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The articles [7], [9], [10], [1], [3], [4], [2], [8], [6], and [5] provide the notation and
terminology for this paper.

Let C be a non empty category structure with units, let o1, o2 be objects of
C, let A be a morphism from o1 to o2, and let B be a morphism from o2 to o1.
We say that A is left inverse of B if and only if:

(Def. 1) A ·B = id(o2) .

We introduce B is right inverse of A as a synonym of A is left inverse of B.
Let C be a non empty category structure with units, let o1, o2 be objects of

C, and let A be a morphism from o1 to o2. We say that A is retraction if and
only if:

(Def. 2) There exists a morphism from o2 to o1 which is right inverse of A.

Let C be a non empty category structure with units, let o1, o2 be objects of
C, and let A be a morphism from o1 to o2. We say that A is coretraction if and
only if:

(Def. 3) There exists a morphism from o2 to o1 which is left inverse of A.

Next we state the proposition

(1) Let C be a non empty category structure with units and o be an object
of C. Then ido is retraction and ido is coretraction.

Let C be a category and let o1, o2 be objects of C. Let us assume that
〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅. Let A be a morphism from o1 to o2. Let us assume
that A is retraction and coretraction. The functor A−1 yields a morphism from
o2 to o1 and is defined by:

(Def. 4) A−1 is left inverse of A and A−1 is right inverse of A.

We now state three propositions:
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(2) Let C be a category and o1, o2 be objects of C. Suppose 〈o1, o2〉 6= ∅ and
〈o2, o1〉 6= ∅. Let A be a morphism from o1 to o2. If A is retraction and
coretraction, then A−1 ·A = id(o1) and A ·A−1 = id(o2) .

(3) Let C be a category and o1, o2 be objects of C. Suppose 〈o1, o2〉 6= ∅ and
〈o2, o1〉 6= ∅. Let A be a morphism from o1 to o2. If A is retraction and
coretraction, then (A−1)−1 = A.

(4) For every category C and for every object o of C holds (ido)−1 = ido .

Let C be a category, let o1, o2 be objects of C, and let A be a morphism
from o1 to o2. We say that A is iso if and only if:

(Def. 5) A ·A−1 = id(o2) and A−1 ·A = id(o1) .

One can prove the following three propositions:

(5) Let C be a category, o1, o2 be objects of C, and A be a morphism from
o1 to o2. If A is iso, then A is retraction and coretraction.

(6) Let C be a category and o1, o2 be objects of C. Suppose 〈o1, o2〉 6= ∅ and
〈o2, o1〉 6= ∅. Let A be a morphism from o1 to o2. Then A is iso if and only
if A is retraction and coretraction.

(7) Let C be a category, o1, o2, o3 be objects of C, A be a morphism from
o1 to o2, and B be a morphism from o2 to o3. Suppose 〈o1, o2〉 6= ∅ and
〈o2, o3〉 6= ∅ and 〈o3, o1〉 6= ∅ and A is iso and B is iso. Then B · A is iso
and (B ·A)−1 = A−1 ·B−1.

Let C be a category and let o1, o2 be objects of C. We say that o1, o2 are
iso if and only if:

(Def. 6) 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and there exists a morphism from o1 to o2

which is iso.

Let us note that the predicate o1, o2 are iso is reflexive and symmetric.
One can prove the following proposition

(8) Let C be a category and o1, o2, o3 be objects of C. If o1, o2 are iso and
o2, o3 are iso , then o1, o3 are iso .

Let C be a non empty category structure, let o1, o2 be objects of C, and let
A be a morphism from o1 to o2. We say that A is mono if and only if:

(Def. 7) For every object o of C such that 〈o, o1〉 6= ∅ and for all morphisms B,
C from o to o1 such that A ·B = A · C holds B = C.

Let C be a non empty category structure, let o1, o2 be objects of C, and let
A be a morphism from o1 to o2. We say that A is epi if and only if:

(Def. 8) For every object o of C such that 〈o2, o〉 6= ∅ and for all morphisms B,
C from o2 to o such that B ·A = C ·A holds B = C.

We now state a number of propositions:

(9) Let C be an associative transitive non empty category structure and o1,
o2, o3 be objects of C. Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let A be a
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morphism from o1 to o2 and B be a morphism from o2 to o3. If A is mono
and B is mono, then B ·A is mono.

(10) Let C be an associative transitive non empty category structure and o1,
o2, o3 be objects of C. Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let A be a
morphism from o1 to o2 and B be a morphism from o2 to o3. If A is epi
and B is epi, then B ·A is epi.

(11) Let C be an associative transitive non empty category structure and o1,
o2, o3 be objects of C. Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let A be a
morphism from o1 to o2 and B be a morphism from o2 to o3. If B · A is
mono, then A is mono.

(12) Let C be an associative transitive non empty category structure and o1,
o2, o3 be objects of C. Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let A be a
morphism from o1 to o2 and B be a morphism from o2 to o3. If B · A is
epi, then B is epi.

(13) Let X be a non empty set and o1, o2 be objects of EnsX . Suppose
〈o1, o2〉 6= ∅. Let A be a morphism from o1 to o2 and F be a function from
o1 into o2. If F = A, then A is mono iff F is one-to-one.

(14) Let X be a non empty set with non empty elements and o1, o2 be objects
of EnsX . Suppose 〈o1, o2〉 6= ∅. Let A be a morphism from o1 to o2 and F

be a function from o1 into o2. If F = A, then A is epi iff F is onto.

(15) Let C be a category and o1, o2 be objects of C. Suppose 〈o1, o2〉 6= ∅ and
〈o2, o1〉 6= ∅. Let A be a morphism from o1 to o2. If A is retraction, then
A is epi.

(16) Let C be a category and o1, o2 be objects of C. Suppose 〈o1, o2〉 6= ∅ and
〈o2, o1〉 6= ∅. Let A be a morphism from o1 to o2. If A is coretraction, then
A is mono.

(17) Let C be a category and o1, o2 be objects of C. Suppose 〈o1, o2〉 6= ∅
and 〈o2, o1〉 6= ∅. Let A be a morphism from o1 to o2. If A is iso, then A is
mono and epi.

(18) Let C be a category and o1, o2, o3 be objects of C. Suppose 〈o1, o2〉 6= ∅
and 〈o2, o3〉 6= ∅ and 〈o3, o1〉 6= ∅. Let A be a morphism from o1 to o2 and
B be a morphism from o2 to o3. If A is retraction and B is retraction,
then B ·A is retraction.

(19) Let C be a category and o1, o2, o3 be objects of C. Suppose 〈o1, o2〉 6= ∅
and 〈o2, o3〉 6= ∅ and 〈o3, o1〉 6= ∅. Let A be a morphism from o1 to o2 and
B be a morphism from o2 to o3. If A is coretraction and B is coretraction,
then B ·A is coretraction.

(20) Let C be a category, o1, o2 be objects of C, and A be a morphism from
o1 to o2. If A is retraction and mono and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅,
then A is iso.
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(21) Let C be a category, o1, o2 be objects of C, and A be a morphism from
o1 to o2. If A is coretraction and epi and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅,
then A is iso.

(22) Let C be a category, o1, o2, o3 be objects of C, A be a morphism from
o1 to o2, and B be a morphism from o2 to o3. Suppose 〈o1, o2〉 6= ∅ and
〈o2, o3〉 6= ∅ and 〈o3, o1〉 6= ∅ and B ·A is retraction. Then B is retraction.

(23) Let C be a category, o1, o2, o3 be objects of C, A be a morphism from
o1 to o2, and B be a morphism from o2 to o3. Suppose 〈o1, o2〉 6= ∅ and
〈o2, o3〉 6= ∅ and 〈o3, o1〉 6= ∅ and B ·A is coretraction. Then A is coretrac-
tion.

(24) Let C be a category. Suppose that for all objects o1, o2 of C holds every
morphism from o1 to o2 is retraction. Let a, b be objects of C and A be a
morphism from a to b. If 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅, then A is iso.

Let C be a non empty category structure with units and let o be an object of
C. Note that there exists a morphism from o to o which is mono, epi, retraction,
and coretraction.

Let C be a category and let o be an object of C. Observe that there exists
a morphism from o to o which is mono, epi, iso, retraction, and coretraction.

Let C be a category, let o be an object of C, and let A, B be mono morphisms
from o to o. Note that A ·B is mono.

Let C be a category, let o be an object of C, and let A, B be epi morphisms
from o to o. Observe that A ·B is epi.

Let C be a category, let o be an object of C, and let A, B be iso morphisms
from o to o. One can verify that A ·B is iso.

Let C be a category, let o be an object of C, and let A, B be retraction
morphisms from o to o. Observe that A ·B is retraction.

Let C be a category, let o be an object of C, and let A, B be coretraction
morphisms from o to o. One can check that A ·B is coretraction.

Let C be a graph and let o be an object of C. We say that o is initial if and
only if:

(Def. 9) For every object o1 of C there exists a morphism M from o to o1 such
that M ∈ 〈o, o1〉 and 〈o, o1〉 is trivial.

One can prove the following two propositions:

(25) Let C be a graph and o be an object of C. Then o is initial if and only if
for every object o1 of C there exists a morphism M from o to o1 such that
M ∈ 〈o, o1〉 and for every morphism M1 from o to o1 such that M1 ∈ 〈o, o1〉
holds M = M1.

(26) For every category C and for all objects o1, o2 of C such that o1 is initial
and o2 is initial holds o1, o2 are iso .

Let C be a graph and let o be an object of C. We say that o is terminal if
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and only if:

(Def. 10) For every object o1 of C there exists a morphism M from o1 to o such
that M ∈ 〈o1, o〉 and 〈o1, o〉 is trivial.

Next we state two propositions:

(27) Let C be a graph and o be an object of C. Then o is terminal if and
only if for every object o1 of C there exists a morphism M from o1 to o

such that M ∈ 〈o1, o〉 and for every morphism M1 from o1 to o such that
M1 ∈ 〈o1, o〉 holds M = M1.

(28) For every category C and for all objects o1, o2 of C such that o1 is
terminal and o2 is terminal holds o1, o2 are iso .

Let C be a graph and let o be an object of C. We say that o is zero if and
only if:

(Def. 11) o is initial and terminal.

We now state the proposition

(29) For every category C and for all objects o1, o2 of C such that o1 is zero
and o2 is zero holds o1, o2 are iso .

Let C be a non empty category structure, let o1, o2 be objects of C, and
let M be a morphism from o1 to o2. We say that M is zero if and only if the
condition (Def. 12) is satisfied.

(Def. 12) Let o be an object of C. Suppose o is zero. Let A be a morphism from
o1 to o and B be a morphism from o to o2. Then M = B ·A.

We now state the proposition

(30) Let C be a category, o1, o2, o3 be objects of C, M1 be a morphism from
o1 to o2, and M2 be a morphism from o2 to o3. If M1 is zero and M2 is
zero, then M2 ·M1 is zero.
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Summary. A. Abian [1] proved the following theorem:

Let f be a mapping from a finite set D. Then f has a fixed point
if and only if D is not a union of three mutually disjoint sets A, B

and C such that

A ∩ f [A] = B ∩ f [B] = C ∩ f [C] = ∅.

(The range of f is not necessarily the subset of its domain). The proof of the
sufficiency is by induction on the number of elements of D. A.Ma̧kowski and
K.Wiśniewski [12] have shown that the assumption of finiteness is superfluous.
They proved their version of the theorem for f being a function from D into D.
In the proof, the required partition was constructed and the construction used
the axiom of choice. Their main point was to demonstrate that the use of this
axiom in the proof is essential. We have proved in Mizar the generalized version
of Abian’s theorem, i.e. without assuming finiteness of D. We have simplified the
proof from [12] which uses well-ordering principle and transfinite ordinals—our
proof does not use these notions but otherwise is based on their idea (we employ
choice functions).

MML Identifier: ABIAN.

The terminology and notation used here are introduced in the following articles:
[18], [21], [9], [6], [19], [17], [7], [13], [8], [22], [3], [4], [5], [16], [20], [2], [14], [10],
[11], and [15].
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1. Preliminaries

For simplicity, we adopt the following rules: x, y, E, E1, E2, E3 are sets, s1

is a family of subsets of E, f is a function from E into E, and k, l, n are natural
numbers.

Let i be an integer. We say that i is even if and only if:

(Def. 1) There exists an integer j such that i = 2 · j.
We introduce i is odd as an antonym of i is even.

Let n be a natural number. Let us observe that n is even if and only if:

(Def. 2) There exists k such that n = 2 · k.

We introduce n is odd as an antonym of n is even.
One can check the following observations:

∗ there exists a natural number which is even,

∗ there exists a natural number which is odd,

∗ there exists an integer which is even, and

∗ there exists an integer which is odd.

One can prove the following proposition

(1) For every integer i holds i is odd iff there exists an integer j such that
i = 2 · j + 1.

Let i be an integer. Note that 2 · i is even.
Let i be an even integer. Note that i + 1 is odd.
Let i be an odd integer. Observe that i + 1 is even.
Let i be an even integer. One can verify that i− 1 is odd.
Let i be an odd integer. Note that i− 1 is even.
Let i be an even integer and let j be an integer. One can check that i · j is

even and j · i is even.
Let i, j be odd integers. Note that i · j is odd.
Let i, j be even integers. One can check that i + j is even.
Let i be an even integer and let j be an odd integer. Note that i + j is odd

and j + i is odd.
Let i, j be odd integers. Observe that i + j is even.
Let i be an even integer and let j be an odd integer. Observe that i − j is

odd and j − i is odd.
Let i, j be odd integers. One can verify that i− j is even.
Let us consider E, f , n. Then fn is a function from E into E.
Let A be a set and let B be a set with a non-empty element. One can verify

that there exists a function from A into B which is non-empty.
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Let A be a non empty set, let B be a set with a non-empty element, let f

be a non-empty function from A into B, and let a be an element of A. One can
verify that f(a) is non empty.

Let X be a non empty set. Note that 2X has a non-empty element.
We now state two propositions:

(2) For every non empty subset S of N such that 0 ∈ S holds min S = 0.

(3) For every non empty set E and for every function f from E into E and
for every element x of E holds f0(x) = x.

Let f be a function. We say that f has a fixpoint if and only if:

(Def. 3) There exists x which is a fixpoint of f .

We introduce f has no fixpoint as an antonym of f has a fixpoint.
Let X be a set and let x be an element of X. We say that x is covering if

and only if:

(Def. 4)
⋃

x =
⋃ ⋃

X.

One can prove the following proposition

(4) s1 is covering iff
⋃

s1 = E.

Let us consider E. One can verify that there exists a family of subsets of E

which is non empty, finite, and covering.

2. Abian’s Theorem

One can prove the following proposition

(5) Let E be a set, f be a function from E into E, and s1 be a non empty
covering family of subsets of E such that for every element X of s1 holds
X misses f◦X. Then f has no fixpoint.

Let us consider E, f . The functor f≡ yielding an equivalence relation of E

is defined by:

(Def. 5) For all x, y such that x ∈ E and y ∈ E holds 〈〈x, y〉〉 ∈ f≡ iff there exist
k, l such that fk(x) = f l(y).

One can prove the following three propositions:

(6) Let E be a non empty set, f be a function from E into E, c be an element
of Classes(f≡), and e be an element of c. Then f(e) ∈ c.

(7) Let E be a non empty set, f be a function from E into E, c be an element
of Classes(f≡), e be an element of c, and given n. Then fn(e) ∈ c.

(8) Let E be a non empty set and f be a function from E into E. Suppose f

has no fixpoint. Then there exist E1, E2, E3 such that E1 ∪E2 ∪E3 = E

and f◦E1 misses E1 and f◦E2 misses E2 and f◦E3 misses E3.
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Summary. Four statements equivalent to well-foundedness (well-founded
induction, existence of recursively defined functions, uniqueness of recursively de-
fined functions, and absence of descending ω-chains) have been proved in Mizar
and the proofs were mechanically checked for correctness. It seems not to be wi-
dely known that the existence (without the uniqueness assumption) of recursively
defined functions implies well-foundedness. In the proof we used regular cardinals,
a fairly advanced notion of set theory. This work was inspired by T. Franzen’s pa-
per [17]. Franzen’s proofs were written by a mathematician having an argument
with a computer scientist. We were curious about the effort needed to formalize
Franzen’s proofs given the state of the Mizar Mathematical Library at that time
(July 1996). The formalization went quite smoothly once the mathematics was
sorted out.

MML Identifier: WELLFND1.

The articles [23], [3], [25], [14], [26], [11], [19], [27], [13], [12], [21], [4], [6], [5], [16],
[2], [1], [24], [22], [9], [10], [20], [7], [15], [18], and [8] provide the terminology
and notation for this paper.

1. Preliminaries

Let R be a 1-sorted structure, let X be a set, and let p be a partial function
from the carrier of R to X. Then dom p is a subset of R.

Next we state two propositions:

(1) For every set X and for all functions f , g such that f ⊆ g and X ⊆ dom f

holds f¹X = g¹X.

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
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(2) Let X be a functional set. Suppose that for all functions f , g such that
f ∈ X and g ∈ X holds f ≈ g. Then

⋃
X is a function.

The scheme PFSeparation concerns sets A, B and a unary predicate P, and
states that:

There exists a subset P1 of A→̇B such that for every partial func-
tion p1 from A to B holds p1 ∈ P1 iff P[p1]

for all values of the parameters.
Let X be a set. Observe that X+ is non empty.
Let us note that there exists an aleph which is regular.
One can prove the following two propositions:

(3) For every regular aleph M and for every set X such that X ⊆ M and
X ∈M holds sup X ∈M.

(4) For every relational structure R and for every set x holds (the internal
relation of R)-Seg(x) ⊆ the carrier of R.

Let R be a relational structure and let X be a subset of R. Let us observe
that X is lower if and only if:

(Def. 1) For all sets x, y such that x ∈ X and 〈〈y, x〉〉 ∈ the internal relation of R

holds y ∈ X.

Next we state two propositions:

(5) Let R be a relational structure, X be a subset of R, and x be a set. If
X is lower and x ∈ X, then (the internal relation of R)-Seg(x) ⊆ X.

(6) Let R be a relational structure, X be a lower subset of R, Y be a subset of
R, and x be a set. If Y = X∪{x} and (the internal relation of R)-Seg(x) ⊆
X, then Y is lower.

2. Well Founded Relational Structures

Let R be a relational structure. We say that R is well founded if and only if:

(Def. 2) The internal relation of R is well founded in the carrier of R.

Let us mention that there exists a relational structure which is non empty
and well founded.

Let R be a relational structure and let X be a subset of R. We say that X

is well founded if and only if:

(Def. 3) The internal relation of R is well founded in X.

Let R be a relational structure. Note that there exists a subset of R which
is well founded.

Let R be a relational structure. The functor WF-Part(R) yielding a subset
of R is defined by:
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(Def. 4) WF-Part(R) =
⋃{S, S ranges over subsets of R: S is well founded and

lower}.
Let R be a relational structure. One can verify that WF-Part(R) is lower

and well founded.
One can prove the following four propositions:

(7) Let R be a non empty relational structure and x be an element of the
carrier of R. Then {x} is a well founded subset of R.

(8) Let R be a relational structure and X, Y be well founded subsets of R.
If X is lower, then X ∪ Y is a well founded subset of R.

(9) For every relational structure R holds R is well founded iff
WF-Part(R) = the carrier of R.

(10) Let R be a non empty relational structure and x be an element of the
carrier of R. If (the internal relation of R)-Seg(x) ⊆ WF-Part(R), then
x ∈WF-Part(R).

The scheme WFMin deals with a non empty relational structure A, an ele-
ment B of A, and a unary predicate P, and states that:

There exists an element x of A such that P[x] and it is not true
that there exists an element y of A such that x 6= y and P[y] and
〈〈y, x〉〉 ∈ the internal relation of A

provided the parameters meet the following requirements:
• P[B], and
• A is well founded.

We now state the proposition

(11) Let R be a non empty relational structure. Then R is well founded if
and only if for every set S such that for every element x of the carrier of
R such that (the internal relation of R)-Seg(x) ⊆ S holds x ∈ S holds the
carrier of R ⊆ S.

The scheme WFInduction deals with a non empty relational structure A and
a unary predicate P, and states that:

For every element x of A holds P[x]
provided the parameters meet the following conditions:
• Let x be an element of A. Suppose that for every element y of
A such that y 6= x and 〈〈y, x〉〉 ∈ the internal relation of A holds
P[y]. Then P[x], and

• A is well founded.
Let R be a non empty relational structure, let V be a non empty set, let H

be a function from [: the carrier of R, (the carrier of R)→̇V :] into V , and let F

be a function. We say that F is recursively expressed by H if and only if:

(Def. 5) For every element x of the carrier of R holds F (x) = H(〈〈x, F ¹(the
internal relation of R)-Seg(x)〉〉).
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One can prove the following propositions:

(12) Let R be a non empty relational structure. Then R is well founded if
and only if for every non empty set V and for every function H from [: the
carrier of R, (the carrier of R)→̇V :] into V holds there exists a function
from the carrier of R into V which is recursively expressed by H.

(13) Let R be a non empty relational structure and V be a non trivial set.
Suppose that for every function H from [: the carrier of R, (the carrier of
R)→̇V :] into V and for all functions F1, F2 from the carrier of R into V

such that F1 is recursively expressed by H and F2 is recursively expressed
by H holds F1 = F2. Then R is well founded.

(14) Let R be a non empty well founded relational structure, V be a non
empty set, H be a function from [: the carrier of R, (the carrier of R)→̇V :]
into V , and F1, F2 be functions from the carrier of R into V . Suppose F1

is recursively expressed by H and F2 is recursively expressed by H. Then
F1 = F2.

Let S be a set. Let us assume that contradiction.2

(Def. 6) choose(S) is an element of S.

Let R be a relational structure and let f be a sequence of R. We say that f

is descending if and only if:

(Def. 7) For every natural number n holds f(n+1) 6= f(n) and 〈〈f(n+1), f(n)〉〉 ∈
the internal relation of R.

One can prove the following proposition

(15) For every non empty relational structure R holds R is well founded iff
there exists no sequence of R which is descending.
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1. Preliminaries

The scheme LambdaCD deals with a non empty set A, a unary functor F
yielding a set, a unary functor G yielding a set, and a unary predicate P, and
states that:

There exists a function f such that dom f = A and for every
element x of A holds if P[x], then f(x) = F(x) and if not P[x],
then f(x) = G(x)

for all values of the parameters.
The following propositions are true:

(1) Let L be a non empty reflexive transitive relational structure and x, y

be elements of L. If x ¬ y, then compactbelow(x) ⊆ compactbelow(y).
(2) For every non empty reflexive relational structure L and for every ele-

ment x of L holds compactbelow(x) is a subset of CompactSublatt(L).
(3) For every relational structure L and for every relational substructure S

of L holds every subset of S is a subset of L.
1This work was partially supported by KBN Grant 8 T11C 018 12.
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(4) For every non empty reflexive transitive relational structure L with
l.u.b.’s holds the carrier of L is an ideal of L.

(5) Let L1 be a lower-bounded non empty reflexive antisymmetric relational
structure and L2 be a non empty reflexive antisymmetric relational struc-
ture. Suppose the relational structure of L1 = the relational structure of
L2 and L1 is up-complete. Then the carrier of CompactSublatt(L1) = the
carrier of CompactSublatt(L2).

2. Algebraic and Arithmetic Lattices

Next we state three propositions:

(6) For every algebraic lower-bounded lattice L holds every continuous sub-
frame of L is algebraic.

(7) Let X, E be sets and L be a continuous subframe of 2X
⊆ . Then E ∈ the

carrier of CompactSublatt(L) if and only if there exists an element F of 2X
⊆

such that F is finite and E =
⋂{Y, Y ranges over elements of L: F ⊆ Y }

and F ⊆ E.

(8) For every lower-bounded sup-semilattice L holds 〈Ids(L),⊆〉 is a conti-
nuous subframe of 2the carrier of L

⊆ .

Let L be a non empty reflexive transitive relational structure. Observe that
there exists an ideal of L which is principal.

One can prove the following propositions:

(9) For every lower-bounded sup-semilattice L and for every non empty di-
rected subset X of 〈Ids(L),⊆〉 holds sup X =

⋃
X.

(10) For every lower-bounded sup-semilattice S holds 〈Ids(S),⊆〉 is algebraic.

(11) Let S be a lower-bounded sup-semilattice and x be an element of
〈Ids(S),⊆〉. Then x is compact if and only if x is a principal ideal of
S.

(12) Let S be a lower-bounded sup-semilattice and x be an element of
〈Ids(S),⊆〉. Then x is compact if and only if there exists an element a

of S such that x = ↓a.

(13) Let L be a lower-bounded sup-semilattice and f be a map from L into
CompactSublatt(〈Ids(L),⊆〉). If for every element x of L holds f(x) = ↓x,

then f is isomorphic.

(14) For every lower-bounded lattice S holds 〈Ids(S),⊆〉 is arithmetic.

(15) For every lower-bounded sup-semilattice L holds CompactSublatt(L) is
a lower-bounded sup-semilattice.
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(16) Let L be an algebraic lower-bounded sup-semilattice and f be a map
from L into 〈Ids(CompactSublatt(L)),⊆〉. If for every element x of L holds
f(x) = compactbelow(x), then f is isomorphic.

(17) Let L be an algebraic lower-bounded sup-semilattice and x be an element
of L. Then compactbelow(x) is a principal ideal of CompactSublatt(L) if
and only if x is compact.

3. Maps

We now state three propositions:

(18) Let L1, L2 be non empty relational structures, X be a subset of L1, x

be an element of L1, and f be a map from L1 into L2. If f is isomorphic,
then x ¬ X iff f(x) ¬ f◦X.

(19) Let L1, L2 be non empty relational structures, X be a subset of L1, x

be an element of L1, and f be a map from L1 into L2. If f is isomorphic,
then x ­ X iff f(x) ­ f◦X.

(20) Let L1, L2 be non empty antisymmetric relational structures and f be
a map from L1 into L2. If f is isomorphic, then f is infs-preserving and
sups-preserving.

Let L1, L2 be non empty antisymmetric relational structures. Note that
every map from L1 into L2 which is isomorphic is also infs-preserving and sups-
preserving.

We now state a number of propositions:

(21) Let L1, L2, L3 be non empty transitive antisymmetric relational structu-
res and f be a map from L1 into L2. Suppose f is infs-preserving. Suppose
L2 is a full infs-inheriting relational substructure of L3 and L3 is complete.
Then there exists a map g from L1 into L3 such that f = g and g is infs-
preserving.

(22) Let L1, L2, L3 be non empty transitive antisymmetric relational structu-
res and f be a map from L1 into L2. Suppose f is monotone and directed-
sups-preserving. Suppose L2 is a full directed-sups-inheriting relational
substructure of L3 and L3 is complete. Then there exists a map g from L1

into L3 such that f = g and g is directed-sups-preserving.

(23) For every lower-bounded sup-semilattice L holds 〈Ids(CompactSublatt
(L)),⊆〉 is a continuous subframe of 2the carrier of CompactSublatt(L)

⊆ .

(24) Let L be an algebraic lower-bounded lattice. Then there exists a map g

from L into 2the carrier of CompactSublatt(L)
⊆ such that

(i) g is infs-preserving, directed-sups-preserving, and one-to-one, and
(ii) for every element x of L holds g(x) = compactbelow(x).
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(25) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
every element i of I holds J(i) is an algebraic lower-bounded lattice. Then∏

J is an algebraic lower-bounded lattice.

(26) Let L1, L2 be non empty relational structures. Suppose the relational
structure of L1 = the relational structure of L2. Then L1 and L2 are
isomorphic.

(27) Let L1, L2 be up-complete non empty posets and f be a map from L1

into L2. Suppose f is isomorphic. Let x, y be elements of L1. Then x� y

if and only if f(x)� f(y).
(28) Let L1, L2 be up-complete non empty posets and f be a map from L1

into L2. Suppose f is isomorphic. Let x be an element of L1. Then x is
compact if and only if f(x) is compact.

(29) Let L1, L2 be up-complete non empty posets and f be a map from
L1 into L2. If f is isomorphic, then for every element x of L1 holds
f◦ compactbelow(x) = compactbelow(f(x)).

(30) For all non empty posets L1, L2 such that L1 and L2 are isomorphic and
L1 is up-complete holds L2 is up-complete.

(31) For all non empty posets L1, L2 such that L1 and L2 are isomorphic and
L1 is complete and satisfies axiom K holds L2 satisfies axiom K.

(32) Let L1, L2 be sup-semilattices. Suppose L1 and L2 are isomorphic and
L1 is lower-bounded and algebraic. Then L2 is algebraic.

(33) For every continuous lower-bounded sup-semilattice L holds SupMap(L)
is infs-preserving and sups-preserving.

(34) Let L be a lower-bounded lattice. Then L is algebraic if and only if
there exists a set X and there exists a full relational substructure S of 2X

⊆
such that S is infs-inheriting and directed-sups-inheriting and L and S are
isomorphic.

(35) Let L be a lower-bounded lattice. Then L is algebraic if and only if there
exists a set X and there exists a closure map c from 2X

⊆ into 2X
⊆ such that

c is directed-sups-preserving and L and Im c are isomorphic.
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1. Preliminaries

We adopt the following convention: i, i1, i2, i3, j, k, n denote natural numbers
and r1, r2, s, s1 denote real numbers.

The following propositions are true:

(1) If n−′ i = 0, then n ¬ i.

(2) If i ¬ j, then (j + k)−′ i = (j + k)− i.

1This paper was written while the author visited Shinshu University in fall 1996.
2This paper was written while the author visited Shinshu University in winter 1997.
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(3) If i ¬ j, then (j + k)−′ i = j −′ i + k.

(4) If i1 6= 0 and i2 = i3 · i1, then i3 ¬ i2.

(5) If i1 < i2, then i1 ÷ i2 = 0.

(6) If 0 < j and j < i and i < j + j, then i mod j 6= 0.

(7) If 0 < j and j ¬ i and i < j + j, then imod j = i− j and imod j = i−′ j.
(8) If 0 < j, then (j + j) mod j = 0 and k · j mod j = 0.

(9) If 0 < k and k ¬ j and k mod j = 0, then k = j.

(10) (r1 + s1 + r2) − s1 = r1 + r2 and (r1 − s1) + r2 + s1 = r1 + r2 and
(r1 + s1)− r2 − s1 = r1 − r2 and (r1 − s1 − r2) + s1 = r1 − r2.

(11) r1 − r1 − r2 = −r2 and (−r1 + r1) − r2 = −r2 and r1 − r2 − r1 = −r2

and (−r1 − r2) + r1 = −r2.

(12) If 0 < s and if s · r1 ¬ s · r2 or r1 · s ¬ r2 · s, then r1 ¬ r2.

(13) If 0 < s and if s · r1 < s · r2 or r1 · s < r2 · s, then r1 < r2.

2. Some facts about cutting of finite sequences

In the sequel D denotes a non empty set, f1 denotes a finite sequence of
elements of D, and f denotes a non constant standard special circular sequence.

We now state a number of propositions:

(14) For every f1 such that f1 is circular and 1 ¬ len f1 holds f1(1) =
f1(len f1).

(15) For all f1, i1, i2 such that i1 ¬ i2 holds f1¹i1¹i2 = f1¹i1 and f1¹i2¹i1 =
f1¹i1.

(16) εD¹i = εD.

(17) Rev(εD) = εD.

(18) For all f1, k such that k < len f1 holds (f1)ºk(len((f1)ºk)) = f1(len f1)
and πlen((f1)ºk)(f1)ºk = πlen f1f1.

(19) Let g be a finite sequence of elements of E2
T and given i. If g is a special

sequence and i + 1 < len g, then gºi is a special sequence.

(20) For all f1, i1, i2 such that 1 ¬ i2 and i2 ¬ i1 and i1 ¬ len f1 holds
len mid(f1, i2, i1) = i1 −′ i2 + 1.

(21) For all f1, i1, i2 such that 1 ¬ i2 and i2 ¬ i1 and i1 ¬ len f1 holds
len mid(f1, i1, i2) = i1 −′ i2 + 1.

(22) For all f1, i1, i2, j such that 1 ¬ i1 and i1 ¬ i2 and i2 ¬ len f1 holds
(mid(f1, i1, i2))(len mid(f1, i1, i2)) = f1(i2).

(23) For all f1, i1, i2, j such that 1 ¬ i1 and i1 ¬ len f1 and 1 ¬ i2 and
i2 ¬ len f1 holds (mid(f1, i1, i2))(len mid(f1, i1, i2)) = f1(i2).



subsequences of standard special circular . . . 353

(24) For all f1, i1, i2, j such that 1 ¬ i2 and i2 ¬ i1 and i1 ¬ len f1 and 1 ¬ j

and j ¬ i1 −′ i2 + 1 holds (mid(f1, i1, i2))(j) = f1(i1 −′ j + 1).
(25) Let given f1, i1, i2. Suppose 1 ¬ i2 and i2 ¬ i1 and i1 ¬ len f1 and 1 ¬ j

and j ¬ i1 −′ i2 + 1. Then (mid(f1, i1, i2))(j) = (mid(f1, i2, i1))((((i1 −
i2) + 1)− j) + 1) and (((i1 − i2) + 1)− j) + 1 = (i1 −′ i2 + 1)−′ j + 1.

(26) Let given f1, i1, i2. Suppose 1 ¬ i1 and i1 ¬ i2 and i2 ¬ len f1 and 1 ¬ j

and j ¬ i2 −′ i1 + 1. Then (mid(f1, i1, i2))(j) = (mid(f1, i2, i1))((((i2 −
i1) + 1)− j) + 1) and (((i2 − i1) + 1)− j) + 1 = (i2 −′ i1 + 1)−′ j + 1.

(27) For all f1, k such that 1 ¬ k and k ¬ len f1 holds mid(f1, k, k) = 〈πkf1〉
and len mid(f1, k, k) = 1.

(28) mid(f1, 0, 0) = f1¹1.

(29) For all f1, k such that len f1 < k holds mid(f1, k, k) = εD.

(30) For all f1, i1, i2 holds mid(f1, i1, i2) = Rev(mid(f1, i2, i1)).
(31) Let f be a finite sequence of elements of E2

T and given i1, i2, i. If 1 ¬
i1 and i1 < i2 and i2 ¬ len f and 1 ¬ i and i < i2 −′ i1 + 1, then
L(mid(f, i1, i2), i) = L(f, (i + i1)−′ 1).

(32) Let f be a finite sequence of elements of E2
T and given i1, i2, i. If 1 ¬

i1 and i1 < i2 and i2 ¬ len f and 1 ¬ i and i < i2 −′ i1 + 1, then
L(mid(f, i2, i1), i) = L(f, i2 −′ i).

3. Dividing of special circular sequences into parts

Let n be a natural number and let f be a finite sequence. The functor
S Drop(n, f) yields a natural number and is defined by:

(Def. 1) S Drop(n, f) =
{

n mod len f −′ 1, if n mod len f −′ 1 6= 0,

len f −′ 1, otherwise.
Next we state three propositions:

(33) For every finite sequence f such that 0 < len f−′ 1 holds S Drop(len f−′
1, f) = len f −′ 1.

(34) For every natural number n and for every finite sequence f such that
1 ¬ n and n ¬ len f −′ 1 holds S Drop(n, f) = n.

(35) Let n be a natural number and f be a finite sequence. If len f > 1
or len f −′ 1 > 0, then S Drop(n, f) = S Drop(n + len f −′ 1, f) and
S Drop(n, f) = S Drop(len f −′ 1 + n, f).

Let f be a non constant standard special circular sequence, let g be a finite
sequence of elements of E2

T, and let i1, i2 be natural numbers. We say that g is
a right part of f from i1 to i2 if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) 1 ¬ i1,
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(ii) i1 + 1 ¬ len f,

(iii) 1 ¬ i2,

(iv) i2 + 1 ¬ len f,

(v) g(len g) = f(i2),
(vi) 1 ¬ len g,

(vii) len g < len f, and
(viii) for every natural number i such that 1 ¬ i and i ¬ len g holds g(i) =

f(S Drop((i1 + i)−′ 1, f)).
Let f be a non constant standard special circular sequence, let g be a finite

sequence of elements of E2
T, and let i1, i2 be natural numbers. We say that g is

a left part of f from i1 to i2 if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) 1 ¬ i1,

(ii) i1 + 1 ¬ len f,

(iii) 1 ¬ i2,

(iv) i2 + 1 ¬ len f,

(v) g(len g) = f(i2),
(vi) 1 ¬ len g,

(vii) len g < len f, and
(viii) for every natural number i such that 1 ¬ i and i ¬ len g holds g(i) =

f(S Drop((len f + i1)−′ i, f)).
Let f be a non constant standard special circular sequence, let g be a finite

sequence of elements of E2
T, and let i1, i2 be natural numbers. We say that g is

a part of f from i1 to i2 if and only if:

(Def. 4) g is a right part of f from i1 to i2 or a left part of f from i1 to i2.

We now state a number of propositions:

(36) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
part of f from i1 to i2. Then

(i) 1 ¬ i1,

(ii) i1 + 1 ¬ len f,

(iii) 1 ¬ i2,

(iv) i2 + 1 ¬ len f,

(v) g(len g) = f(i2),
(vi) 1 ¬ len g,

(vii) len g < len f, and
(viii) for every natural number i such that 1 ¬ i and i ¬ len g holds g(i) =

f(S Drop((i1 + i) −′ 1, f)) or for every natural number i such that 1 ¬ i

and i ¬ len g holds g(i) = f(S Drop((len f + i1)−′ i, f)).
(37) Let f be a non constant standard special circular sequence, g be a finite

sequence of elements of E2
T, and i1, i2 be natural numbers. Suppose g is
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a right part of f from i1 to i2 and i1 ¬ i2. Then len g = i2 −′ i1 + 1 and
g = mid(f, i1, i2).

(38) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is
a right part of f from i1 to i2 and i1 > i2. Then len g = (len f + i2)−′ i1
and g = (mid(f, i1, len f −′ 1)) a (f¹i2) and g = (mid(f, i1, len f −′ 1)) a

mid(f, 1, i2).
(39) Let f be a non constant standard special circular sequence, g be a finite

sequence of elements of E2
T, and i1, i2 be natural numbers. Suppose g is

a left part of f from i1 to i2 and i1 ­ i2. Then len g = i1 −′ i2 + 1 and
g = mid(f, i1, i2).

(40) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
left part of f from i1 to i2 and i1 < i2. Then len g = (len f + i1)−′ i2 and
g = (mid(f, i1, 1)) a mid(f, len f −′ 1, i2).

(41) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
right part of f from i1 to i2. Then Rev(g) is a left part of f from i2 to i1.

(42) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
left part of f from i1 to i2. Then Rev(g) is a right part of f from i2 to i1.

(43) Let f be a non constant standard special circular sequence and i1, i2 be
natural numbers. If 1 ¬ i1 and i1 ¬ i2 and i2 < len f, then mid(f, i1, i2)
is a right part of f from i1 to i2.

(44) Let f be a non constant standard special circular sequence and i1, i2 be
natural numbers. If 1 ¬ i1 and i1 ¬ i2 and i2 < len f, then mid(f, i2, i1)
is a left part of f from i2 to i1.

(45) Let f be a non constant standard special circular sequence and i1, i2
be natural numbers. Suppose 1 ¬ i2 and i1 > i2 and i1 < len f. Then
(mid(f, i1, len f −′ 1)) a mid(f, 1, i2) is a right part of f from i1 to i2.

(46) Let f be a non constant standard special circular sequence and i1, i2
be natural numbers. Suppose 1 ¬ i1 and i1 < i2 and i2 < len f. Then
(mid(f, i1, 1)) a mid(f, len f −′ 1, i2) is a left part of f from i1 to i2.

(47) Let h be a finite sequence of elements of E2
T and given i1, i2. If 1 ¬ i1

and i1 ¬ len h and 1 ¬ i2 and i2 ¬ len h, then L̃(mid(h, i1, i2)) ⊆ L̃(h).
(48) Let g be a finite sequence of elements of D. Then g is one-to-one if and

only if for all i1, i2 such that 1 ¬ i1 and i1 ¬ len g and 1 ¬ i2 and i2 ¬ len g

and g(i1) = g(i2) or πi1g = πi2g holds i1 = i2.

(49) Let f be a non constant standard special circular sequence and given i2.
If 1 < i2 and i2 + 1 ¬ len f, then f¹i2 is a special sequence.
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(50) Let f be a non constant standard special circular sequence and given i2.
If 1 ¬ i2 and i2 + 1 < len f, then fºi2 is a special sequence.

(51) Let f be a non constant standard special circular sequence and given i1,
i2. If 1 ¬ i1 and i1 < i2 and i2 + 1 ¬ len f, then mid(f, i1, i2) is a special
sequence.

(52) Let f be a non constant standard special circular sequence and given
i1, i2. If 1 < i1 and i1 < i2 and i2 ¬ len f, then mid(f, i1, i2) is a special
sequence.

(53) For all points p0, p, q1, q2 of E2
T such that p0 ∈ L(p, q1) and p0 ∈ L(p, q2)

and p 6= p0 holds q1 ∈ L(p, q2) or q2 ∈ L(p, q1).

(54) For every non constant standard special circular sequence f holds
L(f, 1) ∩ L(f, len f −′ 1) = {f(1)}.

(55) Let f be a non constant standard special circular sequence, i1, i2 be
natural numbers, and g1, g2 be finite sequences of elements of E2

T. Suppose
1 ¬ i1 and i1 < i2 and i2 < len f and g1 = mid(f, i1, i2) and g2 =
(mid(f, i1, 1)) a mid(f, len f −′ 1, i2). Then L̃(g1) ∩ L̃(g2) = {f(i1), f(i2)}
and L̃(g1) ∪ L̃(g2) = L̃(f).

(56) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
right part of f from i1 to i2 and i1 < i2. Then L̃(g) is a special polygonal
arc joining πi1f and πi2f.

(57) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
left part of f from i1 to i2 and i1 > i2. Then L̃(g) is a special polygonal
arc joining πi1f and πi2f.

(58) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
right part of f from i1 to i2 and i1 6= i2. Then L̃(g) is a special polygonal
arc joining πi1f and πi2f.

(59) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
left part of f from i1 to i2 and i1 6= i2. Then L̃(g) is a special polygonal
arc joining πi1f and πi2f.

(60) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
part of f from i1 to i2 and i1 6= i2. Then L̃(g) is a special polygonal arc
joining πi1f and πi2f.

(61) Let f be a non constant standard special circular sequence, g be a finite
sequence of elements of E2

T, and i1, i2 be natural numbers. Suppose g is a
part of f from i1 to i2 and g(1) 6= g(len g). Then L̃(g) is a special polygonal
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arc joining πi1f and πi2f.

(62) Let f be a non constant standard special circular sequence and i1, i2
be natural numbers. Suppose 1 ¬ i1 and i1 + 1 ¬ len f and 1 ¬ i2 and
i2 + 1 ¬ len f and i1 6= i2. Then there exist finite sequences g1, g2 of
elements of E2

T such that
(i) g1 is a part of f from i1 to i2,
(ii) g2 is a part of f from i1 to i2,
(iii) L̃(g1) ∩ L̃(g2) = {f(i1), f(i2)},
(iv) L̃(g1) ∪ L̃(g2) = L̃(f),
(v) L̃(g1) is a special polygonal arc joining πi1f and πi2f,

(vi) L̃(g2) is a special polygonal arc joining πi1f and πi2f, and
(vii) for every finite sequence g of elements of E2

T such that g is a part of f

from i1 to i2 holds g = g1 or g = g2.

In the sequel g1, g2 are finite sequences of elements of E2
T.

We now state several propositions:

(63) Let f be a non constant standard special circular sequence and P be a
non empty subset of the carrier of (E2

T).If P = L̃(f), then P is a simple
closed curve.

(64) Let f be a non constant standard special circular sequence and given g1,
g2. Suppose g1 is a right part of f from i1 to i2 and g2 is a right part of f

from i1 to i2. Then g1 = g2.

(65) Let f be a non constant standard special circular sequence and given g1,
g2. Suppose g1 is a left part of f from i1 to i2 and g2 is a left part of f

from i1 to i2. Then g1 = g2.

(66) Let f be a non constant standard special circular sequence and given g1,
g2. Suppose i1 6= i2 and g1 is a right part of f from i1 to i2 and g2 is a left
part of f from i1 to i2. Then g1(2) 6= g2(2).

(67) Let f be a non constant standard special circular sequence and given g1,
g2. Suppose i1 6= i2 and g1 is a part of f from i1 to i2 and g2 is a part of
f from i1 to i2 and g1(2) = g2(2). Then g1 = g2.

Let f be a non constant standard special circular sequence and let i1, i2 be
natural numbers. Let us assume that 1 ¬ i1 and i1 + 1 ¬ len f and 1 ¬ i2 and
i2 + 1 ¬ len f and i1 6= i2. The functor Lower(f, i1, i2) yields a finite sequence
of elements of E2

T and is defined by the conditions (Def. 5).

(Def. 5)(i) Lower(f, i1, i2) is a part of f from i1 to i2,
(ii) if (πi1+1f)1 < (πi1f)1 or (πi1+1f)2 < (πi1f)2, then (Lower(f, i1, i2))(2) =

f(i1 + 1), and
(iii) if (πi1+1f)1 ­ (πi1f)1 and (πi1+1f)2 ­ (πi1f)2, then

(Lower(f, i1, i2))(2) = f(S Drop(i1 −′ 1, f)).
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The functor Upper(f, i1, i2) yielding a finite sequence of elements of E2
T is defined

by the conditions (Def. 6).

(Def. 6)(i) Upper(f, i1, i2) is a part of f from i1 to i2,
(ii) if (πi1+1f)1 > (πi1f)1 or (πi1+1f)2 > (πi1f)2, then (Upper(f, i1, i2))(2) =

f(i1 + 1), and
(iii) if (πi1+1f)1 ¬ (πi1f)1 and (πi1+1f)2 ¬ (πi1f)2, then

(Upper(f, i1, i2))(2) = f(S Drop(i1 −′ 1, f)).
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The articles [8], [6], [5], [7], [1], [9], [2], [4], [11], [3], and [10] provide the termi-
nology and notation for this paper.

1. Preliminaries

In this paper V , C are sets.
Let us consider V , C. The functor SubstitutionSet(V,C) yielding a subset

of Fin(V →̇C) is defined as follows:

(Def. 1) SubstitutionSet(V,C) = {A,A ranges over elements of Fin(V →̇C) :∧
s,t : element of V →̇C (s ∈ A ∧ t ∈ A ∧ s ⊆ t ⇒ s = t)}.

Next we state two propositions:

(1) ∅ ∈ SubstitutionSet(V, C).
(2) {∅} ∈ SubstitutionSet(V, C).
Let us consider V , C. One can check that SubstitutionSet(V,C) is non empty.
Let us consider V , C and let A, B be elements of SubstitutionSet(V,C).

Then A ∪B is an element of Fin(V →̇C).
Let us consider V , C. Note that there exists an element of SubstitutionSet(V, C)

which is non empty.
Let us consider V , C. Note that every element of SubstitutionSet(V,C) is

finite.
Let us consider V , C and let A be an element of Fin(V →̇C). The functor

¤c
A yields an element of SubstitutionSet(V, C) and is defined by:

(Def. 2) ¤c
A = {t, t ranges over elements of V →̇C :

∧
s : element of V →̇C (s ∈ A ∧

s ⊆ t ⇔ s = t)}.
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Let us consider V , C and let A be a non empty element of SubstitutionSet(V, C).
Note that every element of A is function-like and relation-like.

Let us consider V , C. One can verify that every element of V →̇C is function-
like and relation-like.

Let us consider V , C and let A, B be elements of Fin(V →̇C). The functor
A a B yields an element of Fin(V →̇C) and is defined as follows:

(Def. 3) A a B = {s ∪ t, s ranges over elements of V →̇C, t ranges over elements
of V →̇C : s ∈ A ∧ t ∈ B ∧ s ≈ t}.

In the sequel A, B, D are elements of Fin(V →̇C).
One can prove the following propositions:

(3) A a B = B a A.

(4) If B = {∅}, then A a B = A.

(5) For all sets a, b such that B ∈ SubstitutionSet(V, C) and a ∈ B and
b ∈ B and a ⊆ b holds a = b.

(6) For every set a such that a ∈ ¤c
B holds a ∈ B and for every set b such

that b ∈ B and b ⊆ a holds b = a.

(7) For every set a such that a ∈ B and for every set b such that b ∈ B and
b ⊆ a holds b = a holds a ∈ ¤c

B.

(8) ¤c
A ⊆ A.

(9) If A = ∅, then ¤c
A = ∅.

(10) For every set b such that b ∈ B there exists a set c such that c ⊆ b and
c ∈ ¤c

B.

(11) For every element K of SubstitutionSet(V, C) holds ¤c
K = K.

(12) ¤c
A∪B ⊆ ¤c

A ∪B.

(13) ¤c¤c
A∪B = ¤c

A∪B.

(14) If A ⊆ B, then A a D ⊆ B a D.

(15) For every set a such that a ∈ A a B there exist sets b, c such that b ∈ A

and c ∈ B and a = b ∪ c.

(16) For all elements b, c of V →̇C such that b ∈ A and c ∈ B and b ≈ c holds
b ∪ c ∈ A a B.

(17) ¤c
AaB ⊆ (¤c

A) a B.

(18) If A ⊆ B, then D a A ⊆ D a B.

(19) ¤c
(¤c

A)aB = ¤c
AaB.

(20) ¤c
Aa(¤c

B) = ¤c
AaB.

(21) For all elements K, L, M of Fin(V →̇C) holds Ka(LaM) = (KaL)aM.

(22) For all elements K, L, M of Fin(V →̇C) holds K a (L ∪M) = K a L ∪
K a M.

(23) B ⊆ B a B.
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(24) ¤c
AaA = ¤c

A.

(25) For every element K of SubstitutionSet(V,C) holds ¤c
KaK = K.

2. Definition of the lattice

Let us consider V , C. The functor SubstLatt(V, C) yielding a strict lattice
structure is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of SubstLatt(V, C) = SubstitutionSet(V, C), and
(ii) for all elements A, B of SubstitutionSet(V, C) holds (the join ope-

ration of SubstLatt(V, C))(A, B) = ¤c
A∪B and (the meet operation of

SubstLatt(V, C))(A, B) = ¤c
AaB.

Let us consider V , C. One can verify that SubstLatt(V, C) is non empty.
Let us consider V , C. Note that SubstLatt(V, C) is lattice-like.
Let us consider V , C. Observe that SubstLatt(V,C) is distributive and bo-

unded.
One can prove the following two propositions:

(26) ⊥SubstLatt(V,C) = ∅.
(27) >SubstLatt(V,C) = {∅}.
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Summary. This paper is preparation to prove Birkhoff’s Theorem. Some
properties of many sorted algebras are proved. The last section of this work
shows that every equation valid in a many sorted algebra is also valid in each
subalgebra, and each image of it. Moreover for a family of many sorted algebras
(Ai : i ∈ I) if every equation is valid in each Ai, i ∈ I then is also valid in productQ

(Ai : i ∈ I).

MML Identifier: EQUATION.

The articles [23], [28], [10], [29], [6], [9], [7], [24], [11], [4], [8], [1], [2], [25], [26],
[18], [19], [27], [20], [5], [12], [16], [17], [13], [22], [21], [15], [14], and [3] provide
the notation and terminology for this paper.

1. On the Functions and Many Sorted Functions

In this paper I is a set.
Next we state several propositions:

(1) Let A be a set, B, C be non empty sets, f be a function from A into B,
and g be a function from B into C. If rng(g · f) = C, then rng g = C.

(2) Let A be a many sorted set indexed by I, B, C be non-empty many
sorted sets indexed by I, f be a many sorted function from A into B, and
g be a many sorted function from B into C. If g ◦f is onto, then g is onto.

(3) Let A, B be non empty sets, C, y be sets, and f be a function.
If f ∈ (CB)A and y ∈ B, then dom(commute(f))(y) = A and
rng(commute(f))(y) ⊆ C.
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(4) For every many sorted set A indexed by I there exists a non-empty many
sorted set B indexed by I such that A ⊆ B.

(5) Let A, B be many sorted sets indexed by I. Suppose A is transformable
to B. Let f be a many sorted function indexed by I. If domκ f(κ) = A

and rngκ f(κ) ⊆ B, then f is a many sorted function from A into B.

(6) Let A, B be many sorted sets indexed by I, F be a many sorted function
from A into B, C, E be many sorted subsets indexed by A, and D be a
many sorted subset indexed by C. If E = D, then F ¹ C ¹ D = F ¹ E.

(7) Let B be a non-empty many sorted set indexed by I, C be a many sorted
set indexed by I, A be a many sorted subset indexed by C, and F be a
many sorted function from A into B. Then there exists a many sorted
function G from C into B such that G ¹ A = F.

Let I be a set, let A be a many sorted set indexed by I, and let F be a many
sorted function indexed by I. The functor F−1(A) yielding a many sorted set
indexed by I is defined as follows:

(Def. 1) For every set i such that i ∈ I holds (F−1(A))(i) = F (i)−1(A(i)).

We now state a number of propositions:

(8) Let A, B, C be many sorted sets indexed by I and F be a many sorted
function from A into B. Then F ◦ C is a many sorted subset indexed by
B.

(9) Let A, B, C be many sorted sets indexed by I and F be a many sorted
function from A into B. Then F−1(C) is a many sorted subset indexed by
A.

(10) Let A, B be many sorted sets indexed by I and F be a many sorted
function from A into B. If F is onto, then F ◦ A = B.

(11) Let A, B be many sorted sets indexed by I and F be a many sorted
function from A into B. If A is transformable to B, then F−1(B) = A.

(12) Let A be a many sorted set indexed by I and F be a many sorted function
indexed by I. If A ⊆ rngκ F (κ), then F ◦ F−1(A) = A.

(13) For every many sorted function f indexed by I and for every many sorted
set X indexed by I holds f ◦ X ⊆ rngκ f(κ).

(14) For every many sorted function f indexed by I holds f ◦ (domκ f(κ)) =
rngκ f(κ).

(15) For every many sorted function f indexed by I holds f−1(rngκ f(κ)) =
domκ f(κ).

(16) For every many sorted set A indexed by I holds (idA) ◦ A = A.

(17) For every many sorted set A indexed by I holds (idA)−1(A) = A.
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2. On the Many Sorted Algebras

In the sequel S denotes a non empty non void many sorted signature and
U0, U1 denote non-empty algebras over S.

One can prove the following propositions:

(18) For every algebra A over S holds the algebra of A is a subalgebra of A.

(19) Every algebra A over S is a subalgebra of the algebra of A.

(20) Let U0 be an algebra over S, A be a subalgebra of U0, o be an operation
symbol of S, and x be a set. If x ∈ Args(o,A), then x ∈ Args(o, U0).

(21) Let U0 be an algebra over S, A be a subalgebra of U0, o be an operation
symbol of S, and x be a set. If x ∈ Args(o, A), then (Den(o,A))(x) =
(Den(o, U0))(x).

(22) Let F be an algebra family of I over S, B be a subalgebra of
∏

F, o be
an operation symbol of S, and x be a set. If x ∈ Args(o,B), then (Den(o,
B))(x) is a function and (Den(o,

∏
F ))(x) is a function.

Let S be a non void non empty many sorted signature, let A be an algebra
over S, and let B be a subalgebra of A. The functor SuperAlgebraSet(B) is
defined by the condition (Def. 2).

(Def. 2) Let x be a set. Then x ∈ SuperAlgebraSet(B) if and only if there exists
a strict subalgebra C of A such that x = C and B is a subalgebra of C.

Let S be a non void non empty many sorted signature, let A be an algebra
over S, and let B be a subalgebra of A. Note that SuperAlgebraSet(B) is non
empty.

Let S be a non empty non void many sorted signature. One can verify that
there exists an algebra over S which is strict, non-empty, and free.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let X be a non-empty locally-finite subset of A. One can
verify that Gen(X) is finitely-generated.

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. Note that there exists a subalgebra of A which is strict,
non-empty, and finitely-generated.

Let S be a non empty non void many sorted signature and let A be a feasible
algebra over S. Note that there exists a subalgebra of A which is feasible.

Next we state several propositions:

(23) Let A be an algebra over S, C be a subalgebra of A, and D be a many
sorted subset indexed by the sorts of A. Suppose D = the sorts of C.
Let h be a many sorted function from A into U0 and g be a many sorted
function from C into U0. Suppose g = h ¹ D. Let o be an operation symbol
of S, x be an element of Args(o,A), and y be an element of Args(o, C). If
Args(o, C) 6= ∅ and x = y, then h#x = g#y.
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(24) Let A be a feasible algebra over S, C be a feasible subalgebra of A, and
D be a many sorted subset indexed by the sorts of A. Suppose D = the
sorts of C. Let h be a many sorted function from A into U0. Suppose h is
a homomorphism of A into U0. Let g be a many sorted function from C

into U0. If g = h ¹ D, then g is a homomorphism of C into U0.

(25) Let B be a strict non-empty algebra over S, G be a generator set of U0,
H be a non-empty generator set of B, and f be a many sorted function
from U0 into B. Suppose H ⊆ f ◦ G and f is a homomorphism of U0 into
B. Then f is an epimorphism of U0 onto B.

(26) Let W be a strict free non-empty algebra over S and F be a many
sorted function from U0 into U1. Suppose F is an epimorphism of U0 onto
U1. Let G be a many sorted function from W into U1. Suppose G is a
homomorphism of W into U1. Then there exists a many sorted function
H from W into U0 such that H is a homomorphism of W into U0 and
G = F ◦H.

(27) Let I be a non empty finite set, A be a non-empty algebra over S, and
F be an algebra family of I over S. Suppose that for every element i of I

there exists a strict non-empty finitely-generated subalgebra C of A such
that C = F (i). Then there exists a strict non-empty finitely-generated
subalgebra B of A such that for every element i of I holds F (i) is a
subalgebra of B.

(28) Let A, B be strict non-empty finitely-generated subalgebras of U0. Then
there exists a strict non-empty finitely-generated subalgebra M of U0 such
that A is a subalgebra of M and B is a subalgebra of M .

(29) Let S1 be a non empty non void many sorted signature, A1 be a non-
empty algebra over S1, and C be a set. Suppose C = {A, A ranges over ele-
ments of Subalgebras(A1):

∨
R : strict non-empty finitely-generated subalgebra of A1

R = A}. Let F be an algebra family of C over S1. Suppose that for every
set c such that c ∈ C holds c = F (c). Then there exists a strict non-empty
subalgebra P1 of

∏
F such that there exists a many sorted function from

P1 into A1 which is an epimorphism of P1 onto A1.

(30) Let U0 be a feasible free algebra over S, A be a free generator set of U0,
and Z be a subset of U0. If Z ⊆ A and Gen(Z) is feasible, then Gen(Z) is
free.

3. Equations in Many Sorted Algebras

Let S be a non empty non void many sorted signature. The functor TS(N)
yielding an algebra over S is defined by:
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(Def. 3) TS(N) = Free((the carrier of S) 7−→ N).

Let S be a non empty non void many sorted signature. Note that TS(N) is
strict non-empty and free.

Let S be a non empty non void many sorted signature. The equations of S

constitute a many sorted set indexed by the carrier of S and is defined by:

(Def. 4) The equations of S = [[the sorts of TS(N), the sorts of TS(N)]].

Let S be a non empty non void many sorted signature. Observe that the
equations of S is non-empty.

Let S be a non empty non void many sorted signature. A set of equations
of S is a many sorted subset indexed by the equations of S.

In the sequel s denotes a sort symbol of S, e denotes an element of (the
equations of S)(s), and E denotes a set of equations of S.

Let S be a non empty non void many sorted signature, let s be a sort
symbol of S, and let x, y be elements of (the sorts of TS(N))(s). Then 〈〈x, y〉〉 is
an element of (the equations of S)(s). We introduce x=y as a synonym of 〈〈x,

y〉〉.
Next we state two propositions:

(31) e1 ∈ (the sorts of TS(N))(s).

(32) e2 ∈ (the sorts of TS(N))(s).

Let S be a non empty non void many sorted signature, let A be an algebra
over S, let s be a sort symbol of S, and let e be an element of (the equations of
S)(s). The predicate A |= e is defined by:

(Def. 5) For every many sorted function h from TS(N) into A such that h is a
homomorphism of TS(N) into A holds h(s)(e1) = h(s)(e2).

Let S be a non empty non void many sorted signature, let A be an algebra
over S, and let E be a set of equations of S. The predicate A |= E is defined as
follows:

(Def. 6) For every sort symbol s of S and for every element e of (the equations
of S)(s) such that e ∈ E(s) holds A |= e.

We now state several propositions:

(33) For every strict non-empty subalgebra U2 of U0 such that U0 |= e holds
U2 |= e.

(34) For every strict non-empty subalgebra U2 of U0 such that U0 |= E holds
U2 |= E.

(35) If U0 and U1 are isomorphic and U0 |= e, then U1 |= e.

(36) If U0 and U1 are isomorphic and U0 |= E, then U1 |= E.

(37) For every congruence R of U0 such that U0 |= e holds U0/R |= e.

(38) For every congruence R of U0 such that U0 |= E holds U0/R |= E.
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(39) Let F be an algebra family of I over S. Suppose that for every set i such
that i ∈ I there exists an algebra A over S such that A = F (i) and A |= e.

Then
∏

F |= e.

(40) Let F be an algebra family of I over S. Suppose that for every set i

such that i ∈ I there exists an algebra A over S such that A = F (i) and
A |= E. Then

∏
F |= E.
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1. Preliminaries

Let A be a transitive non empty category structure with units and let B be
a non empty category structure with units. Observe that every functor from A

to B is feasible and id-preserving.
Let A be a transitive non empty category structure with units and let B

be a non empty category structure with units. One can check the following
observations:

∗ every functor from A to B which is covariant is also precovariant and
comp-preserving,

∗ every functor from A to B which is precovariant and comp-preserving is
also covariant,

∗ every functor from A to B which is contravariant is also precontravariant
and comp-reversing, and

∗ every functor from A to B which is precontravariant and comp-reversing
is also contravariant.

The following proposition is true
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(2)1 Let A, B be transitive non empty category structures with units, F be
a covariant functor from A to B, and a be an object of A. Then F (ida) =
idF (a) .

2. Transformations

Let A, B be transitive non empty category structures with units and let F1,
F2 be covariant functors from A to B. We say that F1 is transformable to F2 if
and only if:

(Def. 1) For every object a of A holds 〈F1(a), F2(a)〉 6= ∅.
Let us note that the predicate F1 is transformable to F2 is reflexive.

One can prove the following proposition

(4)2 Let A, B be transitive non empty category structures with units and
F , F1, F2 be covariant functors from A to B. Suppose F is transformable
to F1 and F1 is transformable to F2. Then F is transformable to F2.

Let A, B be transitive non empty category structures with units and let F1,
F2 be covariant functors from A to B. Let us assume that F1 is transformable to
F2. A many sorted set indexed by the carrier of A is said to be a transformation
from F1 to F2 if:

(Def. 2) For every object a of A holds it(a) is a morphism from F1(a) to F2(a).
Let A, B be transitive non empty category structures with units and let F

be a covariant functor from A to B. The functor idF yielding a transformation
from F to F is defined by:

(Def. 3) For every object a of A holds idF (a) = idF (a) .

Let A, B be transitive non empty category structures with units and let F1,
F2 be covariant functors from A to B. Let us assume that F1 is transformable
to F2. Let t be a transformation from F1 to F2 and let a be an object of A. The
functor t[a] yielding a morphism from F1(a) to F2(a) is defined as follows:

(Def. 4) t[a] = t(a).
Let A, B be transitive non empty category structures with units and let F ,

F1, F2 be covariant functors from A to B. Let us assume that F is transformable
to F1 and F1 is transformable to F2. Let t1 be a transformation from F to F1

and let t2 be a transformation from F1 to F2. The functor t2 ◦ t1 yielding a
transformation from F to F2 is defined by:

(Def. 5) For every object a of A holds (t2 ◦ t1)[a] = t2[a] · t1[a].
We now state four propositions:

1The proposition (1) has been removed.
2The proposition (3) has been removed.
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(5) Let A, B be transitive non empty category structures with units and
F1, F2 be covariant functors from A to B. Suppose F1 is transformable to
F2. Let t1, t2 be transformations from F1 to F2. If for every object a of A

holds t1[a] = t2[a], then t1 = t2.

(6) Let A, B be transitive non empty category structures with units, F be
a covariant functor from A to B, and a be an object of A. Then idF [a] =
idF (a) .

(7) Let A, B be transitive non empty category structures with units and
F1, F2 be covariant functors from A to B. Suppose F1 is transformable
to F2. Let t be a transformation from F1 to F2. Then id(F2)

◦t = t and
t ◦ id(F1) = t.

(8) Let A, B be categories and F , F1, F2, F3 be covariant functors from A

to B. Suppose F is transformable to F1 and F1 is transformable to F2 and
F2 is transformable to F3. Let t1 be a transformation from F to F1, t2 be
a transformation from F1 to F2, and t3 be a transformation from F2 to
F3. Then (t3 ◦ t2) ◦ t1 = t3 ◦ (t2 ◦ t1).

3. Natural Transformations

Let A, B be transitive non empty category structures with units and let F1,
F2 be covariant functors from A to B. We say that F1 is naturally transformable
to F2 if and only if the conditions (Def. 6) are satisfied.

(Def. 6)(i) F1 is transformable to F2, and
(ii) there exists a transformation t from F1 to F2 such that for all objects

a, b of A such that 〈a, b〉 6= ∅ and for every morphism f from a to b holds
t[b] · F1(f) = F2(f) · t[a].

We now state two propositions:

(9) For all transitive non empty category structures A, B with units holds
every covariant functor F from A to B is naturally transformable to F .

(10) Let A, B be categories and F , F1, F2 be covariant functors from A

to B. Suppose F is naturally transformable to F1 and F1 is naturally
transformable to F2. Then F is naturally transformable to F2.

Let A, B be transitive non empty category structures with units and let
F1, F2 be covariant functors from A to B. Let us assume that F1 is naturally
transformable to F2. A transformation from F1 to F2 is called a natural trans-
formation from F1 to F2 if:

(Def. 7) For all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds it [b] · F1(f) = F2(f) · it[a].
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Let A, B be transitive non empty category structures with units and let F

be a covariant functor from A to B. Then idF is a natural transformation from
F to F .

Let A, B be categories and let F , F1, F2 be covariant functors from A to
B. Let us assume that F is naturally transformable to F1 and F1 is naturally
transformable to F2. Let t1 be a natural transformation from F to F1 and let t2
be a natural transformation from F1 to F2. The functor t2 ◦ t1 yielding a natural
transformation from F to F2 is defined by:

(Def. 8) t2 ◦ t1 = t2 ◦ t1.

We now state three propositions:

(11) Let A, B be transitive non empty category structures with units and
F1, F2 be covariant functors from A to B. Suppose F1 is naturally trans-
formable to F2. Let t be a natural transformation from F1 to F2. Then
id(F2)

◦t = t and t ◦ id(F1) = t.

(12) Let A, B be transitive non empty category structures with units and
F , F1, F2 be covariant functors from A to B. Suppose F is naturally
transformable to F1 and F1 is naturally transformable to F2. Let t1 be a
natural transformation from F to F1, t2 be a natural transformation from
F1 to F2, and a be an object of A. Then (t2 ◦ t1)[a] = t2[a] · t1[a].

(13) Let A, B be categories, F , F1, F2, F3 be covariant functors from A

to B, t be a natural transformation from F to F1, and t1 be a natural
transformation from F1 to F2. Suppose F is naturally transformable to F1

and F1 is naturally transformable to F2 and F2 is naturally transformable
to F3. Let t3 be a natural transformation from F2 to F3. Then (t3 ◦ t1) ◦ t =
t3 ◦ (t1 ◦ t).

4. Category of Functors

Let I be a set and let A, B be many sorted sets indexed by I. The functor
BA yields a set and is defined as follows:

(Def. 9)(i) For every set x holds x ∈ BA iff x is a many sorted function from A

into B if for every set i such that i ∈ I holds if B(i) = ∅, then A(i) = ∅,
(ii) BA = ∅, otherwise.

Let A, B be transitive non empty category structures with units. The functor
Funct(A,B) yields a set and is defined as follows:

(Def. 10) For every set x holds x ∈ Funct(A,B) iff x is a covariant strict functor
from A to B.

Let A, B be categories. The functor BA yields a strict non empty transitive
category structure and is defined by the conditions (Def. 11).
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(Def. 11)(i) The carrier of BA = Funct(A,B),
(ii) for all strict covariant functors F , G from A to B and for every set x

holds x ∈ (the arrows of BA)(F, G) iff F is naturally transformable to G

and x is a natural transformation from F to G, and
(iii) for all strict covariant functors F , G, H from A to B such that F

is naturally transformable to G and G is naturally transformable to H

and for every natural transformation t1 from F to G and for every natural
transformation t2 from G to H there exists a function f such that f = (the
composition of BA)(F, G, H) and f(t2, t1) = t2 ◦ t1.
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The articles [7], [8], [10], [1], [2], [3], [4], [6], [5], and [9] provide the notation and
terminology for this paper.

In this paper A is a category, a is an object of A, and f is a morphism of A.
Let us consider A. The functor EnsHom A yields a category and is defined

by:

(Def. 1) EnsHom A = EnsHom(A) .

Next we state two propositions:

(1) Let f , g be functions and m1, m2 be morphisms of EnsHom A. If
cod m1 = dom m2 and 〈〈〈〈dom m1, cod m1〉〉, f〉〉 = m1 and 〈〈〈〈dom m2,

cod m2〉〉, g〉〉 = m2, then 〈〈〈〈dom m1, cod m2〉〉, g · f〉〉 = m2 ·m1.

(2) hom(a,−) is a functor from A to EnsHom A.

Let us consider A, a. The functor homF(a,−) yields a functor from A to
EnsHom A and is defined by:

(Def. 2) homF(a,−) = hom(a,−).

One can prove the following proposition

(3) For every morphism f of A holds homF(cod f,−) is naturally transfor-
mable to homF(dom f,−).

Let us consider A, f . The functor homF(f,−) yields a natural transformation
from homF(cod f,−) to homF(dom f,−) and is defined by:

(Def. 3) For every object o of A holds (homF(f,−))(o) = 〈〈〈〈hom(cod f, o),
hom(dom f, o)〉〉, hom(f, ido)〉〉.

Next we state the proposition
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(4) For every element f of the morphisms of A holds 〈〈〈〈homF(cod f,−),
homF(dom f,−)〉〉, homF(f,−)〉〉 is an element of the morphisms of
(EnsHom A)A.

Let us consider A. The functor Yoneda A yielding a contravariant functor
from A into (EnsHom A)A is defined by:

(Def. 4) For every morphism f of A holds (Yoneda A)(f) = 〈〈〈〈homF(cod f,−),
homF(dom f,−)〉〉, homF(f,−)〉〉.

Let A, B be categories, let F be a contravariant functor from A into B, and
let c be an object of A. The functor F (c) yields an object of B and is defined
as follows:

(Def. 5) F (c) = (Obj F )(c).
Next we state the proposition

(5) For every functor F from A to (EnsHom A)A such that Obj F is one-to-
one and F is faithful holds F is one-to-one.

Let C, D be categories and let T be a contravariant functor from C into D.
We say that T is faithful if and only if:

(Def. 6) For all objects c, c′ of C such that hom(c, c′) 6= ∅ and for all morphisms
f1, f2 from c to c′ such that T (f1) = T (f2) holds f1 = f2.

The following three propositions are true:

(6) Let F be a contravariant functor from A into (EnsHom A)A. If Obj F is
one-to-one and F is faithful, then F is one-to-one.

(7) Yoneda A is faithful.

(8) Yoneda A is one-to-one.

Let C, D be categories and let T be a contravariant functor from C into D.
We say that T is full if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let c, c′ be objects of C. Suppose hom(T (c′), T (c)) 6= ∅. Let g be a
morphism from T (c′) to T (c). Then hom(c, c′) 6= ∅ and there exists a
morphism f from c to c′ such that g = T (f).

The following proposition is true

(9) Yoneda A is full.
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Summary. We prove the correctness of the generic algorithms of Brown
and Henrici concerning addition and multiplication in fraction fields of gcd-
domains. For that we first prove some basic facts about divisibility in integral
domains and introduce the concept of amplesets. After that we are able to define
gcd-domains and to prove the theorems of Brown and Henrici which are crucial
for the correctness of the algorithms. In the last section we define Mizar functions
mirroring their input/output behaviour and prove properties of these functions
that ensure the correctness of the algorithms.

MML Identifier: GCD 1.

The papers [4], [6], [5], [3], [1], and [2] provide the notation and terminology for
this paper.

1. Basics

In this paper R denotes an integral domain and a, b, c denote elements of
the carrier of R.

The following proposition is true

(1) For all elements a, b, c of the carrier of R such that a 6= 0R holds if
a · b = a · c, then b = c and if b · a = c · a, then b = c.
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Let R be an integral domain and let x, y be elements of the carrier of R. We
say that x divides y if and only if:

(Def. 1) There exists an element z of the carrier of R such that y = x · z.

Let us notice that the predicate x divides y is reflexive.
Let R be an integral domain and let x be an element of the carrier of R. We

say that x is unital if and only if:

(Def. 2) x divides 1R.

Let R be an integral domain and let x, y be elements of the carrier of R. We
say that x is associated to y if and only if:

(Def. 3) x divides y and y divides x.

Let us observe that the predicate x is associated to y is reflexive and symmetric.
We introduce x is not associated to y as an antonym of x is associated to y.

Let R be an integral domain and let x, y be elements of the carrier of R.
Let us assume that y divides x. And let us assume that y 6= 0R. The functor x

y

yielding an element of the carrier of R is defined as follows:

(Def. 4) x
y · y = x.

One can prove the following propositions:

(2) For all elements a, b, c of the carrier of R such that a divides b and b

divides c holds a divides c.

(3) Let a, b, c, d be elements of the carrier of R. If b divides a and d divides
c, then b · d divides a · c.

(4) Let a, b, c be elements of the carrier of R. If a is associated to b and b is
associated to c, then a is associated to c.

(5) For all elements a, b, c of the carrier of R such that a divides b holds c ·a
divides c · b.

(6) For all elements a, b of the carrier of R holds a divides a · b and b divides
a · b.

(7) For all elements a, b, c of the carrier of R such that a divides b holds a

divides b · c.
(8) Let a, b be elements of the carrier of R. If b divides a and b 6= 0R, then

a
b = 0R iff a = 0R.

(9) For every element a of the carrier of R such that a 6= 0R holds a
a = 1R.

(10) For every element a of the carrier of R holds a
1R

= a.

(11) Let a, b, c be elements of the carrier of R such that c 6= 0R. Then
(i) if c divides a · b and c divides a, then a·b

c = a
c · b, and

(ii) if c divides a · b and c divides b, then a·b
c = a · b

c .

(12) Let a, b, c be elements of the carrier of R. Suppose c 6= 0R and c divides
a and c divides b and c divides a + b. Then a

c + b
c = a+b

c .
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(13) Let a, b, c be elements of the carrier of R. Suppose c 6= 0R and c divides
a and c divides b. Then a

c = b
c if and only if a = b.

(14) Let a, b, c, d be elements of the carrier of R. Suppose b 6= 0R and d 6= 0R

and b divides a and d divides c. Then a
b · c

d = a·c
b·d .

(15) For all elements a, b, c of the carrier of R such that a 6= 0R and a · b
divides a · c holds b divides c.

(16) For every element a of the carrier of R such that a is associated to 0R

holds a = 0R.

(17) For all elements a, b of the carrier of R such that a 6= 0R and a · b = a

holds b = 1R.

(18) Let a, b be elements of the carrier of R. Then a is associated to b if and
only if there exists c such that c is unital and a · c = b.

(19) For all elements a, b, c of the carrier of R such that c 6= 0R and c · a is
associated to c · b holds a is associated to b.

2. AmpleSets

Let R be an integral domain and let a be an element of the carrier of R. The
functor Classes a yields a subset of the carrier of R and is defined as follows:

(Def. 5) For every element b of the carrier of R holds b ∈ Classes a iff b is asso-
ciated to a.

Let R be an integral domain and let a be an element of the carrier of R.
Note that Classes a is non empty.

We now state the proposition

(20) For all elements a, b of the carrier of R such that Classes a∩Classes b 6= ∅
holds Classes a = Classes b.

Let R be an integral domain. The functor Classes R yielding a family of
subsets of the carrier of R is defined by the condition (Def. 6).

(Def. 6) Let A be a subset of the carrier of R. Then A ∈ Classes R if and only if
there exists an element a of the carrier of R such that A = Classes a.

Let R be an integral domain. One can check that Classes R is non empty.
We now state the proposition

(21) For every subset X of the carrier of R such that X ∈ Classes R holds X

is non empty.

Let R be an integral domain. A non empty subset of the carrier of R is said
to be an amp set of R if it satisfies the conditions (Def. 7).

(Def. 7)(i) For every element a of the carrier of R holds there exists an element
of it which is associated to a, and
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(ii) for all elements x, y of it such that x 6= y holds x is not associated to
y.

Let R be an integral domain. A non empty subset of the carrier of R is called
an AmpleSet of R if:

(Def. 8) It is an amp set of R and 1R ∈ it.

In the sequel A1 denotes an AmpleSet of R.
The following propositions are true:

(22) Let A1 be an AmpleSet of R. Then
(i) 1R ∈ A1,

(ii) for every element a of the carrier of R holds there exists an element of
A1 which is associated to a, and

(iii) for all elements x, y of A1 such that x 6= y holds x is not associated to
y.

(23) For all elements x, y of A1 such that x is associated to y holds x = y.

(24) For every AmpleSet A1 of R holds 0R is an element of A1.

Let R be an integral domain, let A1 be an AmpleSet of R, and let x be
an element of the carrier of R. The functor NF(x,A1) yields an element of the
carrier of R and is defined as follows:

(Def. 9) NF(x,A1) ∈ A1 and NF(x,A1) is associated to x.

The following propositions are true:

(25) For every AmpleSet A1 of R holds NF(0R, A1) = 0R and NF(1R, A1) =
1R.

(26) For every AmpleSet A1 of R and for every element a of the carrier of R

holds a ∈ A1 iff a = NF(a,A1).
Let R be an integral domain and let A1 be an AmpleSet of R. We say that

A1 is multiplicative if and only if:

(Def. 10) For all elements x, y of A1 holds x · y ∈ A1.

The following proposition is true

(27) Let A1 be an AmpleSet of R. Suppose A1 is multiplicative. Let x, y be
elements of A1. If y divides x and y 6= 0R, then x

y ∈ A1.

3. GCD-Domains

Let R be an integral domain. We say that R is gcd-like if and only if the
condition (Def. 11) is satisfied.

(Def. 11) Let x, y be elements of the carrier of R. Then there exists an element z

of the carrier of R such that
(i) z divides x,
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(ii) z divides y, and
(iii) for every element z1 of the carrier of R such that z1 divides x and z1

divides y holds z1 divides z.

Let us note that there exists an integral domain which is gcd-like.
A gcdDomain is a gcd-like integral domain.
Let R be a gcdDomain, let A1 be an AmpleSet of R, and let x, y be elements

of the carrier of R. The functor gcdA1
(x, y) yielding an element of the carrier of

R is defined by the conditions (Def. 12).

(Def. 12)(i) gcdA1
(x, y) ∈ A1,

(ii) gcdA1
(x, y) divides x,

(iii) gcdA1
(x, y) divides y, and

(iv) for every element z of the carrier of R such that z divides x and z

divides y holds z divides gcdA1
(x, y).

In the sequel R is a gcdDomain.
The following propositions are true:

(28) Let A1 be an AmpleSet of R and a, b be elements of the carrier of R.
Then gcdA1

(a, b) divides a and gcdA1
(a, b) divides b.

(29) Let A1 be an AmpleSet of R and a, b, c be elements of the carrier of R.
If c divides gcdA1

(a, b), then c divides a and c divides b.

(30) For every AmpleSet A1 of R and for all elements a, b of the carrier of R

holds gcdA1
(a, b) = gcdA1

(b, a).
(31) For every AmpleSet A1 of R and for every element a of the carrier of R

holds gcdA1
(a, 0R) = NF(a,A1) and gcdA1

(0R, a) = NF(a,A1).
(32) For every AmpleSet A1 of R holds gcdA1

(0R, 0R) = 0R.

(33) For every AmpleSet A1 of R and for every element a of the carrier of R

holds gcdA1
(a, 1R) = 1R and gcdA1

(1R, a) = 1R.

(34) Let A1 be an AmpleSet of R and a, b be elements of the carrier of R.
Then gcdA1

(a, b) = 0R if and only if a = 0R and b = 0R.

(35) Let A1 be an AmpleSet of R and a, b, c be elements of the carrier of R.
Suppose b is associated to c. Then gcdA1

(a, b) is associated to gcdA1
(a, c)

and gcdA1
(b, a) is associated to gcdA1

(c, a).
(36) For every AmpleSet A1 of R and for all elements a, b, c of the carrier of

R holds gcdA1
(gcdA1

(a, b), c) = gcdA1
(a, gcdA1

(b, c)).
(37) For every AmpleSet A1 of R and for all elements a, b, c of the carrier of

R holds gcdA1
(a · c, b · c) is associated to c · (gcdA1

(a, b)).
(38) For every AmpleSet A1 of R and for all elements a, b, c of the carrier of

R such that gcdA1
(a, b) = 1R holds gcdA1

(a, b · c) = gcdA1
(a, c).

(39) Let A1 be an AmpleSet of R and a, b, c be elements of the carrier of R.
If c = gcdA1

(a, b) and c 6= 0R, then gcdA1
(a

c , b
c) = 1R.
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(40) For every AmpleSet A1 of R and for all elements a, b, c of the carrier of
R holds gcdA1

(a + b · c, c) = gcdA1
(a, c).

4. The Theorems of Brown and Henrici

The following propositions are true:

(41) Let A1 be an AmpleSet of R and r1, r2, s1, s2 be elements of the carrier
of R. Suppose gcdA1

(r1, r2) = 1R and gcdA1
(s1, s2) = 1R and r2 6= 0R and

s2 6= 0R. Then gcdA1
(r1 · s2

gcdA1
(r2,s2) + s1 · r2

gcdA1
(r2,s2) , r2 · s2

gcdA1
(r2,s2)) =

gcdA1
(r1 · s2

gcdA1
(r2,s2) + s1 · r2

gcdA1
(r2,s2) , gcdA1

(r2, s2)).

(42) Let A1 be an AmpleSet of R and r1, r2, s1, s2 be elements of the carrier
of R. Suppose gcdA1

(r1, r2) = 1R and gcdA1
(s1, s2) = 1R and r2 6= 0R and

s2 6= 0R. Then gcdA1
( r1

gcdA1
(r1,s2) · s1

gcdA1
(s1,r2) ,

r2
gcdA1

(s1,r2) · s2
gcdA1

(r1,s2)) = 1R.

5. Correctness of the Algorithms

Let R be a gcdDomain, let A1 be an AmpleSet of R, and let x, y be elements
of the carrier of R. We say that x, y are canonical wrt A1 if and only if:

(Def. 13) gcdA1
(x, y) = 1R.

Next we state the proposition

(43) Let A1, A′1 be AmpleSet of R and x, y be elements of the carrier of R.
Then x, y are canonical wrt A1 if and only if x, y are canonical wrt A′1.

Let R be a gcdDomain and let x, y be elements of the carrier of R. We say
that x canonical y if and only if:

(Def. 14) There exists an AmpleSet A1 of R such that gcdA1
(x, y) = 1R.

Let us observe that the predicate x canonical y is symmetric.
Next we state the proposition

(44) Let A1 be an AmpleSet of R and x, y be elements of the carrier of R. If
x canonical y, then gcdA1

(x, y) = 1R.

Let R be a gcdDomain, let A1 be an AmpleSet of R, and let x, y be elements
of the carrier of R. We say that x, y are normalized wrt A1 if and only if:

(Def. 15) gcdA1
(x, y) = 1R and y ∈ A1 and y 6= 0R.

Let R be a gcdDomain, let A1 be an AmpleSet of R, and let r1, r2, s1, s2 be
elements of the carrier of R. Let us assume that r1 canonical r2 and s1 canonical
s2 and r2 = NF(r2, A1) and s2 = NF(s2, A1). The functor add1A1(r1, r2, s1, s2)
yielding an element of the carrier of R is defined as follows:
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(Def. 16) add1A1(r1, r2, s1, s2) =





s1, if r1 = 0R,

r1, if s1 = 0R,

r1 · s2 + r2 · s1, if gcdA1
(r2, s2) = 1R,

0R, if r1 · s2
gcdA1

(r2,s2) + s1 · r2
gcdA1

(r2,s2) = 0R,

r1· s2
gcdA1

(r2,s2)
+s1· r2

gcdA1
(r2,s2)

gcdA1
(r1· s2

gcdA1
(r2,s2)

+s1· r2
gcdA1

(r2,s2)
,gcdA1

(r2,s2))
,

otherwise.

Let R be a gcdDomain, let A1 be an AmpleSet of R, and let r1, r2, s1, s2 be
elements of the carrier of R. Let us assume that r1 canonical r2 and s1 canonical
s2 and r2 = NF(r2, A1) and s2 = NF(s2, A1). The functor add2A1(r1, r2, s1, s2)
yields an element of the carrier of R and is defined by:

(Def. 17) add2A1(r1, r2, s1, s2) =





s2, if r1 = 0R,

r2, if s1 = 0R,

r2 · s2, if gcdA1
(r2, s2) = 1R,

1R, if r1 · s2
gcdA1

(r2,s2) + s1 · r2
gcdA1

(r2,s2) = 0R,

r2· s2
gcdA1

(r2,s2)

gcdA1
(r1· s2

gcdA1
(r2,s2)

+s1· r2
gcdA1

(r2,s2)
,gcdA1

(r2,s2))
,

otherwise.

We now state two propositions:

(45) Let A1 be an AmpleSet of R and r1, r2, s1, s2 be elements of the carrier
of R. Suppose A1 is multiplicative and r1, r2 are normalized wrt A1 and s1,
s2 are normalized wrt A1. Then add1A1(r1, r2, s1, s2), add2A1(r1, r2, s1, s2)
are normalized wrt A1.

(46) Let A1 be an AmpleSet of R and r1, r2, s1, s2 be elements of the car-
rier of R. Suppose A1 is multiplicative and r1, r2 are normalized wrt A1

and s1, s2 are normalized wrt A1. Then add1A1(r1, r2, s1, s2) · (r2 · s2) =
add2A1(r1, r2, s1, s2) · (r1 · s2 + s1 · r2).

Let R be a gcdDomain, let A1 be an AmpleSet of R, and let r1, r2, s1, s2 be
elements of the carrier of R. The functor mult1A1(r1, r2, s1, s2) yields an element
of the carrier of R and is defined as follows:

(Def. 18) mult1A1(r1, r2, s1, s2) =





0R, if r1 = 0R or s1 = 0R,

r1 · s1, if r2 = 1R and s2 = 1R,
r1·s1

gcdA1
(r1,s2) , if s2 6= 0R and r2 = 1R,

r1·s1
gcdA1

(s1,r2) , if r2 6= 0R and s2 = 1R,
r1

gcdA1
(r1,s2) · s1

gcdA1
(s1,r2) , otherwise.

Let R be a gcdDomain, let A1 be an AmpleSet of R, and let r1, r2, s1, s2 be
elements of the carrier of R. Let us assume that r1 canonical r2 and s1 canonical
s2 and r2 = NF(r2, A1) and s2 = NF(s2, A1). The functor mult2A1(r1, r2, s1, s2)
yields an element of the carrier of R and is defined as follows:
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(Def. 19) mult2A1(r1, r2, s1, s2) =





1R, if r1 = 0R or s1 = 0R,

1R, if r2 = 1R and s2 = 1R,
s2

gcdA1
(r1,s2) , if s2 6= 0R and r2 = 1R,

r2
gcdA1

(s1,r2) , if r2 6= 0R and s2 = 1R,
r2

gcdA1
(s1,r2) · s2

gcdA1
(r1,s2) , otherwise.

The following two propositions are true:

(47) Let A1 be an AmpleSet of R and r1, r2, s1, s2 be elements of the carrier of
R. Suppose A1 is multiplicative and r1, r2 are normalized wrt A1 and s1, s2

are normalized wrt A1. Then mult1A1(r1, r2, s1, s2), mult2A1(r1, r2, s1, s2)
are normalized wrt A1.

(48) Let A1 be an AmpleSet of R and r1, r2, s1, s2 be elements of the car-
rier of R. Suppose A1 is multiplicative and r1, r2 are normalized wrt A1

and s1, s2 are normalized wrt A1. Then mult1A1(r1, r2, s1, s2) · (r2 · s2) =
mult2A1(r1, r2, s1, s2) · (r1 · s1).
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Summary. In this article Birkhoff Variety Theorem for many sorted alge-
bras is proved. A class of algebras is represented by predicate P. Notation P[A],
where A is an algebra, means that A is in class P. All algebras in our class are
many sorted over many sorted signature S. The properties of varieties:

• a class P of algebras is abstract
• a class P of algebras is closed under subalgebras
• a class P of algebras is closed under congruences
• a class P of algebras is closed under products

are published in this paper as:

• for all non-empty algebras A, B over S such that A and B are isomorphic
and P[A] holds P[B]

• for every non-empty algebra A over S and for strict non-empty subalgebra
B of A such that P[A] holds P[B]

• for every non-empty algebra A over S and for every congruence R of A

such that P[A] holds P[A/R]
• Let I be a set and F be an algebra family of I over A. Suppose that for

every set i such that i ∈ I there exists an algebra A over A such that
A = F (i) and P[A]. ThenP[

Q
F ].

This paper is formalization of parts of [29].

MML Identifier: BIRKHOFF.

The notation and terminology used in this paper have been introduced in the
following articles: [24], [28], [20], [5], [30], [25], [3], [4], [22], [31], [1], [23], [26],
[15], [27], [2], [6], [13], [10], [21], [18], [16], [19], [14], [11], [8], [7], [9], [17], and
[12].

Let S be a non empty non void many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of S, let A be a non-empty algebra over
S, and let F be a many sorted function from X into the sorts of A. The functor
F# yielding a many sorted function from Free(X) into A is defined by:
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(Def. 1) F# is a homomorphism of Free(X) into A and F# ¹ FreeGenerator(X) =
F ◦ Reverse(X).

We now state the proposition

(1) Let S be a non empty non void many sorted signature, A be a non-empty
algebra over S, X be a non-empty many sorted set indexed by the carrier
of S, and F be a many sorted function from X into the sorts of A. Then
rngκ F (κ) ⊆ rngκ F#(κ).

In this article we present several logical schemes. The scheme ExFreeAlg 1
concerns a non empty non void many sorted signature A, a non-empty algebra
B over A, and a unary predicate P, and states that:

There exists a strict non-empty algebra A over A and there exists
a many sorted function F from B into A such that
(i) P[A],
(ii) F is an epimorphism of B onto A, and
(iii) for every non-empty algebra B over A and for every many
sorted function G from B into B such that G is a homomorphism
of B into B and P[B] there exists a many sorted function H

from A into B such that H is a homomorphism of A into B and
H ◦ F = G and for every many sorted function K from A into B

such that K ◦ F = G holds H = K

provided the following conditions are met:
• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B],
• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B], and
• Let I be a set and F be an algebra family of I over A. Suppose

that for every set i such that i ∈ I there exists an algebra A over
A such that A = F (i) and P[A]. Then P[

∏
F ].

The scheme ExFreeAlg 2 concerns a non empty non void many sorted signa-
ture A, a non-empty many sorted set B indexed by the carrier of A, and a unary
predicate P, and states that:

There exists a strict non-empty algebra A over A and there exists
a many sorted function F from B into the sorts of A such that
(i) P[A], and
(ii) for every non-empty algebra B over A and for every many
sorted function G from B into the sorts of B such that P[B] there
exists a many sorted function H from A into B such that H is a
homomorphism of A into B and H ◦ F = G and for every many
sorted function K from A into B such that K is a homomorphism
of A into B and K ◦ F = G holds H = K

provided the following requirements are met:
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• For all non-empty algebras A, B over A such that A and B are
isomorphic and P[A] holds P[B],

• For every non-empty algebra A over A and for every strict non-
empty subalgebra B of A such that P[A] holds P[B], and

• Let I be a set and F be an algebra family of I over A. Suppose
that for every set i such that i ∈ I there exists an algebra A over
A such that A = F (i) and P[A]. Then P[

∏
F ].

The scheme Ex hash concerns a non empty non void many sorted signature
A, non-empty algebras B, C over A, a many sorted function D from the carrier
of A 7−→ N into the sorts of B, a many sorted function E from the carrier of
A 7−→ N into the sorts of C, and a unary predicate P, and states that:

There exists a many sorted function H from B into C such that
H is a homomorphism of B into C and E# = H ◦ D#

provided the parameters have the following properties:
• P[C], and
• Let C be a non-empty algebra over A and G be a many sorted

function from (the carrier ofA) 7−→ N into the sorts of C. Suppose
P[C]. Then there exists a many sorted function h from B into C

such that h is a homomorphism of B into C and G = h ◦ D.

The scheme EqTerms concerns a non empty non void many sorted signature
A, a non-empty algebra B over A, a many sorted function C from the carrier of
A 7−→ N into the sorts of B, a sort symbol D of A, elements E , F of the sorts
of TA(N)(D), and a unary predicate P, and states that:

For every non-empty algebra B over A such that P[B] holds B |=
〈〈E , F〉〉

provided the parameters have the following properties:
• C#(D)(E) = C#(D)(F), and
• Let C be a non-empty algebra over A and G be a many sorted

function from (the carrier ofA) 7−→ N into the sorts of C. Suppose
P[C]. Then there exists a many sorted function h from B into C

such that h is a homomorphism of B into C and G = h ◦ C.
The scheme FreeIsGen deals with a non empty non void many sorted signa-

ture A, a non-empty many sorted set B indexed by the carrier of A, a strict
non-empty algebra C over A, a many sorted function D from B into the sorts of
C, and a unary predicate P, and states that:

D ◦ B is a non-empty generator set of C
provided the parameters satisfy the following conditions:
• Let C be a non-empty algebra over A and G be a many sorted

function from B into the sorts of C. Suppose P[C]. Then there
exists a many sorted function H from C into C such that
(i) H is a homomorphism of C into C,
(ii) H ◦ D = G, and
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(iii) for every many sorted function K from C into C such that
K is a homomorphism of C into C and K ◦ D = G holds H = K,

• P[C], and
• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B].
The scheme Hash is onto deals with a non empty non void many sorted

signature A, a strict non-empty algebra B over A, a many sorted function C
from the carrier of A 7−→ N into the sorts of B, and a unary predicate P, and
states that:

C# is an epimorphism of Free((the carrier of A) 7−→ N) onto B
provided the following conditions are satisfied:
• Let C be a non-empty algebra over A and G be a many sorted

function from (the carrier ofA) 7−→ N into the sorts of C. Suppose
P[C]. Then there exists a many sorted function H from B into C

such that
(i) H is a homomorphism of B into C,
(ii) H ◦ C = G, and
(iii) for every many sorted function K from B into C such that
K is a homomorphism of B into C and K ◦ C = G holds H = K,

• P[B], and
• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B].
The scheme FinGenAlgInVar concerns a non empty non void many sorted

signature A, a strict finitely-generated non-empty algebra B over A, a non-
empty algebra C over A, a many sorted function D from the carrier of A 7−→ N
into the sorts of C, and two unary predicates P, Q, and states that:

P[B]
provided the parameters satisfy the following conditions:
• Q[B],
• P[C],
• Let C be a non-empty algebra over A and G be a many sorted

function from (the carrier ofA) 7−→ N into the sorts of C. Suppose
Q[C]. Then there exists a many sorted function h from C into C

such that h is a homomorphism of C into C and G = h ◦ D,

• For all non-empty algebras A, B over A such that A and B are
isomorphic and P[A] holds P[B], and

• For every non-empty algebra A over A and for every congruence
R of A such that P[A] holds P[A/R].

The scheme QuotEpi concerns a non empty non void many sorted signature
A, non-empty algebras B, C over A, and a unary predicate P, and states that:

P[C]
provided the following conditions are satisfied:
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• There exists a many sorted function from B into C which is an
epimorphism of B onto C,

• P[B],
• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B], and
• For every non-empty algebra A over A and for every congruence

R of A such that P[A] holds P[A/R].
The scheme AllFinGen deals with a non empty non void many sorted si-

gnature A, a non-empty algebra B over A, and a unary predicate P, and states
that:

P[B]
provided the parameters satisfy the following conditions:
• For every strict non-empty finitely-generated subalgebra B of B

holds P[B],
• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B],
• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B],
• For every non-empty algebra A over A and for every congruence

R of A such that P[A] holds P[A/R], and
• Let I be a set and F be an algebra family of I over A. Suppose

that for every set i such that i ∈ I there exists an algebra A over
A such that A = F (i) and P[A]. Then P[

∏
F ].

The scheme FreeInModIsInVar 1 deals with a non empty non void many
sorted signature A, a non-empty algebra B over A, and two unary predicates
P, Q, and states that:

Q[B]
provided the following requirements are met:
• Let A be a non-empty algebra over A. Then Q[A] if and only

if for every sort symbol s of A and for every element e of (the
equations of A)(s) such that for every non-empty algebra B over
A such that P[B] holds B |= e holds A |= e, and

• P[B].
The scheme FreeInModIsInVar deals with a non empty non void many sorted

signature A, a strict non-empty algebra B over A, a many sorted function C from
the carrier of A 7−→ N into the sorts of B, and two unary predicates P, Q, and
states that:

P[B]
provided the parameters meet the following conditions:
• Let A be a non-empty algebra over A. Then Q[A] if and only

if for every sort symbol s of A and for every element e of (the
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equations of A)(s) such that for every non-empty algebra B over
A such that P[B] holds B |= e holds A |= e,

• Let C be a non-empty algebra over A and G be a many sorted
function from (the carrier ofA) 7−→ N into the sorts of C. Suppose
Q[C]. Then there exists a many sorted function H from B into C

such that
(i) H is a homomorphism of B into C,
(ii) H ◦ C = G, and
(iii) for every many sorted function K from B into C such that
K is a homomorphism of B into C and K ◦ C = G holds H = K,

• Q[B],
• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B],
• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B], and
• Let I be a set and F be an algebra family of I over A. Suppose

that for every set i such that i ∈ I there exists an algebra A over
A such that A = F (i) and P[A]. Then P[

∏
F ].

The scheme Birkhoff deals with a non empty non void many sorted signature
A and a unary predicate P, and states that:

There exists a set E of equations of A such that for every non-
empty algebra A over A holds P[A] iff A |= E

provided the parameters meet the following conditions:
• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B],
• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B],
• For every non-empty algebra A over A and for every congruence

R of A such that P[A] holds P[A/R], and
• Let I be a set and F be an algebra family of I over A. Suppose

that for every set i such that i ∈ I there exists an algebra A over
A such that A = F (i) and P[A]. Then P[

∏
F ].
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1. Preliminaries

Let S be a non empty 1-sorted structure. One can verify that the 1-sorted
structure of S is non empty.

We now state three propositions:

(1) For every non empty set I and for all many sorted sets M , N indexed
by I holds M+·N = N.

(2) Let I be a set, M , N be many sorted sets indexed by I, and F be a
family of many sorted subsets indexed by M . If N ∈ F, then

⋂ |:F :| ⊆ N.

(3) Let S be a non void non empty many sorted signature, M1 be a strict
non-empty algebra over S, and F be a family of many sorted subsets
indexed by the sorts of M1. Suppose F ⊆ SubSorts(M1). Let B be a
subset of M1. If B =

⋂ |:F :|, then B is operations closed.
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2. Relationships between Subsets Families

Let I be a set, let M be a many sorted set indexed by I, let B be a family
of many sorted subsets indexed by M , and let A be a family of many sorted
subsets indexed by M . We say that A is finer than B if and only if:

(Def. 1) For every set a such that a ∈ A there exists a set b such that b ∈ B and
a ⊆ b.

Let us observe that the predicate A is finer than B is reflexive. We say that B

is coarser than A if and only if:

(Def. 2) For every set b such that b ∈ B there exists a set a such that a ∈ A and
a ⊆ b.

Let us notice that the predicate B is coarser than A is reflexive.
We now state two propositions:

(4) Let I be a set, M be a many sorted set indexed by I, and A, B, C be
families of many sorted subsets indexed by M . If A is finer than B and B

is finer than C, then A is finer than C.

(5) Let I be a set, M be a many sorted set indexed by I, and A, B, C be
families of many sorted subsets indexed by M . If A is coarser than B and
B is coarser than C, then A is coarser than C.

Let I be a non empty set and let M be a many sorted set indexed by I. The
functor supp(M) yielding a set is defined by:

(Def. 3) supp(M) = {x, x ranges over elements of I: M(x) 6= ∅}.
We now state four propositions:

(6) For every non empty set I and for every non-empty many sorted set M

indexed by I holds M = ∅I+·M¹ supp(M).
(7) Let I be a non empty set and M2, M3 be non-empty many sorted sets in-

dexed by I. If supp(M2) = supp(M3) and M2¹ supp(M2) = M3¹ supp(M3),
then M2 = M3.

(8) Let I be a non empty set, M be a many sorted set indexed by I, and x

be an element of I. If x /∈ supp(M), then M(x) = ∅.
(9) Let I be a non empty set, M be a many sorted set indexed by I, x be

an element of Bool(M), i be an element of I, and y be a set. Suppose
y ∈ x(i). Then there exists an element a of Bool(M) such that y ∈ a(i)
and a is locally-finite and supp(a) is finite and a ⊆ x.

Let I be a set, let M be a many sorted set indexed by I, and let A be a
family of many sorted subsets indexed by M . The functor MSUnion(A) yielding
a many sorted subset indexed by M is defined by:

(Def. 4) For every set i such that i ∈ I holds (MSUnion(A))(i) =
⋃{f(i), f

ranges over elements of Bool(M): f ∈ A}.
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Let I be a set, let M be a many sorted set indexed by I, and let B be a non
empty family of many sorted subsets indexed by M . We see that the element of
B is a many sorted set indexed by I.

Let I be a set, let M be a many sorted set indexed by I, and let A be
an empty family of many sorted subsets indexed by M . One can check that
MSUnion(A) is empty yielding.

We now state the proposition

(10) Let I be a set, M be a many sorted set indexed by I, and A be a family
of many sorted subsets indexed by M . Then MSUnion(A) =

⋃ |:A:|.
Let I be a set, let M be a many sorted set indexed by I, and let A, B be

families of many sorted subsets indexed by M . Then A∪B is a family of many
sorted subsets indexed by M .

The following propositions are true:

(11) Let I be a set, M be a many sorted set indexed by I, and A, B be
families of many sorted subsets indexed by M . Then MSUnion(A ∪B) =
MSUnion(A) ∪MSUnion(B).

(12) Let I be a set, M be a many sorted set indexed by I, and A, B be families
of many sorted subsets indexed by M . If A ⊆ B, then MSUnion(A) ⊆
MSUnion(B).

Let I be a set, let M be a many sorted set indexed by I, and let A, B be
families of many sorted subsets indexed by M . Then A∩B is a family of many
sorted subsets indexed by M .

One can prove the following propositions:

(13) Let I be a set, M be a many sorted set indexed by I, and A, B be
families of many sorted subsets indexed by M . Then MSUnion(A ∩B) ⊆
MSUnion(A) ∩MSUnion(B).

(14) Let I be a set, M be a many sorted set indexed by I, and A1 be a
set. Suppose that for every set x such that x ∈ A1 holds x is a family
of many sorted subsets indexed by M . Let A, B be families of many
sorted subsets indexed by M . Suppose B = {MSUnion(X), X ranges over
families of many sorted subsets indexed by M : X ∈ A1} and A =

⋃
A1.

Then MSUnion(B) = MSUnion(A).
(15) Let I be a non empty set, M , N be many sorted sets indexed by I, and

A be a family of many sorted subsets indexed by M . If for every many
sorted set x indexed by I holds x ⊆ N, then MSUnion(A) ⊆ N.
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3. Algebraic Operation on Subsets of Many Sorted Sets

Let I be a non empty set, let M be a many sorted set indexed by I, and let
S be a set operation in M . We say that S is algebraic if and only if the condition
(Def. 5) is satisfied.

(Def. 5) Let x be an element of Bool(M). Suppose x = S(x). Then there exi-
sts a family A of many sorted subsets indexed by M such that A =
{S(a), a ranges over elements of Bool(M): a is locally-finite ∧ supp(a) is
finite ∧ a ⊆ x} and x = MSUnion(A).

Let I be a non empty set and let M be a many sorted set indexed by I. Note
that there exists a set operation in M which is algebraic, reflexive, monotonic,
and idempotent.

Let S be a non empty 1-sorted structure and let I1 be a closure system of
S. We say that I1 is algebraic if and only if:

(Def. 6) ClOp(I1) is algebraic.

Let S be a non void non empty many sorted signature and let M1 be a non-
empty algebra over S. The functor SubAlgCl(M1) yields a strict closure system
structure over S and is defined by:

(Def. 7) The sorts of SubAlgCl(M1) = the sorts of M1 and the family of
SubAlgCl(M1) = SubSorts(M1).

One can prove the following proposition

(16) Let S be a non void non empty many sorted signature and M1 be a
strict non-empty algebra over S. Then SubSorts(M1) is an absolutely-
multiplicative family of many sorted subsets indexed by the sorts of M1.

Let S be a non void non empty many sorted signature and let M1 be a strict
non-empty algebra over S. Note that SubAlgCl(M1) is absolutely-multiplicative.

Let S be a non void non empty many sorted signature and let M1 be a strict
non-empty algebra over S. Observe that SubAlgCl(M1) is algebraic.
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The papers [5], [4], [8], [6], [2], [7], [10], [12], [3], [1], [9], [13], and [11] provide
the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: r1, r2, r3 are sequences of
real numbers, s1, s2, s3 are complex sequences, k, n, m are natural numbers,
and p, r are elements of R.

The following propositions are true:

(1) (n + 1) + 0i 6= 0C and 0 + (n + 1)i 6= 0C.

(2) If for every n holds r1(n) = 0, then for every m holds
(
∑κ

α=0 |r1|(α))κ∈N(m) = 0.

(3) If for every n holds r1(n) = 0, then r1 is absolutely summable.

Let us note that there exists a sequence of real numbers which is absolutely
summable.

One can check that every sequence of real numbers which is summable is
also convergent.

One can verify that every sequence of real numbers which is absolutely sum-
mable is also summable.

One can check that there exists a sequence of real numbers which is absolu-
tely summable.

Next we state several propositions:
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(4) Suppose r1 is convergent. Let given p. Suppose 0 < p. Then there exists
n such that for all natural numbers m, l such that n ¬ m and n ¬ l holds
|r1(m)− r1(l)| < p.

(5) If for every n holds r1(n) ¬ p, then for all natural numbers n, l holds
(
∑κ

α=0(r1)(α))κ∈N(n + l)− (
∑κ

α=0(r1)(α))κ∈N(n) ¬ p · l.
(6) If for every n holds r1(n) ¬ p, then for every n holds

(
∑κ

α=0(r1)(α))κ∈N(n) ¬ p · (n + 1).
(7) If for every n such that n ¬ m holds r2(n) ¬ p · r3(n), then

(
∑κ

α=0(r2)(α))κ∈N(m) ¬ p · (∑κ
α=0(r3)(α))κ∈N(m).

(8) Suppose that for every n such that n ¬ m holds r2(n) ¬ p · r3(n).
Let given n. Suppose n ¬ m. Let l be a natural number. If n +
l ¬ m, then (

∑κ
α=0(r2)(α))κ∈N(n + l) − (

∑κ
α=0(r2)(α))κ∈N(n) ¬ p ·

((
∑κ

α=0(r3)(α))κ∈N(n + l)− (
∑κ

α=0(r3)(α))κ∈N(n)).
(9) If for every n holds 0 ¬ r1(n), then for all n, m such that

n ¬ m holds |(∑κ
α=0(r1)(α))κ∈N(m) − (

∑κ
α=0(r1)(α))κ∈N(n)| =

(
∑κ

α=0(r1)(α))κ∈N(m) − (
∑κ

α=0(r1)(α))κ∈N(n) and for every n holds
|(∑κ

α=0(r1)(α))κ∈N(n)| = (
∑κ

α=0(r1)(α))κ∈N(n).
(10) If s2 is convergent and s3 is convergent and lim(s2 − s3) = 0C, then

lim s2 = lim s3.

2. The Operations on Complex Sequences

In the sequel z denotes an element of C and N1 denotes an increasing sequ-
ence of naturals.

Let z be an element of C. The functor (zκ)κ∈N yielding a complex sequence
is defined as follows:

(Def. 1) (zκ)κ∈N(0) = 1C and for every n holds (zκ)κ∈N(n + 1) = (zκ)κ∈N(n) · z.

Let z be an element of C and let n be a natural number. The functor zn
N

yielding an element of C is defined by:

(Def. 2) zn
N = (zκ)κ∈N(n).

The following proposition is true

(11) z0
N = 1C.

Let c be a complex sequence. The functor <(c) yields a sequence of real
numbers and is defined as follows:

(Def. 3) For every n holds <(c)(n) = <(c(n)).
Let c be a complex sequence. The functor =(c) yielding a sequence of real

numbers is defined as follows:

(Def. 4) For every n holds =(c)(n) = =(c(n)).
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We now state a number of propositions:

(12) |z| ¬ |<(z)|+ |=(z)|.
(13) |<(z)| ¬ |z| and |=(z)| ¬ |z|.
(14) <(s2) = <(s3) and =(s2) = =(s3) iff s2 = s3.

(15) <(s2) + <(s3) = <(s2 + s3) and =(s2) + =(s3) = =(s2 + s3).
(16) −<(s1) = <(−s1) and −=(s1) = =(−s1).
(17) r · <(z) = <((r + 0i) · z) and r · =(z) = =((r + 0i) · z).
(18) <(s2)−<(s3) = <(s2 − s3) and =(s2)−=(s3) = =(s2 − s3).
(19) r<(s1) = <((r + 0i) s1) and r=(s1) = =((r + 0i) s1).
(20) <(z s1) = <(z)<(s1)−=(z)=(s1) and =(z s1) = <(z)=(s1)+=(z)<(s1).
(21) <(s2 s3) = <(s2)<(s3) − =(s2)=(s3) and =(s2 s3) = <(s2)=(s3) +
=(s2)<(s3).

Let s1 be a complex sequence and let N1 be an increasing sequence of natu-
rals. The functor s1 N1 yielding a complex sequence is defined by:

(Def. 5) For every n holds (s1 N1)(n) = s1(N1(n)).
Next we state the proposition

(22) <(s1 N1) = <(s1) ·N1 and =(s1 N1) = =(s1) ·N1.

Let s1 be a complex sequence and let k be a natural number. The functor
s1 ↑ k yields a complex sequence and is defined by:

(Def. 6) For every n holds (s1 ↑ k)(n) = s1(n + k).
The following proposition is true

(23) <(s1) ↑ k = <(s1 ↑ k) and =(s1) ↑ k = =(s1 ↑ k).
Let s1 be a complex sequence. The functor (

∑κ
α=0(s1)(α))κ∈N yields a com-

plex sequence and is defined as follows:

(Def. 7) (
∑κ

α=0(s1)(α))κ∈N(0) = s1(0) and for every n holds (
∑κ

α=0(s1)(α))κ∈N(n+
1) = (

∑κ
α=0(s1)(α))κ∈N(n) + s1(n + 1).

Let s1 be a complex sequence. The functor
∑

s1 yields an element of C and
is defined as follows:

(Def. 8)
∑

s1 = lim((
∑κ

α=0(s1)(α))κ∈N).
Next we state a number of propositions:

(24) If for every n holds s1(n) = 0C, then for every m holds
(
∑κ

α=0(s1)(α))κ∈N(m) = 0C.

(25) If for every n holds s1(n) = 0C, then for every m holds
(
∑κ

α=0 |s1|(α))κ∈N(m) = 0.
(26) (

∑κ
α=0<(s1)(α))κ∈N = <((

∑κ
α=0(s1)(α))κ∈N) and (

∑κ
α=0=(s1)(α))κ∈N =

=((
∑κ

α=0(s1)(α))κ∈N).
(27) (

∑κ
α=0(s2)(α))κ∈N + (

∑κ
α=0(s3)(α))κ∈N = (

∑κ
α=0(s2 + s3)(α))κ∈N.

(28) (
∑κ

α=0(s2)(α))κ∈N − (
∑κ

α=0(s3)(α))κ∈N = (
∑κ

α=0(s2 − s3)(α))κ∈N.
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(29) (
∑κ

α=0(z s1)(α))κ∈N = z (
∑κ

α=0(s1)(α))κ∈N.

(30) |(∑κ
α=0(s1)(α))κ∈N(k)| ¬ (

∑κ
α=0 |s1|(α))κ∈N(k).

(31) |(∑κ
α=0(s1)(α))κ∈N(m)−(

∑κ
α=0(s1)(α))κ∈N(n)| ¬ |(∑κ

α=0 |s1|(α))κ∈N(m)
−(

∑κ
α=0 |s1|(α))κ∈N(n)|.

(32) (
∑κ

α=0<(s1)(α))κ∈N ↑ k = <((
∑κ

α=0(s1)(α))κ∈N ↑ k) and
(
∑κ

α=0=(s1)(α))κ∈N ↑ k = =((
∑κ

α=0(s1)(α))κ∈N ↑ k).
(33) If for every n holds s2(n) = s1(0), then (

∑κ
α=0(s1 ↑ 1)(α))κ∈N =

(
∑κ

α=0(s1)(α))κ∈N ↑ 1− s2.

(34) (
∑κ

α=0 |s1|(α))κ∈N is non-decreasing.

Let s1 be a complex sequence. Note that (
∑κ

α=0 |s1|(α))κ∈N is non-decreasing.
Next we state three propositions:

(35) If for every n such that n ¬ m holds s2(n) = s3(n), then
(
∑κ

α=0(s2)(α))κ∈N(m) = (
∑κ

α=0(s3)(α))κ∈N(m).

(36) If 1C 6= z, then for every n holds (
∑κ

α=0((z
κ)κ∈N)(α))κ∈N(n) = 1C−zn+1

N
1C−z .

(37) If z 6= 1C and for every n holds s1(n + 1) = z · s1(n), then for every n

holds (
∑κ

α=0(s1)(α))κ∈N(n) = s1(0) · 1C−zn+1
N

1C−z .

3. Convergence of Complex Sequences

Next we state four propositions:

(38) Let a, b be sequences of real numbers and c be a complex sequence.
Suppose that for every n holds <(c(n)) = a(n) and =(c(n)) = b(n). Then
a is convergent and b is convergent if and only if c is convergent.

(39) Let a, b be convergent sequences of real numbers and c be a complex
sequence. Suppose that for every n holds <(c(n)) = a(n) and =(c(n)) =
b(n). Then c is convergent and lim c = lim a + lim bi.

(40) Let a, b be sequences of real numbers and c be a convergent complex
sequence. Suppose that for every n holds <(c(n)) = a(n) and =(c(n)) =
b(n). Then a is convergent and b is convergent and lim a = <(lim c) and
lim b = =(lim c).

(41) For every convergent complex sequence c holds <(c) is convergent and
=(c) is convergent and lim<(c) = <(lim c) and lim=(c) = =(lim c).

Let c be a convergent complex sequence. Observe that <(c) is convergent
and =(c) is convergent.

The following propositions are true:

(42) Let c be a complex sequence. Suppose <(c) is convergent and =(c) is
convergent. Then c is convergent and <(lim c) = lim<(c) and =(lim c) =
lim=(c).
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(43) If 0 < |z| and |z| < 1 and s1(0) = z and for every n holds s1(n + 1) =
s1(n) · z, then s1 is convergent and lim s1 = 0C.

(44) If |z| < 1 and for every n holds s1(n) = zn+1
N , then s1 is convergent and

lim s1 = 0C.

(45) If r > 0 and there exists m such that for every n such that n ­ m holds
|s1(n)| ­ r, then |s1| is not convergent or lim |s1| 6= 0.

(46) s1 is convergent iff for every p such that 0 < p there exists n such that
for every m such that n ¬ m holds |s1(m)− s1(n)| < p.

(47) Suppose s1 is convergent. Let given p. Suppose 0 < p. Then there exists
n such that for all natural numbers m, l such that n ¬ m and n ¬ l holds
|s1(m)− s1(l)| < p.

(48) If for every n holds |s1(n)| ¬ r1(n) and r1 is convergent and lim r1 = 0,

then s1 is convergent and lim s1 = 0C.

4. Summable and Absolutely Summable Complex Sequences

Let s1, s2 be complex sequences. We say that s1 is a subsequence of s2 if
and only if:

(Def. 9) There exists N1 such that s1 = s2 N1.

Next we state three propositions:

(49) If s1 is a subsequence of s2, then <(s1) is a subsequence of <(s2) and
=(s1) is a subsequence of =(s2).

(50) If s1 is a subsequence of s2 and s2 is a subsequence of s3, then s1 is a
subsequence of s3.

(51) If s1 is bounded, then there exists s2 which is a subsequence of s1 and
convergent.

Let s1 be a complex sequence. We say that s1 is summable if and only if:

(Def. 10) (
∑κ

α=0(s1)(α))κ∈N is convergent.

Let us observe that there exists a complex sequence which is summable.
Let s1 be a summable complex sequence. Observe that (

∑κ
α=0(s1)(α))κ∈N is

convergent.
Let us consider s1. We say that s1 is absolutely summable if and only if:

(Def. 11) |s1| is summable.

One can prove the following proposition

(52) If for every n holds s1(n) = 0C, then s1 is absolutely summable.

Let us observe that there exists a complex sequence which is absolutely
summable.
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Let s1 be an absolutely summable complex sequence. Observe that |s1| is
summable.

The following proposition is true

(53) If s1 is summable, then s1 is convergent and lim s1 = 0C.

One can verify that every complex sequence which is summable is also co-
nvergent.

We now state the proposition

(54) If s1 is summable, then <(s1) is summable and =(s1) is summable and∑
s1 =

∑<(s1) +
∑=(s1)i.

Let s1 be a summable complex sequence. One can verify that <(s1) is sum-
mable and =(s1) is summable.

We now state two propositions:

(55) If s2 is summable and s3 is summable, then s2 + s3 is summable and∑
(s2 + s3) =

∑
s2 +

∑
s3.

(56) If s2 is summable and s3 is summable, then s2 − s3 is summable and∑
(s2 − s3) =

∑
s2 −

∑
s3.

Let s2, s3 be summable complex sequences. One can check that s2 + s3 is
summable and s2 − s3 is summable.

The following proposition is true

(57) If s1 is summable, then z s1 is summable and
∑

(z s1) = z ·∑ s1.

Let z be an element of C and let s1 be a summable complex sequence. One
can check that z s1 is summable.

The following two propositions are true:

(58) If <(s1) is summable and =(s1) is summable, then s1 is summable and∑
s1 =

∑<(s1) +
∑=(s1)i.

(59) If s1 is summable, then for every n holds s1 ↑ n is summable.

Let s1 be a summable complex sequence and let n be a natural number.
Note that s1 ↑ n is summable.

One can prove the following propositions:

(60) If there exists n such that s1 ↑ n is summable, then s1 is summable.

(61) If s1 is summable, then for every n holds
∑

s1 = (
∑κ

α=0(s1)(α))κ∈N(n)+∑
(s1 ↑ (n + 1)).

(62) (
∑κ

α=0 |s1|(α))κ∈N is upper bounded iff s1 is absolutely summable.

Let s1 be an absolutely summable complex sequence. One can check that
(
∑κ

α=0 |s1|(α))κ∈N is upper bounded.
One can prove the following two propositions:

(63) s1 is summable iff for every p such that 0 < p there exists n such
that for every m such that n ¬ m holds |(∑κ

α=0(s1)(α))κ∈N(m) −
(
∑κ

α=0(s1)(α))κ∈N(n)| < p.
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(64) If s1 is absolutely summable, then s1 is summable.

One can check that every complex sequence which is absolutely summable
is also summable.

Let us note that there exists a complex sequence which is absolutely sum-
mable.

The following propositions are true:

(65) If |z| < 1, then (zκ)κ∈N is summable and
∑

((zκ)κ∈N) = 1C
1C−z .

(66) If |z| < 1 and for every n holds s1(n+1) = z ·s1(n), then s1 is summable
and

∑
s1 = s1(0)

1C−z .

(67) If r2 is summable and there exists m such that for every n such that
m ¬ n holds |s3(n)| ¬ r2(n), then s3 is absolutely summable.

(68) Suppose for every n holds 0 ¬ |s2|(n) and |s2|(n) ¬ |s3|(n) and s3

is absolutely summable. Then s2 is absolutely summable and
∑ |s2| ¬∑ |s3|.

(69) If for every n holds |s1|(n) > 0 and there exists m such that for every n

such that n ­ m holds |s1|(n+1)
|s1|(n) ­ 1, then s1 is not absolutely summable.

(70) If for every n holds r2(n) = n
√
|s1|(n) and r2 is convergent and lim r2 < 1,

then s1 is absolutely summable.

(71) If for every n holds r2(n) = n
√
|s1|(n) and there exists m such that for

every n such that m ¬ n holds r2(n) ­ 1, then |s1| is not summable.

(72) If for every n holds r2(n) = n
√
|s1|(n) and r2 is convergent and lim r2 > 1,

then s1 is not absolutely summable.

(73) Suppose |s1| is non-increasing and for every n holds r2(n) = 2n · |s1|(the
n-th power of 2). Then s1 is absolutely summable if and only if r2 is
summable.

(74) If p > 1 and for every n such that n ­ 1 holds |s1|(n) = 1
np , then s1 is

absolutely summable.

(75) If p ¬ 1 and for every n such that n ­ 1 holds |s1|(n) = 1
np , then s1 is

not absolutely summable.

(76) If for every n holds s1(n) 6= 0C and r2(n) = |s1|(n+1)
|s1|(n) and r2 is convergent

and lim r2 < 1, then s1 is absolutely summable.

(77) If for every n holds s1(n) 6= 0C and there exists m such that for every n

such that n ­ m holds |s1|(n+1)
|s1|(n) ­ 1, then s1 is not absolutely summable.
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Summary. Finite-dimensional real linear spaces are defined. The dimen-
sion of such spaces is the cardinality of a basis. Obviously, each two basis have
the same cardinality. We prove the Steinitz theorem and the Exchange Lemma.
We also investigate some fundamental facts involving the dimension of real linear
spaces.

MML Identifier: RLVECT 5.

The notation and terminology used here are introduced in the following papers:
[10], [19], [9], [7], [2], [20], [4], [5], [18], [1], [6], [3], [13], [15], [8], [17], [12], [16],
[14], and [11].

1. Prelimiaries

For simplicity, we follow the rules: V denotes a real linear space, W denotes
a subspace of V , x denotes a set, n denotes a natural number, v denotes a vector
of V , K1, K2 denote linear combinations of V , and X denotes a subset of the
carrier of V .

We now state a number of propositions:

(1) If X is linearly independent and the support of K1 ⊆ X and the support
of K2 ⊆ X and

∑
K1 =

∑
K2, then K1 = K2.

(2) Let V be a real linear space and A be a subset of V . If A is linearly
independent, then there exists a basis I of V such that A ⊆ I.

(3) Let L be a linear combination of V and x be a vector of V . Then x ∈ the
support of L if and only if there exists v such that x = v and L(v) 6= 0.
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(4) For every finite set X such that n ¬ X there exists a finite subset A of
X such that A = n.

(5) Let L be a linear combination of V , F , G be finite sequences of elements
of the carrier of V , and P be a permutation of dom F. If G = F · P, then∑

(L F ) =
∑

(L G).

(6) Let L be a linear combination of V and F be a finite sequence of elements
of the carrier of V . If the support of L misses rng F, then

∑
(L F ) = 0V .

(7) Let F be a finite sequence of elements of the carrier of V . Suppose F is
one-to-one. Let L be a linear combination of V . If the support of L ⊆ rng F,

then
∑

(L F ) =
∑

L.

(8) Let L be a linear combination of V and F be a finite sequence of elements
of the carrier of V . Then there exists a linear combination K of V such
that the support of K = rng F ∩ the support of L and L F = K F.

(9) Let L be a linear combination of V , A be a subset of V , and F be
a finite sequence of elements of the carrier of V . Suppose rng F ⊆ the
carrier of Lin(A). Then there exists a linear combination K of A such that∑

(L F ) =
∑

K.

(10) Let L be a linear combination of V and A be a subset of V . Suppose the
support of L ⊆ the carrier of Lin(A). Then there exists a linear combina-
tion K of A such that

∑
L =

∑
K.

(11) Let L be a linear combination of V . Suppose the support of L ⊆ the
carrier of W . Let K be a linear combination of W . Suppose K = L¹the
carrier of W . Then the support of L = the support of K and

∑
L =

∑
K.

(12) Let K be a linear combination of W . Then there exists a linear com-
bination L of V such that the support of K = the support of L and∑

K =
∑

L.

(13) Let L be a linear combination of V . Suppose the support of L ⊆ the
carrier of W . Then there exists a linear combination K of W such that
the support of K = the support of L and

∑
K =

∑
L.

(14) For every basis I of V and for every vector v of V holds v ∈ Lin(I).

(15) Let A be a subset of W . Suppose A is linearly independent. Then there
exists a subset B of V such that B is linearly independent and B = A.

(16) Let A be a subset of V . Suppose A is linearly independent and A ⊆ the
carrier of W . Then there exists a subset B of W such that B is linearly
independent and B = A.

(17) For every basis A of W there exists a basis B of V such that A ⊆ B.

(18) Let A be a subset of V . Suppose A is linearly independent. Let v be a
vector of V . If v ∈ A, then for every subset B of V such that B = A \ {v}
holds v /∈ Lin(B).
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(19) Let I be a basis of V and A be a non empty subset of V . Suppose A

misses I. Let B be a subset of V . If B = I∪A, then B is linearly-dependent.

(20) For every subset A of V such that A ⊆ the carrier of W holds Lin(A) is
a subspace of W .

(21) For every subset A of V and for every subset B of W such that A = B

holds Lin(A) = Lin(B).

2. The Steinitz Theorem

Next we state two propositions:

(22) Let A, B be finite subsets of V and v be a vector of V . Suppose v ∈
Lin(A ∪ B) and v /∈ Lin(B). Then there exists a vector w of V such that
w ∈ A and w ∈ Lin(((A ∪B) \ {w}) ∪ {v}).

(23) Let A, B be finite subsets of V . Suppose the RLS structure of V = Lin(A)
and B is linearly independent. Then B ¬ A and there exists a finite
subset C of V such that C ⊆ A and C = A − B and the RLS structure
of V = Lin(B ∪ C).

3. Finite Dimensional Vector Spaces

Let V be a real linear space. We say that V is finite dimensional if and only
if:

(Def. 1) There exists a finite subset of the carrier of V which is a basis of V .

Let us observe that there exists a real linear space which is strict and finite
dimensional.

Let V be a real linear space. Let us observe that V is finite dimensional if
and only if:

(Def. 2) There exists a finite subset of V which is a basis of V .

We now state several propositions:

(24) If V is finite dimensional, then every basis of V is finite.

(25) If V is finite dimensional, then for every subset A of V such that A is
linearly independent holds A is finite.

(26) If V is finite dimensional, then for all bases A, B of V holds A = B.

(27) 0V is finite dimensional.

(28) If V is finite dimensional, then W is finite dimensional.
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Let V be a real linear space. One can check that there exists a subspace of
V which is finite dimensional and strict.

Let V be a finite dimensional real linear space. Observe that every subspace
of V is finite dimensional.

Let V be a finite dimensional real linear space. Note that there exists a
subspace of V which is strict.

4. The Dimension of a Vector Space

Let V be a real linear space. Let us assume that V is finite dimensional. The
functor dim(V ) yields a natural number and is defined as follows:

(Def. 3) For every basis I of V holds dim(V ) = I .

We use the following convention: V is a finite dimensional real linear space,
W , W1, W2 are subspaces of V , and u, v are vectors of V .

Next we state a number of propositions:

(29) dim(W ) ¬ dim(V ).

(30) For every subset A of V such that A is linearly independent holds A =
dim(Lin(A)).

(31) dim(V ) = dim(ΩV ).
(32) dim(V ) = dim(W ) iff ΩV = ΩW .

(33) dim(V ) = 0 iff ΩV = 0V .

(34) dim(V ) = 1 iff there exists v such that v 6= 0V and ΩV = Lin({v}).
(35) dim(V ) = 2 iff there exist u, v such that u 6= v and {u, v} is linearly

independent and ΩV = Lin({u, v}).
(36) dim(W1 + W2) + dim(W1 ∩W2) = dim(W1) + dim(W2).
(37) dim(W1 ∩W2) ­ (dim(W1) + dim(W2))− dim(V ).
(38) If V is the direct sum of W1 and W2, then dim(V ) = dim(W1)+dim(W2).
(39) n ¬ dim(V ) iff there exists a strict subspace W of V such that dim(W ) =

n.

Let V be a finite dimensional real linear space and let n be a natural number.
The functor Subn(V ) yields a set and is defined as follows:

(Def. 4) x ∈ Subn(V ) iff there exists a strict subspace W of V such that W = x

and dim(W ) = n.

The following propositions are true:

(40) If n ¬ dim(V ), then Subn(V ) is non empty.

(41) If dim(V ) < n, then Subn(V ) = ∅.
(42) Subn(W ) ⊆ Subn(V ).



the steinitz theorem and the dimension of . . . 415

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[8] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-

matics, 3(2):275–278, 1992.
[9] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.

[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[11] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847–850,
1990.

[12] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics,
1(3):581–588, 1990.

[13] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. For-
malized Mathematics, 1(3):569–573, 1990.

[14] Wojciech A. Trybulec. Operations on subspaces in real linear space. Formalized Mathe-
matics, 1(2):395–399, 1990.

[15] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized
Mathematics, 1(2):297–301, 1990.

[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
1990.

[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received July 1, 1997



416 jing-chao chen



FORMALIZED MATHEMATICS

Volume 6, Number 3, 1997
Warsaw University - Białystok

Euler Circuits and Paths1

Yatsuka Nakamura
Shinshu University

Nagano

Piotr Rudnicki
University of Alberta

Edmonton

Summary. We prove the Euler theorem on existence of Euler circuits and
paths in multigraphs.

MML Identifier: GRAPH 3.

The notation and terminology used in this paper are introduced in the following
papers: [19], [23], [13], [10], [22], [24], [6], [9], [7], [4], [8], [2], [20], [12], [3], [5],
[21], [1], [14], [15], [11], [16], [17], and [18].

1. Preliminaries

Let D be a set, let T be a non empty set of finite sequences of D, and let S

be a non empty subset of T . We see that the element of S is a finite sequence
of elements of D.

Let i, j be even integers. One can verify that i− j is even.
We now state two propositions:

(1) For all integers i, j holds i is even iff j is even iff i− j is even.

(2) Let p be a finite sequence and m, n, a be natural numbers. Suppose
a ∈ dom〈p(m), . . . , p(n)〉. Then there exists a natural number k such that
k ∈ dom p and p(k) = 〈p(m), . . . , p(n)〉(a) and k + 1 = m + a and m ¬ k

and k ¬ n.
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Let G be a graph. A vertex of G is an element of the vertices of G.
For simplicity, we follow the rules: G denotes a graph, v, v1, v2 denote vertices

of G, c, c1, c2 denote chains of G, p, p1, p2 denote paths of G, v3, v4, v5 denote
finite sequences of elements of the vertices of G, e, X denote sets, and n, m

denote natural numbers.
One can prove the following propositions:

(3) If v3 is vertex sequence of c, then v3 is non empty.

(4) If c is cyclic and v3 is vertex sequence of c, then v3(1) = v3(len v3).
(5) If n ∈ dom p and m ∈ dom p and n 6= m, then p(n) 6= p(m).
(6) ε is a path of G.

(7) If e ∈ the edges of G, then 〈e〉 is a path of G.

(8) 〈p(m), . . . , p(n)〉 is a path of G.

(9) Suppose rng p1 misses rng p2 and v4 is vertex sequence of p1 and v5 is
vertex sequence of p2 and v4(len v4) = v5(1). Then p1

a p2 is a path of G.

(10) p is one-to-one.

(11) If c1
a c2 is a path of G, then rng c1 misses rng c2.

(12) If c = ε, then c is cyclic.

Let G be a graph. Observe that there exists a path of G which is cyclic.
Next we state several propositions:

(13) For every cyclic path p of G holds 〈p(m + 1), . . . , p(len p)〉 a

〈p(1), . . . , p(m)〉 is a cyclic path of G.

(14) If m + 1 ∈ dom p, then len(〈p(m + 1), . . . , p(len p)〉 a 〈p(1), . . . , p(m)〉) =
len p and rng(〈p(m + 1), . . . , p(len p)〉 a 〈p(1), . . . , p(m)〉) = rng p and
(〈p(m + 1), . . . , p(len p)〉 a 〈p(1), . . . , p(m)〉)(1) = p(m + 1).

(15) For every cyclic path p of G such that n ∈ dom p there exists a cyclic
path p′ of G such that p′(1) = p(n) and len p′ = len p and rng p′ = rng p.

(16) Let s, t be vertices of G. Suppose s = (the source of G)(e) and t = (the
target of G)(e). Then 〈t, s〉 is vertex sequence of 〈e〉.

(17) Suppose e ∈ the edges of G and v3 is vertex sequence of c and v3(len v3) =
(the source of G)(e). Then

(i) c a 〈e〉 is a chain of G, and
(ii) there exists a finite sequence v′1 of elements of the vertices of G such

that v′1 = v3 aa 〈(the source of G)(e), (the target of G)(e)〉 and v′1 is vertex
sequence of ca 〈e〉 and v′1(1) = v3(1) and v′1(len v′1) = (the target of G)(e).

(18) Suppose e ∈ the edges of G and v3 is vertex sequence of c and v3(len v3) =
(the target of G)(e). Then

(i) c a 〈e〉 is a chain of G, and
(ii) there exists a finite sequence v′1 of elements of the vertices of G such

that v′1 = v3 aa 〈(the target of G)(e), (the source of G)(e)〉 and v′1 is vertex
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sequence of ca 〈e〉 and v′1(1) = v3(1) and v′1(len v′1) = (the source of G)(e).
(19) Suppose v3 is vertex sequence of c. Let n be a natural number. Suppose

n ∈ dom c. Then
(i) v3(n) = (the target of G)(c(n)) and v3(n+1) = (the source of G)(c(n)),

or
(ii) v3(n) = (the source of G)(c(n)) and v3(n+1) = (the target of G)(c(n)).

(20) If v3 is vertex sequence of c and e ∈ rng c, then (the target of G)(e) ∈
rng v3 and (the source of G)(e) ∈ rng v3.

Let G be a graph and let X be a set. Then G-VSet(X) is a subset of the
vertices of G.

One can prove the following propositions:

(21) G-VSet(∅) = ∅.
(22) If e ∈ the edges of G and e ∈ X, then G-VSet(X) is non empty.

(23) G is connected if and only if for all v1, v2 such that v1 6= v2 there exist c,
v3 such that c is non empty and v3 is vertex sequence of c and v3(1) = v1

and v3(len v3) = v2.

(24) Let G be a connected graph, X be a set, and v be a vertex of G. Suppose
X meets the edges of G and v /∈ G-VSet(X). Then there exists a vertex
v′ of G and there exists an element e of the edges of G such that v′ ∈
G-VSet(X) but e /∈ X but v′ = (the target of G)(e) or v′ = (the source of
G)(e).

2. Degree of a vertex

Let G be a graph, let v be a vertex of G, and let X be a set. The functor
EdgesIn(v,X) yields a subset of the edges of G and is defined as follows:

(Def. 1) For every set e holds e ∈ EdgesIn(v,X) iff e ∈ the edges of G and e ∈ X

and (the target of G)(e) = v.

The functor EdgesOut(v, X) yields a subset of the edges of G and is defined as
follows:

(Def. 2) For every set e holds e ∈ EdgesOut(v, X) iff e ∈ the edges of G and
e ∈ X and (the source of G)(e) = v.

Let G be a graph, let v be a vertex of G, and let X be a set. The functor
EdgesAt(v,X) yields a subset of the edges of G and is defined as follows:

(Def. 3) EdgesAt(v, X) = EdgesIn(v, X) ∪ EdgesOut(v, X).
Let G be a finite graph, let v be a vertex of G, and let X be a set. One can

check the following observations:

∗ EdgesIn(v, X) is finite,
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∗ EdgesOut(v,X) is finite, and

∗ EdgesAt(v, X) is finite.

Let G be a graph, let v be a vertex of G, and let X be an empty set. One
can verify the following observations:

∗ EdgesIn(v, X) is empty,

∗ EdgesOut(v,X) is empty, and

∗ EdgesAt(v, X) is empty.

Let G be a graph and let v be a vertex of G. The functor EdgesIn v yields a
subset of the edges of G and is defined as follows:

(Def. 4) EdgesIn v = EdgesIn(v, the edges of G).
The functor EdgesOut v yields a subset of the edges of G and is defined by:

(Def. 5) EdgesOut v = EdgesOut(v, the edges of G).
One can prove the following propositions:

(25) EdgesIn(v, X) ⊆ EdgesIn v.

(26) EdgesOut(v,X) ⊆ EdgesOut v.

Let G be a finite graph and let v be a vertex of G. Note that EdgesIn v is
finite and EdgesOut v is finite.

For simplicity, we follow the rules: G denotes a finite graph, v denotes a
vertex of G, c denotes a chain of G, v3 denotes a finite sequence of elements of
the vertices of G, and X1, X2 denote sets.

One can prove the following two propositions:

(27) card EdgesIn v = EdgIn(v).
(28) card EdgesOut v = EdgOut(v).

Let G be a finite graph, let v be a vertex of G, and let X be a set. The
functor Degree(v, X) yields a natural number and is defined as follows:

(Def. 6) Degree(v,X) = card EdgesIn(v,X) + card EdgesOut(v, X).
The following propositions are true:

(29) The degree of v = Degree(v, the edges of G).
(30) If Degree(v, X) 6= 0, then EdgesAt(v, X) is non empty.

(31) Suppose e ∈ the edges of G but e /∈ X but v = (the target of G)(e) or
v = (the source of G)(e). Then the degree of v 6= Degree(v, X).

(32) If X2 ⊆ X1, then card EdgesIn(v, X1 \ X2) = card EdgesIn(v,X1) −
card EdgesIn(v, X2).

(33) If X2 ⊆ X1, then card EdgesOut(v,X1 \X2) = card EdgesOut(v, X1) −
card EdgesOut(v,X2).

(34) If X2 ⊆ X1, then Degree(v, X1 \X2) = Degree(v, X1)−Degree(v, X2).
(35) EdgesIn(v, X) = EdgesIn(v, X ∩ the edges of G) and EdgesOut(v, X) =

EdgesOut(v, X ∩ the edges of G).
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(36) Degree(v,X) = Degree(v, X ∩ the edges of G).
(37) If c is non empty and v3 is vertex sequence of c, then v ∈ rng v3 iff

Degree(v, rng c) 6= 0.

(38) For every non empty finite connected graph G and for every vertex v of
G holds the degree of v 6= 0.

3. Adding an edge to a graph

Let G be a graph and let v1, v2 be vertices of G. The functor AddNewEdge(v1, v2)
yielding a strict graph is defined by the conditions (Def. 7).

(Def. 7)(i) The vertices of AddNewEdge(v1, v2) = the vertices of G,
(ii) the edges of AddNewEdge(v1, v2) = (the edges of G) ∪ {the edges of

G},
(iii) the source of AddNewEdge(v1, v2) = (the source of G)+·((the edges of

G)7−→. (v1)), and
(iv) the target of AddNewEdge(v1, v2) = (the target of G)+·((the edges of

G)7−→. (v2)).
Let G be a finite graph and let v1, v2 be vertices of G. Observe that

AddNewEdge(v1, v2) is finite.
For simplicity, we adopt the following rules: G is a graph, v, v1, v2 are

vertices of G, c is a chain of G, p is a path of G, v3 is a finite sequence of
elements of the vertices of G, v′ is a vertex of AddNewEdge(v1, v2), p′ is a path
of AddNewEdge(v1, v2), and v′1 is a finite sequence of elements of the vertices
of AddNewEdge(v1, v2).

We now state a number of propositions:

(39)(i) The edges of G ∈ the edges of AddNewEdge(v1, v2),
(ii) the edges of G = (the edges of AddNewEdge(v1, v2)) \ {the edges of

G},
(iii) (the source of AddNewEdge(v1, v2))(the edges of G) = v1, and
(iv) (the target of AddNewEdge(v1, v2))(the edges of G) = v2.

(40) Suppose e ∈ the edges of G. Then (the source of AddNewEdge(v1, v2))(e) =
(the source of G)(e) and (the target of AddNewEdge(v1, v2))(e) = (the
target of G)(e).

(41) If v′1 = v3 and v3 is vertex sequence of c, then v′1 is vertex sequence of c.

(42) c is a chain of AddNewEdge(v1, v2).
(43) p is a path of AddNewEdge(v1, v2).
(44) If v′ = v1 and v1 6= v2, then EdgesIn(v′, X) = EdgesIn(v1, X).
(45) If v′ = v2 and v1 6= v2, then EdgesOut(v′, X) = EdgesOut(v2, X).
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(46) If v′ = v1 and v1 6= v2 and the edges of G ∈ X, then EdgesOut(v′, X) =
EdgesOut(v1, X)∪ {the edges of G} and EdgesOut(v1, X)∩ {the edges of
G} = ∅.

(47) If v′ = v2 and v1 6= v2 and the edges of G ∈ X, then EdgesIn(v′, X) =
EdgesIn(v2, X) ∪ {the edges of G} and EdgesIn(v2, X) ∩ {the edges of
G} = ∅.

(48) If v′ = v and v 6= v1 and v 6= v2, then EdgesIn(v′, X) = EdgesIn(v,X).
(49) If v′ = v and v 6= v1 and v 6= v2, then EdgesOut(v′, X) =

EdgesOut(v, X).
(50) If the edges of G /∈ rng p′, then p′ is a path of G.

(51) If the edges of G /∈ rng p′ and v3 = v′1 and v′1 is vertex sequence of p′,
then v3 is vertex sequence of p′.

Let G be a connected graph and let v1, v2 be vertices of G. One can check
that AddNewEdge(v1, v2) is connected.

For simplicity, we adopt the following rules: G is a finite graph, v, v1, v2 are
vertices of G, v3 is a finite sequence of elements of the vertices of G, and v′ is a
vertex of AddNewEdge(v1, v2).

We now state two propositions:

(52) If v′ = v and v1 6= v2 and v = v1 or v = v2 and the edges of G ∈ X, then
Degree(v′, X) = Degree(v, X) + 1.

(53) If v′ = v and v 6= v1 and v 6= v2, then Degree(v′, X) = Degree(v, X).

4. Some properties of and operations on cycles

The following two propositions are true:

(54) For every cyclic path c of G holds Degree(v, rng c) is even.

(55) Let c be a path of G. Suppose c is non cyclic and v3 is vertex sequence of
c. Then Degree(v, rng c) is even if and only if v 6= v3(1) and v 6= v3(len v3).

In the sequel G is a graph, v is a vertex of G, and v3 is a finite sequence of
elements of the vertices of G.

Let G be a graph. The functor G-CycleSet yields a non empty set of finite
sequences of the edges of G and is defined as follows:

(Def. 8) For every set x holds x ∈ G-CycleSet iff x is a cyclic path of G.

One can prove the following propositions:

(56) ε is an element of G-CycleSet.

(57) Let c be an element of G-CycleSet. Suppose v ∈ G-VSet(rng c). Then
{c′, c′ ranges over elements of G-CycleSet: rng c′ = rng c ∧ ∨

v3
(v3 is

vertex sequence of c′ ∧ v3(1) = v)} is a non empty subset of G-CycleSet.
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Let us consider G, v and let c be an element of G-CycleSet. Let us assume
that v ∈ G-VSet(rng c). The functor cv

ª yields an element of G-CycleSet and is
defined as follows:

(Def. 9) cv
ª = choose({c′, c′ ranges over elements of G-CycleSet: rng c′ = rng c ∧∨

v3
(v3 is vertex sequence of c′ ∧ v3(1) = v)}).

Let G be a graph and let c1, c2 be elements of G-CycleSet. Let us assume
that G-VSet(rng c1) meets G-VSet(rng c2) and rng c1 misses rng c2. The functor
CatCycles(c1, c2) yields an element of G-CycleSet and is defined as follows:

(Def. 10) There exists a vertex v of G such that v = choose((G-VSet(rng c1)) ∩
(G-VSet(rng c2))) and CatCycles(c1, c2) = (c1

v
ª) a c2

v
ª.

The following proposition is true

(58) Let G be a graph and c1, c2 be elements of G-CycleSet. Suppose
G-VSet(rng c1) meets G-VSet(rng c2) but rng c1 misses rng c2 but c1 6= ε

or c2 6= ε. Then CatCycles(c1, c2) is non empty.

In the sequel G denotes a finite graph, v denotes a vertex of G, and v3

denotes a finite sequence of elements of the vertices of G.
Let us consider G, v and let X be a set. Let us assume that Degree(v,X) 6= 0.

The functor X-PathSet(v) yielding a non empty set of finite sequences of the
edges of G is defined as follows:

(Def. 11) X-PathSet(v) = {c, c ranges over elements of X∗: c is a path of G ∧ c is
non empty ∧ ∨

v3
(v3 is vertex sequence of c ∧ v3(1) = v)}.

One can prove the following proposition

(59) For every element p of X-PathSet(v) and for every finite set Y such that
Y = the edges of G and Degree(v, X) 6= 0 holds len p ¬ card Y.

Let us consider G, v and let X be a set. Let us assume that for every
vertex v1 of G holds Degree(v1, X) is even and Degree(v, X) 6= 0. The functor
X-CycleSetv yielding a non empty subset of G-CycleSet is defined as follows:

(Def. 12) X-CycleSetv = {c, c ranges over elements of G-CycleSet: rng c ⊆ X ∧ c is
non empty ∧ ∨

v3
(v3 is vertex sequence of c ∧ v3(1) = v)}.

Next we state two propositions:

(60) If Degree(v, X) 6= 0 and for every v holds Degree(v,X) is even, then for
every element c of X-CycleSetv holds c is non empty and rng c ⊆ X and
v ∈ G-VSet(rng c).

(61) Let G be a finite connected graph and c be an element of G-CycleSet.
Suppose rng c 6= the edges of G and c is non empty. Then {v′, v′ ranges over
vertices of G: v′ ∈ G-VSet(rng c) ∧ the degree of v′ 6= Degree(v′, rng c)}
is a non empty subset of the vertices of G.

Let G be a finite connected graph and let c be an element of G-CycleSet.
Let us assume that rng c 6= the edges of G and c is non empty. The functor
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ExtendCycle c yields an element of G-CycleSet and is defined by the condition
(Def. 13).

(Def. 13) There exists an element c′ of G-CycleSet and there exists a vertex v of G

such that v = choose({v′, v′ ranges over vertices of G: v′ ∈ G-VSet(rng c) ∧
the degree of v′ 6= Degree(v′, rng c)}) and c′ = choose(((the edges of G) \
rng c)-CycleSetv) and ExtendCycle c = CatCycles(c, c′).

One can prove the following proposition

(62) Let G be a finite connected graph and c be an element of G-CycleSet.
Suppose rng c 6= the edges of G and c is non empty and for every vertex v

of G holds the degree of v is even. Then ExtendCycle c is non empty and
card rng c < card rng ExtendCycle c.

5. Euler circuits and paths

Let G be a graph and let p be a path of G. We say that p is Eulerian if and
only if:

(Def. 14) rng p = the edges of G.

We now state three propositions:

(63) Let G be a connected graph, p be a path of G, and v3 be a finite sequence
of elements of the vertices of G. Suppose p is Eulerian and v3 is vertex
sequence of p. Then rng v3 = the vertices of G.

(64) Let G be a finite connected graph. Then there exists a cyclic path of G

which is Eulerian if and only if for every vertex v of G holds the degree of
v is even.

(65) Let G be a finite connected graph. Then there exists a path of G which
is non cyclic and Eulerian if and only if there exist vertices v1, v2 of G

such that v1 6= v2 and for every vertex v of G holds the degree of v is even
iff v 6= v1 and v 6= v2.
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Let us observe that there exists a set which is non empty and without zero
and there exists a set which is non empty and has zero.

Let us observe that there exists a subset of R which is non empty and without
zero and there exists a subset of R which is non empty and has zero.

Next we state the proposition

(1) For every set F such that F is non empty and ⊆-linear and has non
empty elements holds F is centered.

Let F be a set. Note that every family of subsets of F which is non empty
and ⊆-linear and has non empty elements is also centered.

Let A, B be sets and let f be a function from A into B. Then rng f is a
subset of B.

Let X, Y be non empty sets and let f be a function from X into Y . Note
that f◦X is non empty.

Let X, Y be sets and let f be a function from X into Y . The functor −1f

yields a function from 2Y into 2X and is defined by:

(Def. 2) For every subset y of Y holds (−1f)(y) = f−1(y).
We now state the proposition

(2) Let X, Y , x be sets, S be a subset of 2Y , and f be a function from X

into Y . If x ∈ ⋂
((−1f)◦S), then f(x) ∈ ⋂

S.

We follow the rules: p, q, r, r1, r2, s, t are real numbers, s1 is a sequence of
real numbers, and X, Y are subsets of R.

One can prove the following propositions:

(3) If |r|+ |s| = 0, then r = 0 and s = 0.

(4) If r < s and s < t, then |s| < |r|+ |t|.
(5) If −s < r and r < s, then |r| < s.

(6) If s1 is convergent and non-zero and lim s1 = 0, then s1
−1 is non boun-

ded.

(7) rng s1 is bounded iff s1 is bounded.

Next we state four propositions:

(8) Let X be a non empty subset of R and given r. Suppose X is lower bo-
unded. Then r = inf X if and only if the following conditions are satisfied:

(i) for every p such that p ∈ X holds p ­ r, and
(ii) for every q such that for every p such that p ∈ X holds p ­ q holds

r ­ q.

(9) Let X be a non empty subset of R and given r. Suppose X is upper
bounded. Then r = sup X if and only if the following conditions are satis-
fied:

(i) for every p such that p ∈ X holds p ¬ r, and
(ii) for every q such that for every p such that p ∈ X holds p ¬ q holds

r ¬ q.
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(10) For every non empty subset X of R and for every subset Y of R such
that X ⊆ Y and Y is lower bounded holds inf Y ¬ inf X.

(11) For every non empty subset X of R and for every subset Y of R such
that X ⊆ Y and Y is upper bounded holds sup X ¬ sup Y.

Let X be a subset of R. We say that X has maximum if and only if:

(Def. 3) X is upper bounded and sup X ∈ X.

We say that X has minimum if and only if:

(Def. 4) X is lower bounded and inf X ∈ X.

One can verify that there exists a subset of R which is non empty, closed,
and bounded.

Let R be a family of subsets of R. We say that R is open if and only if:

(Def. 5) For every subset X of R such that X ∈ R holds X is open.

We say that R is closed if and only if:

(Def. 6) For every subset X of R such that X ∈ R holds X is closed.

Let X be a subset of R. The functor −X yielding a subset of R is defined
by:

(Def. 7) −X = {−r : r ∈ X}.
Next we state the proposition

(12) r ∈ X iff −r ∈ −X.

Let X be a non empty subset of R. One can check that −X is non empty.
One can prove the following propositions:

(13) −−X = X.

(14) X is upper bounded iff −X is lower bounded.

(15) X is lower bounded iff −X is upper bounded.

(16) For every non empty subset X of R such that X is lower bounded holds
inf X = −sup(−X).

(17) For every non empty subset X of R such that X is upper bounded holds
sup X = −inf(−X).

(18) X is closed iff −X is closed.

Let X be a subset of R and let p be a real number. The functor p+X yields
a subset of R and is defined by:

(Def. 8) p + X = {p + r : r ∈ X}.
One can prove the following proposition

(19) r ∈ X iff s + r ∈ s + X.

Let X be a non empty subset of R and let s be a real number. Observe that
s + X is non empty.

One can prove the following propositions:

(20) X = 0 + X.
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(21) s + (t + X) = (s + t) + X.

(22) X is upper bounded iff s + X is upper bounded.

(23) X is lower bounded iff s + X is lower bounded.

(24) For every non empty subset X of R such that X is lower bounded holds
inf(s + X) = s + inf X.

(25) For every non empty subset X of R such that X is upper bounded holds
sup(s + X) = s + sup X.

(26) X is closed iff s + X is closed.

Let X be a subset of R. The functor Inv X yielding a subset of R is defined
by:

(Def. 9) Inv X = {1
r : r ∈ X}.

The following proposition is true

(27) For every without zero subset X of R such that r 6= 0 holds r ∈ X iff
1
r ∈ Inv X.

Let X be a non empty without zero subset of R. One can verify that Inv X

is non empty and without zero.
Let X be a without zero subset of R. One can verify that Inv X is without

zero.
The following propositions are true:

(28) For every without zero subset X of R holds Inv Inv X = X.

(29) For every without zero subset X of R such that X is closed and bounded
holds Inv X is closed.

(30) For every family Z of subsets of R such that Z is closed holds
⋂

Z is
closed.

Let X be a subset of R. The functor X yielding a subset of R is defined by:

(Def. 10) X =
⋂{A,A ranges over elements of 2R: X ⊆ A ∧ A is closed}.

Let X be a subset of R. Observe that X is closed.
Next we state several propositions:

(31) For every closed subset Y of R such that X ⊆ Y holds X ⊆ Y.

(32) X ⊆ X.

(33) X is closed iff X = X.

(34) ∅R = ∅.
(35) ΩR = R.

(36) X = X.

(37) If X ⊆ Y, then X ⊆ Y .

(38) r ∈ X iff for every open subset O of R such that r ∈ O holds O ∩X is
non empty.
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(39) If r ∈ X, then there exists s1 such that rng s1 ⊆ X and s1 is convergent
and lim s1 = r.

2. Functions into Reals

Let A be a set, let f be a function from A into R, and let a be a set. Then
f(a) is a real number.

Let X be a set and let f be a function from X into R. We say that f is lower
bounded if and only if:

(Def. 11) f◦X is lower bounded.

We say that f is upper bounded if and only if:

(Def. 12) f◦X is upper bounded.

Let X be a set and let f be a function from X into R. We say that f is
bounded if and only if:

(Def. 13) f is lower bounded and upper bounded.

We say that f has maximum if and only if:

(Def. 14) f◦X has maximum.

We say that f has minimum if and only if:

(Def. 15) f◦X has minimum.

Let X be a set. One can check that every function from X into R which is
bounded is also lower bounded and upper bounded and every function from X

into R which is lower bounded and upper bounded is also bounded.
Let X be a set and let f be a function from X into R. The functor −f yields

a function from X into R and is defined as follows:

(Def. 16) For every set p such that p ∈ X holds (−f)(p) = −f(p).
The following propositions are true:

(40) For all sets X, A and for every function f from X into R holds (−f)◦A =
−f◦A.

(41) For every set X and for every function f from X into R holds −−f = f.

(42) For every non empty set X and for every function f from X into R holds
f has minimum iff −f has maximum.

(43) For every non empty set X and for every function f from X into R holds
f has maximum iff −f has minimum.

(44) For every set X and for every subset A of R and for every function f

from X into R holds (−f)−1(A) = f−1(−A).
Let X be a set, let r be a real number, and let f be a function from X into

R. The functor r + f yielding a function from X into R is defined as follows:

(Def. 17) For every set p such that p ∈ X holds (r + f)(p) = r + f(p).
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One can prove the following two propositions:

(45) For all sets X, A and for every function f from X into R and for every
real number s holds (s + f)◦A = s + f◦A.

(46) For every set X and for every subset A of R and for every function f

from X into R and for every s holds (s + f)−1(A) = f−1(−s + A).

Let X be a set and let f be a function from X into R. The functor Inv f

yields a function from X into R and is defined by:

(Def. 18) For every set p such that p ∈ X holds (Inv f)(p) = 1
f(p) .

We now state the proposition

(47) Let X be a set, A be a without zero subset of R, and f be a function
from X into R. If 0 /∈ rng f, then (Inv f)−1(A) = f−1(Inv A).

3. Real maps

Let T be a 1-sorted structure.

(Def. 19) A function from the carrier of T into R is called a real map of T .

Let T be a non empty 1-sorted structure. Note that there exists a real map
of T which is bounded.

In this article we present several logical schemes. The scheme NonUniqExRF
deals with a non empty topological structure A and a binary predicate P, and
states that:

There exists a real map f of A such that for every element x of
the carrier of A holds P[x, f(x)]

provided the parameters meet the following requirement:
• For every set x such that x ∈ the carrier of A there exists r such

that P[x, r].
The scheme LambdaRF deals with a non empty topological structure A and

a unary functor F yielding a real number, and states that:
There exists a real map f of A such that for every element x of
the carrier of A holds f(x) = F(x)

for all values of the parameters.
Let T be a 1-sorted structure, let f be a real map of T , and let P be a set.

Then f−1(P ) is a subset of T .
Let T be a 1-sorted structure and let f be a real map of T . The functor inf f

yielding a real number is defined by:

(Def. 20) inf f = inf(f◦(the carrier of T )).
The functor sup f yields a real number and is defined by:

(Def. 21) sup f = sup(f◦(the carrier of T )).
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Next we state three propositions:

(48) Let T be a non empty topological space and f be a lower bounded
real map of T . Then r = inf f if and only if the following conditions are
satisfied:

(i) for every point p of T holds f(p) ­ r, and
(ii) for every real number q such that for every point p of T holds f(p) ­ q

holds r ­ q.

(49) Let T be a non empty topological space and f be an upper bounded
real map of T . Then r = sup f if and only if the following conditions are
satisfied:

(i) for every point p of T holds f(p) ¬ r, and
(ii) for every real number q such that for every point p of T holds f(p) ¬ q

holds r ¬ q.

(50) For every non empty 1-sorted structure T and for every bounded real
map f of T holds inf f ¬ sup f.

Let T be a 1-sorted structure and let f be a real map of T . The functor −f

yielding a real map of T is defined by:

(Def. 22) −f = −f.

Let T be a 1-sorted structure, let r be a real number, and let f be a real
map of T . The functor r + f yields a real map of T and is defined by:

(Def. 23) r + f = r + f.

Let T be a 1-sorted structure and let f be a real map of T . The functor
Inv f yields a real map of T and is defined by:

(Def. 24) Inv f = Inv f.

Let T be a topological structure and let f be a real map of T . We say that
f is continuous if and only if:

(Def. 25) For every subset Y of R such that Y is closed holds f−1(Y ) is closed.

Let T be a non empty topological space. Note that there exists a real map
of T which is continuous.

Let T be a non empty topological space and let S be a non empty subspace
of T . One can check that there exists a real map of S which is continuous.

In the sequel T is a topological space and f is a real map of T .
Next we state several propositions:

(51) f is continuous iff for every subset Y of R such that Y is open holds
f−1(Y ) is open.

(52) If f is continuous, then −f is continuous.

(53) If f is continuous, then r + f is continuous.

(54) If f is continuous and 0 /∈ rng f, then Inv f is continuous.
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(55) For every family R of subsets of R such that f is continuous and R is
open holds (−1f)◦R is open.

(56) For every family R of subsets of R such that f is continuous and R is
closed holds (−1f)◦R is closed.

Let T be a non empty topological space, let X be a subset of T , and let f

be a real map of T . The functor f ¹ X yielding a real map of T ¹X is defined as
follows:

(Def. 26) f ¹ X = f¹X.

Let T be a non empty topological space. One can check that there exists a
subset of T which is compact and non empty.

Let T be a non empty topological space, let f be a continuous real map of T ,
and let X be a compact non empty subset of T . Note that f ¹ X is continuous.

Let T be a non empty topological space and let P be a compact non empty
subset of T . Note that T ¹P is compact.

4. Pseudocompact spaces

We now state two propositions:

(57) Let T be a non empty topological space. Then for every real map f of
T such that f is continuous holds f has maximum if and only if for every
real map f of T such that f is continuous holds f has minimum.

(58) Let T be a non empty topological space. Then for every real map f of T

such that f is continuous holds f is bounded if and only if for every real
map f of T such that f is continuous holds f has maximum.

Let T be a topological space. We say that T is pseudocompact if and only
if:

(Def. 27) For every real map f of T such that f is continuous holds f is bounded.

Let us mention that every non empty topological space which is compact is
also pseudocompact.

Let us mention that there exists a topological space which is compact and
non empty.

Let T be a pseudocompact non empty topological space. One can check that
every real map of T which is continuous is also bounded and has maximum and
minimum.

We now state two propositions:

(59) Let T be a non empty topological space, X, Y be non empty compact
subsets of T , and f be a continuous real map of T . If X ⊆ Y, then inf(f ¹
Y ) ¬ inf(f ¹ X).
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(60) Let T be a non empty topological space, X, Y be non empty compact
subsets of T , and f be a continuous real map of T . If X ⊆ Y, then sup(f ¹
X) ¬ sup(f ¹ Y ).

5. Bounding boxes for compact sets in E2

Let n be a natural number and let p1, p2 be points of En
T. Note that L(p1, p2)

is compact.
One can prove the following proposition

(61) For every natural number n and for all compact subsets X, Y of En
T

holds X ∩ Y is compact.

In the sequel p is a point of E2
T, P is a subset of E2

T, and X is a non empty
compact subset of E2

T.
The real map proj1 of E2

T is defined as follows:

(Def. 28) For every point p of E2
T holds (proj1)(p) = p1.

The real map proj2 of E2
T is defined by:

(Def. 29) For every point p of E2
T holds (proj2)(p) = p2.

One can prove the following propositions:

(62) (proj1)−1(]r, s[) = {[r1, r2] : r < r1 ∧ r1 < s}.
(63) For all r, s such that P = {[r1, r2] : r < r1 ∧ r1 < s} holds P is open.

(64) (proj2)−1(]r, s[) = {[r1, r2] : r < r2 ∧ r2 < s}.
(65) For all r, s such that P = {[r1, r2] : r < r2 ∧ r2 < s} holds P is open.

One can verify that proj1 is continuous and proj2 is continuous.
One can prove the following two propositions:

(66) For every non empty subset X of E2
T and for every point p of E2

T such
that p ∈ X holds (proj1 ¹ X)(p) = p1.

(67) For every non empty subset X of E2
T and for every point p of E2

T such
that p ∈ X holds (proj2 ¹ X)(p) = p2.

Let X be a non empty subset of E2
T. The functor W-bound X yielding a real

number is defined by:

(Def. 30) W-bound X = inf(proj1 ¹ X).
The functor N-bound X yielding a real number is defined as follows:

(Def. 31) N-bound X = sup(proj2 ¹ X).
The functor E-bound X yielding a real number is defined by:

(Def. 32) E-bound X = sup(proj1 ¹ X).
The functor S-bound X yielding a real number is defined by:

(Def. 33) S-bound X = inf(proj2 ¹ X).
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We now state the proposition

(68) If p ∈ X, then W-bound X ¬ p1 and p1 ¬ E-bound X and S-bound X ¬
p2 and p2 ¬ N-bound X.

Let X be a non empty subset of E2
T. The functor SW-corner X yields a point

of E2
T and is defined as follows:

(Def. 34) SW-corner X = [W-bound X, S-bound X].
The functor NW-corner X yielding a point of E2

T is defined as follows:

(Def. 35) NW-corner X = [W-bound X, N-bound X].
The functor NE-corner X yields a point of E2

T and is defined as follows:

(Def. 36) NE-corner X = [E-bound X, N-bound X].
The functor SE-corner X yields a point of E2

T and is defined as follows:

(Def. 37) SE-corner X = [E-bound X, S-bound X].
Let X be a non empty subset of E2

T. The functor W-most X yielding a subset
of E2

T is defined as follows:

(Def. 38) W-most X = L(SW-corner X, NW-corner X) ∩X.

The functor N-most X yielding a subset of E2
T is defined as follows:

(Def. 39) N-most X = L(NW-corner X, NE-corner X) ∩X.

The functor E-most X yields a subset of E2
T and is defined by:

(Def. 40) E-most X = L(SE-corner X, NE-corner X) ∩X.

The functor S-most X yielding a subset of E2
T is defined by:

(Def. 41) S-most X = L(SW-corner X, SE-corner X) ∩X.

Let X be a non empty compact subset of E2
T. One can check the following

observations:

∗ W-most X is non empty and compact,

∗ N-most X is non empty and compact,

∗ E-most X is non empty and compact, and

∗ S-most X is non empty and compact.

Let X be a non empty compact subset of E2
T. The functor W-min X yielding

a point of E2
T is defined by:

(Def. 42) W-min X = [W-bound X, inf(proj2 ¹ W-most X)].
The functor W-max X yielding a point of E2

T is defined by:

(Def. 43) W-max X = [W-bound X, sup(proj2 ¹ W-most X)].
The functor N-min X yielding a point of E2

T is defined by:

(Def. 44) N-min X = [inf(proj1 ¹ N-most X), N-bound X].
The functor N-max X yielding a point of E2

T is defined by:

(Def. 45) N-max X = [sup(proj1 ¹ N-most X), N-bound X].
The functor E-max X yields a point of E2

T and is defined by:
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(Def. 46) E-max X = [E-bound X, sup(proj2 ¹ E-most X)].

The functor E-min X yields a point of E2
T and is defined by:

(Def. 47) E-min X = [E-bound X, inf(proj2 ¹ E-most X)].

The functor S-max X yields a point of E2
T and is defined by:

(Def. 48) S-max X = [sup(proj1 ¹ S-most X), S-bound X].

The functor S-min X yielding a point of E2
T is defined by:

(Def. 49) S-min X = [inf(proj1 ¹ S-most X), S-bound X].

Next we state a number of propositions:

(69) (SW-corner X)1 = W-bound X and (W-min X)1 = W-bound X and
(W-max X)1 = W-bound X and (NW-corner X)1 = W-bound X.

(70) (SW-corner X)1 = (NW-corner X)1 and (SW-corner X)1 = (W-min X)1
and (SW-corner X)1 = (W-max X)1 and (W-min X)1 = (W-max X)1 and
(W-min X)1 = (NW-corner X)1 and (W-max X)1 = (NW-corner X)1.

(71) (SW-corner X)2 = S-bound X and (W-min X)2 = inf(proj2 ¹
W-most X) and (W-max X)2 = sup(proj2 ¹ W-most X) and
(NW-corner X)2 = N-bound X.

(72) (SW-corner X)2 ¬ (W-min X)2 and (SW-corner X)2 ¬ (W-max X)2
and (SW-corner X)2 ¬ (NW-corner X)2 and (W-min X)2 ¬ (W-max X)2
and (W-min X)2 ¬ (NW-corner X)2 and (W-max X)2 ¬ (NW-corner X)2.

(73) If p ∈ W-most X, then p1 = (W-min X)1 and (W-min X)2 ¬ p2 and
p2 ¬ (W-max X)2.

(74) W-most X ⊆ L(W-min X, W-max X).

(75) L(W-min X, W-max X) ⊆ L(SW-corner X, NW-corner X).

(76) W-min X ∈W-most X and W-max X ∈W-most X.

(77) L(SW-corner X, W-min X) ∩X = {W-min X} and
L(W-max X, NW-corner X) ∩X = {W-max X}.

(78) If W-min X = W-max X, then W-most X = {W-min X}.
(79) (NW-corner X)2 = N-bound X and (N-min X)2 = N-bound X and

(N-max X)2 = N-bound X and (NE-corner X)2 = N-bound X.

(80) (NW-corner X)2 = (NE-corner X)2 and (NW-corner X)2 = (N-min X)2
and (NW-corner X)2 = (N-max X)2 and (N-min X)2 = (N-max X)2 and
(N-min X)2 = (NE-corner X)2 and (N-max X)2 = (NE-corner X)2.

(81) (NW-corner X)1 = W-bound X and (N-min X)1 = inf(proj1 ¹
N-most X) and (N-max X)1 = sup(proj1 ¹ N-most X) and
(NE-corner X)1 = E-bound X.

(82) (NW-corner X)1 ¬ (N-min X)1 and (NW-corner X)1 ¬ (N-max X)1
and (NW-corner X)1 ¬ (NE-corner X)1 and (N-min X)1 ¬ (N-max X)1
and (N-min X)1 ¬ (NE-corner X)1 and (N-max X)1 ¬ (NE-corner X)1.
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(83) If p ∈ N-most X, then p2 = (N-min X)2 and (N-min X)1 ¬ p1 and
p1 ¬ (N-max X)1.

(84) N-most X ⊆ L(N-min X, N-max X).

(85) L(N-min X, N-max X) ⊆ L(NW-corner X, NE-corner X).

(86) N-min X ∈ N-most X and N-max X ∈ N-most X.

(87) L(NW-corner X, N-min X) ∩X = {N-min X} and
L(N-max X, NE-corner X) ∩X = {N-max X}.

(88) If N-min X = N-max X, then N-most X = {N-min X}.
(89) (SE-corner X)1 = E-bound X and (E-min X)1 = E-bound X and

(E-max X)1 = E-bound X and (NE-corner X)1 = E-bound X.

(90) (SE-corner X)1 = (NE-corner X)1 and (SE-corner X)1 = (E-min X)1
and (SE-corner X)1 = (E-max X)1 and (E-min X)1 = (E-max X)1 and
(E-min X)1 = (NE-corner X)1 and (E-max X)1 = (NE-corner X)1.

(91) (SE-corner X)2 = S-bound X and (E-min X)2 = inf(proj2 ¹ E-most X)
and (E-max X)2 = sup(proj2 ¹ E-most X) and (NE-corner X)2 =
N-bound X.

(92) (SE-corner X)2 ¬ (E-min X)2 and (SE-corner X)2 ¬ (E-max X)2 and
(SE-corner X)2 ¬ (NE-corner X)2 and (E-min X)2 ¬ (E-max X)2 and
(E-min X)2 ¬ (NE-corner X)2 and (E-max X)2 ¬ (NE-corner X)2.

(93) If p ∈ E-most X, then p1 = (E-min X)1 and (E-min X)2 ¬ p2 and
p2 ¬ (E-max X)2.

(94) E-most X ⊆ L(E-min X, E-max X).

(95) L(E-min X, E-max X) ⊆ L(SE-corner X, NE-corner X).

(96) E-min X ∈ E-most X and E-max X ∈ E-most X.

(97) L(SE-corner X, E-min X) ∩X = {E-min X} and
L(E-max X, NE-corner X) ∩X = {E-max X}.

(98) If E-min X = E-max X, then E-most X = {E-min X}.
(99) (SW-corner X)2 = S-bound X and (S-min X)2 = S-bound X and

(S-max X)2 = S-bound X and (SE-corner X)2 = S-bound X.

(100) (SW-corner X)2 = (SE-corner X)2 and (SW-corner X)2 = (S-min X)2
and (SW-corner X)2 = (S-max X)2 and (S-min X)2 = (S-max X)2 and
(S-min X)2 = (SE-corner X)2 and (S-max X)2 = (SE-corner X)2.

(101) (SW-corner X)1 = W-bound X and (S-min X)1 = inf(proj1 ¹ S-most X)
and (S-max X)1 = sup(proj1 ¹ S-most X) and (SE-corner X)1 =
E-bound X.

(102) (SW-corner X)1 ¬ (S-min X)1 and (SW-corner X)1 ¬ (S-max X)1 and
(SW-corner X)1 ¬ (SE-corner X)1 and (S-min X)1 ¬ (S-max X)1 and
(S-min X)1 ¬ (SE-corner X)1 and (S-max X)1 ¬ (SE-corner X)1.
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(103) If p ∈ S-most X, then p2 = (S-min X)2 and (S-min X)1 ¬ p1 and p1 ¬
(S-max X)1.

(104) S-most X ⊆ L(S-min X, S-max X).
(105) L(S-min X, S-max X) ⊆ L(SW-corner X, SE-corner X).
(106) S-min X ∈ S-most X and S-max X ∈ S-most X.

(107) L(SW-corner X, S-min X) ∩X = {S-min X} and
L(S-max X, SE-corner X) ∩X = {S-max X}.

(108) If S-min X = S-max X, then S-most X = {S-min X}.
(109) If W-max X = N-min X, then W-max X = NW-corner X.

(110) If N-max X = E-max X, then N-max X = NE-corner X.

(111) If E-min X = S-max X, then E-min X = SE-corner X.

(112) If S-min X = W-min X, then S-min X = SW-corner X.
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The terminology and notation used in this paper are introduced in the following
articles: [30], [37], [10], [2], [25], [14], [29], [38], [8], [9], [35], [3], [1], [36], [27],
[39], [13], [26], [31], [17], [28], [18], [12], [4], [16], [41], [19], [20], [33], [6], [32], [5],
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1. Preliminaries

The following propositions are true:

(1) Let X be a set and F be a finite family of subsets of X. Then there
exists a finite family G of subsets of X such that G ⊆ F and

⋃
G =

⋃
F

and for every subset g of X such that g ∈ G holds g 6⊆ ⋃
(G \ {g}).

(2) Let S be a 1-sorted structure and X be a subset of the carrier of S. Then
−X = the carrier of S if and only if X is empty.

(3) Let R be an antisymmetric transitive non empty relational structure
with g.l.b.’s and x, y be elements of R. Then ↓(x u y) = ↓x ∩ ↓y.

(4) Let R be an antisymmetric transitive non empty relational structure
with l.u.b.’s and x, y be elements of R. Then ↑(x t y) = ↑x ∩ ↑y.
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(5) Let L be a complete antisymmetric non empty relational structure and
X be a lower subset of L. If sup X ∈ X, then X = ↓sup X.

(6) Let L be a complete antisymmetric non empty relational structure and
X be an upper subset of L. If inf X ∈ X, then X = ↑inf X.

(7) Let R be a non empty reflexive transitive relational structure and x, y

be elements of R. Then x� y if and only if ↑y ⊆ ↑↑x.

(8) Let R be a non empty reflexive transitive relational structure and x, y

be elements of R. Then x� y if and only if ↓x ⊆ ↓↓y.

(9) Let R be a complete reflexive antisymmetric non empty relational struc-
ture and x be an element of R. Then sup ↓↓x ¬ x and x ¬ inf ↑↑x.

(10) For every lower-bounded antisymmetric non empty relational structure
L holds ↑(⊥L) = the carrier of L.

(11) For every upper-bounded antisymmetric non empty relational structure
L holds ↓(>L) = the carrier of L.

(12) For every poset P with l.u.b.’s and for all elements x, y of P holds
↑↑x t ↑↑y ⊆ ↑(x t y).

(13) For every poset P with g.l.b.’s and for all elements x, y of P holds
↓↓x u ↓↓y ⊆ ↓(x u y).

(14) Let R be a non empty poset with l.u.b.’s and l be an element of R. Then
l is co-prime if and only if for all elements x, y of R such that l ¬ x t y

holds l ¬ x or l ¬ y.

(15) For every complete non empty poset P and for every non empty subset
V of P holds ↓inf V =

⋂{↓u, u ranges over elements of P : u ∈ V }.
(16) For every complete non empty poset P and for every non empty subset

V of P holds ↑sup V =
⋂{↑u, u ranges over elements of P : u ∈ V }.

Let L be a sup-semilattice and let x be an element of L.
Note that compactbelow(x) is directed.
We now state four propositions:

(17) Let T be a non empty topological space, S be an irreducible subset of
T , and V be an element of 〈the topology of T , ⊆〉. If V = −S, then V is
prime.

(18) Let T be a non empty topological space and x, y be elements of 〈the
topology of T , ⊆〉. Then x t y = x ∪ y and x u y = x ∩ y.

(19) Let T be a non empty topological space and V be an element of 〈the
topology of T , ⊆〉. Then V is prime if and only if for all elements X, Y of
〈the topology of T , ⊆〉 such that X ∩ Y ⊆ V holds X ⊆ V or Y ⊆ V.

(20) Let T be a non empty topological space and V be an element of 〈the
topology of T , ⊆〉. Then V is co-prime if and only if for all elements X, Y

of 〈the topology of T , ⊆〉 such that V ⊆ X ∪ Y holds V ⊆ X or V ⊆ Y.
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Let T be a non empty topological space. One can check that 〈the topology
of T , ⊆〉 is distributive.

The following propositions are true:

(21) Let T be a non empty topological space, L be a TopLattice, t be a point
of T , l be a point of L, and X be a family of subsets of the carrier of L.
Suppose the topological structure of T = the topological structure of L

and t = l and X is a basis of l. Then X is a basis of t.

(22) Let L be a TopLattice and x be an element of L. Suppose that for every
subset X of L such that X is open holds X is upper. Then ↑x is compact.

2. The Scott topology2

For simplicity, we use the following convention: L is a complete Scott To-
pLattice, x is an element of L, X, Y are subsets of L, V , W are elements of
〈σ(L),⊆〉, and V1 is a subset of 〈σ(L),⊆〉.

Let L be a complete lattice. One can check that σ(L) is non empty.
The following four propositions are true:

(23) σ(L) = the topology of L.

(24) X ∈ σ(L) iff X is open.

(25) For every filtered subset X of L such that V1 = {−↓x : x ∈ X} holds V1

is directed.

(26) If X is open and x ∈ X, then inf X � x.

Let R be a non empty reflexive relational structure and let f be a map
from [:R, R :] into R. We say that f is jointly Scott-continuous if and only if the
condition (Def. 1) is satisfied.

(Def. 1) Let T be a non empty topological space. Suppose the topological struc-
ture of T = ConvergenceSpace(the Scott convergence of R). Then there
exists a map f1 from [:T, T :] into T such that f1 = f and f1 is continuous.

One can prove the following propositions:

(27) If V = X, then V is co-prime iff X is filtered and upper.

(28) If V = X and there exists x such that X = −↓x, then V is prime and
V 6= the carrier of L.

(29) If V = X and tL is jointly Scott-continuous and V is prime and V 6= the
carrier of L, then there exists x such that X = −↓x.

(30) If L is continuous, then tL is jointly Scott-continuous.

(31) If tL is jointly Scott-continuous, then L is sober.

2σ(L) = sigma L, as defined in [34, p. 316, Def. 12] and tL = sup op(L), as defined in [21,
p. 163, Def. 5].
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(32) If L is continuous, then L is compact, locally-compact, sober, and Baire.

(33) If L is continuous and X ∈ σ(L), then X =
⋃{↑↑x : x ∈ X}.

(34) If for every X such that X ∈ σ(L) holds X =
⋃{↑↑x : x ∈ X}, then L is

continuous.

(35) If L is continuous, then there exists a basis B of x such that for every
X such that X ∈ B holds X is open and filtered.

(36) If L is continuous, then 〈σ(L),⊆〉 is continuous.

(37) Suppose for every x there exists a basis B of x such that for every Y

such that Y ∈ B holds Y is open and filtered and 〈σ(L),⊆〉 is continuous.
Then x =

⊔
L{inf X : x ∈ X ∧ X ∈ σ(L)}.

(38) If for every x holds x =
⊔

L{inf X : x ∈ X ∧ X ∈ σ(L)}, then L is
continuous.

(39) The following statements are equivalent
(i) for every x there exists a basis B of x such that for every Y such that

Y ∈ B holds Y is open and filtered,
(ii) for every V there exists V1 such that V = sup V1 and for every W such

that W ∈ V1 holds W is co-prime.

(40) For every V there exists V1 such that V = sup V1 and for every W such
that W ∈ V1 holds W is co-prime and 〈σ(L),⊆〉 is continuous if and only
if 〈σ(L),⊆〉 is completely-distributive.

(41) 〈σ(L),⊆〉 is completely-distributive iff 〈σ(L),⊆〉 is continuous and
(〈σ(L),⊆〉)op is continuous.

(42) If L is algebraic, then there exists a basis B of L such that B = {↑x :
x ∈ the carrier of CompactSublatt(L)}.

(43) Given a basis B of L such that B = {↑x : x ∈ the carrier of
CompactSublatt(L)}. Then 〈σ(L),⊆〉 is algebraic and for every V there
exists V1 such that V = sup V1 and for every W such that W ∈ V1 holds
W is co-prime.

(44) Suppose 〈σ(L),⊆〉 is algebraic and for every V there exists V1 such that
V = sup V1 and for every W such that W ∈ V1 holds W is co-prime.
Then there exists a basis B of L such that B = {↑x : x ∈ the carrier of
CompactSublatt(L)}.

(45) If there exists a basis B of L such that B = {↑x : x ∈ the carrier of
CompactSublatt(L)}, then L is algebraic.
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