
(11)  For every finite sequence p and for every natural number ¢ holds i €
domp iff 1 <4 and ¢ < lenp.
(12)  For every finite sequence p such that p # ¢ holds lenp € dom p.
(13)  For every set D holds Flat(ep-) = ep.
(14)  For every set D and for all finite sequences F', G of elements of D* holds
Flat(F ~ G) = Flat(F) ~ Flat(G).
(15)  For every set D and for all elements p, ¢ of D* holds Flat({p,q)) = p~q.
(16)  For every set D and for all elements p, g, r of D* holds Flat({p, ¢,
r)=p-q-r.
(17)  Let D be a non empty set and let p, ¢ be finite sequences of elements
of D. If p C g, then there exists a finite sequence p’ of elements of D such
that p~p' = q.
(18) Let D be a non empty set, and let p, ¢ be finite sequences of elements
of D, and let ¢ be a natural number. If p C ¢ and 1 < i and ¢ < lenp,

then q(i) = p(7).

(19)  For every set D and for all finite sequences F', G of elements of D* such
that F' C G holds Flat(F') C Flat(G).

(20)  For every finite sequence p holds p | Seg0 = ¢.

(21)  For all finite sequences f, g holds f | Seg0 = g | Seg0.

(22)  For every non empty set D and for every element x of D holds (z) is a
finite sequence of elements of D.

(23) Let D be a set and let p, ¢ be finite sequences of elements of D. Then
P~ q is a finite sequence of elements of D.

Let f be a finite sequence of elements of the instructions of SCMpgga. The
functor Load(f) yielding a finite partial state of SCMpgp is defined by:

ef. 1) dom Load(f) = {insloc(m—'1) : m € dom f} and for every natural num-
ber k such that insloc(k) € dom Load(f) holds (Load(f))(insloc(k)) =
T+1.f-
The following propositions are true:

(24) Let f be a finite sequence of elements of the instructions of SCMgga
and let k be a natural number. Then dom Load(f) = {insloc(m —'1) :
m € dom f}.
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(25)  For every finite sequence f of elements of the instructions of SCMpsa
holds card Load(f) = len f.

(26) Let p be a finite sequence of elements of the instructions of SCMpga
and let k£ be a natural number. Then insloc(k) € dom Load(p) if and only
if k4+1 € domp.

(27)  For all natural numbers k, n holds k < n iff 0 < k+ 1 and k + 1 < n.

(28)  For all natural numbers k, n holds k < niff 1 <k+1and k+1 < n.

(29) Let p be a finite sequence of elements of the instructions of SCMpga
and let £ be a natural number. Then insloc(k) € dom Load(p) if and only
if k£ <lenp.

(30)  For every non empty finite sequence f of elements of the instructions
of SCMFpsa holds 1 € dom f and insloc(0) € dom Load(f).

(31)  For all finite sequences p, g of elements of the instructions of SCMpga
holds Load(p) C Load(p ~ q).

(32)  For all finite sequences p, g of elements of the instructions of SCMpga
such that p C ¢ holds Load(p) C Load(q).

Let a be an integer location and let k be an integer. The functor a:=k yields
a finite partial state of SCMpga and is defined as follows:

(Def. 2) (i) There exists a natural number k; such that k1 + 1 = k and a:=k =
Load((a:= intloc(0)) ~ (k1 + AddTo(a, intloc(0))) ~ (haltgcny, ) if £ >
0,

(ii)  there exists a natural number k; such that ky + %k = 1 and a:=k =
Load((a:= intloc(0))~ (k1 = SubFrom(a, intloc(0)))~ (haltgcmy, ), oth-
erwise.

Let a be an integer location and let k be an integer. The functor aSeq(a, k)
yielding a finite sequence of elements of the instructions of SCMpga is defined
by:

(Def. 3) (i)  There exists a natural number k; such that k&, + 1 = k and
aSeq(a, k) = (a:=intloc(0)) ~ (k1 — AddTo(a,intloc(0))) if & > 0,

(ii)  there exists a natural number k; such that k1 +%& = 1 and aSeq(a, k) =
(a:=intloc(0)) ~ (k1 — SubFrom(a, intloc(0))), otherwise.

One can prove the following proposition

(33) For every integer location a and for every integer k holds a:=k =
Load((aSeq(a, k)) ~ (haltgcMyg, )

Let f be a finite sequence location and let p be a finite sequence of elements of
Z. The functor aSeq(f, p) yields a finite sequence of elements of the instructions
of SCMpga and is defined by the condition (Def. 4).
(Def. 4)  There exists a finite sequence p3 of elements of
(the instructions of SCMpga )* such that
(i) lenps =lenp,
(ii)  for every natural number k such that 1 < k and k& < lenp there
exists an integer ¢ such that ¢ = p(k) and ps(k) = (aSeq(intloc(1),k)) ~
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aSeq(intloc(2),7) ™ (fintloc(1):= intloc(2)), and
(iii)  aSeq(f,p) = Flat(ps).
Let f be a finite sequence location and let p be a finite sequence of elements
of 7 The functor f:=p yielding a finite partial state of SCMFpgy is defined by:

(Def. 5)  f:=p = Load((aSeq(intloc(1),lenp)) = (f:=(0,...,0)) ~ aSeq(f,p) ~
——
intloc(1)
(haltgcMyg, ))-
Next we state several propositions:

(34) For every integer location a holds a:=1 = Load({a:=intloc(0)) ~

(haltgcmypg, )-
(35) For every integer location a holds a:=0 = Load({(a:=intloc(0))
(SubFrom(a, intloc(0))) ~ (haltgcMyg, )

(36) Let s be a state of SCMpga. Suppose s(intloc(0)) = 1. Let ¢y be a nat-
ural number. Suppose IC; = insloc(cy). Let a be an integer location and
let k£ be an integer. Suppose a # intloc(0) and for every natural number ¢
such that ¢ € dom aSeq(a, k) holds (aSeq(a, k))(c) = s(insloc((co+c)—'1)).
Then

(i)  for every natural number ¢ such that ¢ < lenaSeq(a,k) holds
IC Computation(s))(i) = insloc(cg + i) and for every integer location b such
that b # a holds (Computation(s))(i)(b) = s(b) and for every finite se-
quence location f holds (Computation(s))(?)(f) = s(f), and

(ii)  (Computation(s))(len aSeq(a, k))(a) = k.

(37) Let s be a state of SCMpgs. Suppose IC; = insloc(0) and
s(intloc(0)) = 1. Let a be an integer location and let k be an integer.
Suppose Load(aSeq(a, k)) C s and a # intloc(0). Then

(i)  for every natural number ¢ such that ¢ < lenaSeq(a,k) holds
IC (Computation(s))(i) = insloc(i) and for every integer location b such that
b # a holds (Computation(s))(i)(b) = s(b) and for every finite sequence
location f holds (Computation(s))(i)(f) = s(f), and

(ii))  (Computation(s))(len aSeq(a, k))(a) = k.

(38) Let s be a state of SCMpga. Suppose IC; = insloc(0) and
s(intloc(0)) = 1. Let a be an integer location and let k& be an integer.
Suppose a:=k C s and a # intloc(0). Then

(i) s is halting,

(ii)  (Result(s))(a) =k,

(ili)  for every integer location b such that b # a holds (Result(s))(b) = s(b),
and
(iv)  for every finite sequence location f holds (Result(s))(f) = s(f).

(39) Let s be a state of SCMpsgs. Suppose IC; = insloc(0) and
s(intloc(0)) = 1. Let f be a finite sequence location and let p be a fi-
nite sequence of elements of Z. Suppose f:=p C s. Then

(i) s is halting,

(ii)  (Result(s))(f) = p,
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(ili)  for every integer location b such that b # intloc(1) and b # intloc(2)
holds (Result(s))(b) = s(b), and

(iv) for every finite sequence location g such that g # f holds
(Result(s))(g) = s(g)-
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