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The terminology and notation used in this paper are introduced in the following
papers: [10], [2], [14], [13], [18], [22], [6], [16], [21], [1], [15], [3], [9], [7], [20], [4],
[19], [8], [5], [11], [12], and [17].

In this paper m will be a natural number.
Let us note that every finite partial state of SCMFSA is finite.
Let p be a finite sequence and let x, y be arbitrary. Note that p +· (x, y) is

finite sequence-like.
Let i be an integer. Then |i| is a natural number.
Let D be a set. Note that D∗ is non empty.
The following four propositions are true:

(1) For every natural number k holds |k| = k.

(2) For all natural numbers a, b, c such that a ≥ c and b ≥ c and a −′ c =
b −′ c holds a = b.

(3) For all natural numbers a, b such that a ≥ b holds a −′ b = a − b.

(4) For all integers a, b such that a < b holds a ≤ b − 1.

The scheme CardMono” concerns a set A, a non empty set B, and a unary
functor F yielding arbitrary, and states that:

A ≈ {F(d) : d ranges over elements of B, d ∈ A}
provided the parameters satisfy the following conditions:

• A ⊆ B,

• For all elements d1, d2 of B such that d1 ∈ A and d2 ∈ A and
F(d1) = F(d2) holds d1 = d2.

One can prove the following propositions:

(5) For all finite sequences p1, p2, q such that p1 ⊆ q and p2 ⊆ q and
len p1 = len p2 holds p1 = p2.
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(6) For all finite sequences p, q such that p � q = p holds q = ε.

(7) For every finite sequence p and for arbitrary x holds len(p � 〈x〉) =
len p + 1.

(8) For all finite sequences p, q such that p ⊆ q holds len p ≤ len q.

(9) For all finite sequences p, q and for every natural number i such that
1 ≤ i and i ≤ len p holds (p � q)(i) = p(i).

(10) For all finite sequences p, q and for every natural number i such that
1 ≤ i and i ≤ len q holds (p � q)(len p + i) = q(i).

(11) For every finite sequence p and for every natural number i holds i ∈
dom p iff 1 ≤ i and i ≤ len p.

(12) For every finite sequence p such that p 6= ε holds len p ∈ dom p.

(13) For every set D holds Flat(εD∗) = εD.

(14) For every set D and for all finite sequences F , G of elements of D∗ holds
Flat(F � G) = Flat(F ) � Flat(G).

(15) For every set D and for all elements p, q of D∗ holds Flat(〈p, q〉) = p � q.

(16) For every set D and for all elements p, q, r of D∗ holds Flat(〈p, q,

r〉) = p � q � r.

(17) Let D be a non empty set and let p, q be finite sequences of elements
of D. If p ⊆ q, then there exists a finite sequence p′ of elements of D such
that p � p′ = q.

(18) Let D be a non empty set, and let p, q be finite sequences of elements
of D, and let i be a natural number. If p ⊆ q and 1 ≤ i and i ≤ len p,

then q(i) = p(i).

(19) For every set D and for all finite sequences F , G of elements of D∗ such
that F ⊆ G holds Flat(F ) ⊆ Flat(G).

(20) For every finite sequence p holds p
�
Seg 0 = ε.

(21) For all finite sequences f , g holds f
�
Seg 0 = g

�
Seg 0.

(22) For every non empty set D and for every element x of D holds 〈x〉 is a
finite sequence of elements of D.

(23) Let D be a set and let p, q be finite sequences of elements of D. Then
p � q is a finite sequence of elements of D.

Let f be a finite sequence of elements of the instructions of SCMFSA. The
functor Load(f) yielding a finite partial state of SCMFSA is defined by:

(Def. 1) dom Load(f) = {insloc(m−′1) : m ∈ dom f} and for every natural num-
ber k such that insloc(k) ∈ dom Load(f) holds (Load(f))(insloc(k)) =
πk+1f.

The following propositions are true:

(24) Let f be a finite sequence of elements of the instructions of SCMFSA

and let k be a natural number. Then dom Load(f) = {insloc(m −′ 1) :
m ∈ dom f}.
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(25) For every finite sequence f of elements of the instructions of SCMFSA

holds card Load(f) = len f.

(26) Let p be a finite sequence of elements of the instructions of SCMFSA

and let k be a natural number. Then insloc(k) ∈ dom Load(p) if and only
if k + 1 ∈ dom p.

(27) For all natural numbers k, n holds k < n iff 0 < k + 1 and k + 1 ≤ n.

(28) For all natural numbers k, n holds k < n iff 1 ≤ k + 1 and k + 1 ≤ n.

(29) Let p be a finite sequence of elements of the instructions of SCMFSA

and let k be a natural number. Then insloc(k) ∈ dom Load(p) if and only
if k < len p.

(30) For every non empty finite sequence f of elements of the instructions
of SCMFSA holds 1 ∈ dom f and insloc(0) ∈ dom Load(f).

(31) For all finite sequences p, q of elements of the instructions of SCMFSA

holds Load(p) ⊆ Load(p � q).

(32) For all finite sequences p, q of elements of the instructions of SCMFSA

such that p ⊆ q holds Load(p) ⊆ Load(q).

Let a be an integer location and let k be an integer. The functor a:=k yields
a finite partial state of SCMFSA and is defined as follows:

(Def. 2) (i) There exists a natural number k1 such that k1 + 1 = k and a:=k =
Load(〈a:= intloc(0)〉 � (k1 7→ AddTo(a, intloc(0))) � 〈haltSCMFSA

〉) if k >

0,
(ii) there exists a natural number k1 such that k1 + k = 1 and a:=k =

Load(〈a:= intloc(0)〉 � (k1 7→ SubFrom(a, intloc(0))) � 〈haltSCMFSA
〉), oth-

erwise.

Let a be an integer location and let k be an integer. The functor aSeq(a, k)
yielding a finite sequence of elements of the instructions of SCMFSA is defined
by:

(Def. 3) (i) There exists a natural number k1 such that k1 + 1 = k and
aSeq(a, k) = 〈a:= intloc(0)〉 � (k1 7→ AddTo(a, intloc(0))) if k > 0,

(ii) there exists a natural number k1 such that k1 +k = 1 and aSeq(a, k) =
〈a:= intloc(0)〉 � (k1 7→ SubFrom(a, intloc(0))), otherwise.

One can prove the following proposition

(33) For every integer location a and for every integer k holds a:=k =
Load((aSeq(a, k)) � 〈haltSCMFSA

〉).

Let f be a finite sequence location and let p be a finite sequence of elements of
� . The functor aSeq(f, p) yields a finite sequence of elements of the instructions
of SCMFSA and is defined by the condition (Def. 4).

(Def. 4) There exists a finite sequence p3 of elements of
(the instructions of SCMFSA)∗ such that

(i) len p3 = len p,

(ii) for every natural number k such that 1 ≤ k and k ≤ len p there
exists an integer i such that i = p(k) and p3(k) = (aSeq(intloc(1), k)) �



618 noriko asamoto

aSeq(intloc(2), i) � 〈fintloc(1):= intloc(2)〉, and
(iii) aSeq(f, p) = Flat(p3).

Let f be a finite sequence location and let p be a finite sequence of elements
of � The functor f :=p yielding a finite partial state of SCMFSA is defined by:

(Def. 5) f :=p = Load((aSeq(intloc(1), len p)) � 〈f :=〈0, . . . , 0
︸ ︷︷ ︸

intloc(1)

〉〉 � aSeq(f, p) �

〈haltSCMFSA
〉).

Next we state several propositions:

(34) For every integer location a holds a:=1 = Load(〈a:= intloc(0)〉 �
〈haltSCMFSA

〉).

(35) For every integer location a holds a:=0 = Load(〈a:= intloc(0)〉 �
〈SubFrom(a, intloc(0))〉 � 〈haltSCMFSA

〉).

(36) Let s be a state of SCMFSA. Suppose s(intloc(0)) = 1. Let c0 be a nat-
ural number. Suppose ICs = insloc(c0). Let a be an integer location and
let k be an integer. Suppose a 6= intloc(0) and for every natural number c

such that c ∈ dom aSeq(a, k) holds (aSeq(a, k))(c) = s(insloc((c0+c)−′1)).
Then

(i) for every natural number i such that i ≤ len aSeq(a, k) holds
IC(Computation(s))(i) = insloc(c0 + i) and for every integer location b such
that b 6= a holds (Computation(s))(i)(b) = s(b) and for every finite se-
quence location f holds (Computation(s))(i)(f) = s(f), and

(ii) (Computation(s))(len aSeq(a, k))(a) = k.

(37) Let s be a state of SCMFSA. Suppose ICs = insloc(0) and
s(intloc(0)) = 1. Let a be an integer location and let k be an integer.
Suppose Load(aSeq(a, k)) ⊆ s and a 6= intloc(0). Then

(i) for every natural number i such that i ≤ len aSeq(a, k) holds
IC(Computation(s))(i) = insloc(i) and for every integer location b such that
b 6= a holds (Computation(s))(i)(b) = s(b) and for every finite sequence
location f holds (Computation(s))(i)(f) = s(f), and

(ii) (Computation(s))(len aSeq(a, k))(a) = k.

(38) Let s be a state of SCMFSA. Suppose ICs = insloc(0) and
s(intloc(0)) = 1. Let a be an integer location and let k be an integer.
Suppose a:=k ⊆ s and a 6= intloc(0). Then

(i) s is halting,
(ii) (Result(s))(a) = k,

(iii) for every integer location b such that b 6= a holds (Result(s))(b) = s(b),
and

(iv) for every finite sequence location f holds (Result(s))(f) = s(f).

(39) Let s be a state of SCMFSA. Suppose ICs = insloc(0) and
s(intloc(0)) = 1. Let f be a finite sequence location and let p be a fi-
nite sequence of elements of � . Suppose f :=p ⊆ s. Then

(i) s is halting,
(ii) (Result(s))(f) = p,
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(iii) for every integer location b such that b 6= intloc(1) and b 6= intloc(2)
holds (Result(s))(b) = s(b), and

(iv) for every finite sequence location g such that g 6= f holds
(Result(s))(g) = s(g).
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