
FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

On the Compositions of Macro

Instructions. Part I

Andrzej Trybulec

Warsaw University

Bia lystok

Yatsuka Nakamura

Shinshu University

Nagano

Noriko Asamoto

Ochanomizu University

Tokyo

MML Identifier: SCMFSA6A.

The notation and terminology used here are introduced in the following papers:
[21], [28], [14], [2], [26], [17], [29], [8], [9], [3], [7], [27], [11], [1], [19], [6], [12], [13],
[10], [20], [15], [16], [24], [4], [18], [5], [25], [22], and [23].

1. Preliminaries

One can prove the following propositions:

(1) For all functions f , g and for all sets x, y such that g ⊆ f and x /∈ dom g
holds g ⊆ f +· (x, y).

(2) For all functions f , g and for every set A such that f � A = g � A and
f and g are equal outside A holds f = g.

(3) For every function f and for all sets a, b, A such that a ∈ A holds f
and f +· (a, b) are equal outside A.

(4) For every function f and for all sets a, b, A holds a ∈ A or (f +· (a, b)) �
A = f � A.

(5) For all functions f , g and for all sets a, b, A such that f � A = g � A
holds (f +· (a, b)) � A = (g +· (a, b)) � A.

(6) For all functions f , g, h such that f ⊆ h and g ⊆ h holds f+·g ⊆ h.

(7) For arbitrary a, b and for every function f holds a7−→. b ⊆ f iff a ∈ dom f
and f(a) = b.

(8) For every function f and for every set A holds dom(f � (dom f \ A)) =
dom f \ A.

21
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

22 andrzej trybulec et al.

(9) Let f , g be functions and let D be a set. Suppose D ⊆ dom f and
D ⊆ dom g. Then f � D = g � D if and only if for arbitrary x such that
x ∈ D holds f(x) = g(x).

(10) For every function f and for every set D holds f � D = f � (dom f ∩D).

(11) Let f , g, h be functions and let A be a set. Suppose f and g are equal
outside A. Then f+·h and g+·h are equal outside A.

(12) Let f , g, h be functions and let A be a set. Suppose f and g are equal
outside A. Then h+·f and h+·g are equal outside A.

(13) For all functions f , g, h holds f+·h = g+·h iff f and g are equal outside
domh.

2. Macroinstructions

A macro instruction is an initial programmed finite partial state of SCMFSA.
We follow a convention: m, n denote natural numbers, i, j, k denote instruc-

tions of SCMFSA, and I, J , K denote macro instructions.
Let I be a programmed finite partial state of SCMFSA. The functor Directed(I)

yields a programmed finite partial state of SCMFSA and is defined by:

(Def. 1) Directed(I) = (id(the instructions of SCMFSA)+·(haltSCMFSA
7−→. goto

insloc(card I))) · I.

The following proposition is true

(14) dom Directed(I) = dom I.

Let I be a macro instruction. Note that Directed(I) is initial.
Let us consider i. The functor Macro(i) yields a macro instruction and is

defined by:

(Def. 2) Macro(i) = [insloc(0) 7−→ i, insloc(1) 7−→ haltSCMFSA
].

Let us consider i. One can check that Macro(i) is non empty.
We now state the proposition

(15) For every macro instruction P and for every n holds n < card P iff
insloc(n) ∈ dom P.

Let I be an initial finite partial state of SCMFSA. Observe that ProgramPart(I)
is initial.

One can prove the following propositions:

(16) dom I misses dom ProgramPart(Relocated(J, card I)).

(17) For every programmed finite partial state I of SCMFSA holds
card ProgramPart(Relocated(I,m)) = card I.

(18) haltSCMFSA
/∈ rng Directed(I).

(19) ProgramPart(Relocated(Directed(I),m)) = (id(the instructions of SCMFSA)

+·(haltSCMFSA
7−→. goto insloc(m+card I)))·ProgramPart(Relocated(I,m)).

(20) For all finite partial states I, J of SCMFSA holds ProgramPart(I+·J) =
ProgramPart(I)+·ProgramPart(J).

on the compositions of macro instructions. . . . 23

(21) For all finite partial states I, J of SCMFSA holds ProgramPart
(Relocated(I+·J, n)) = ProgramPart(Relocated(I, n))
+·ProgramPart(Relocated(J, n)).

(22) ProgramPart(Relocated(ProgramPart(Relocated(I,m)), n)) =
ProgramPart(Relocated(I,m + n)).

In the sequel s, s1, s2 denote states of SCMFSA.
Let us consider I. The functor Initialized(I) yields a finite partial state of

SCMFSA and is defined by:

(Def. 3) Initialized(I) = I+·(intloc(0)7−→. 1)+· Start-At(insloc(0)).

Next we state a number of propositions:

(23) InsCode(i) ∈ {0, 6, 7, 8} or (Exec(i, s))(ICSCMFSA
) = Next(ICs).

(24) ICSCMFSA
∈ dom Initialized(I).

(25) ICInitialized(I) = insloc(0).

(26) I ⊆ Initialized(I).

(27) s and s+·I are equal outside the instruction locations of SCMFSA.

(28) Let s1, s2 be states of SCMFSA. Suppose IC(s1) = IC(s2) and for
every integer location a holds s1(a) = s2(a) and for every finite sequence
location f holds s1(f) = s2(f). Then s1 and s2 are equal outside the
instruction locations of SCMFSA.

(29) If s1 and s2 are equal outside the instruction locations of SCMFSA,
then IC(s1) = IC(s2).

(30) Suppose s1 and s2 are equal outside the instruction locations of
SCMFSA. Let a be an integer location. Then s1(a) = s2(a).

(31) Suppose s1 and s2 are equal outside the instruction locations of
SCMFSA. Let f be a finite sequence location. Then s1(f) = s2(f).

(32) Suppose s1 and s2 are equal outside the instruction locations of
SCMFSA. Then Exec(i, s1) and Exec(i, s2) are equal outside the instruc-
tion locations of SCMFSA.

(33) Initialized(I) � (the instruction locations of SCMFSA) = I.

The scheme SCMFSAEx deals with a unary functor F yielding an instruction
of SCMFSA, a unary functor G yielding an integer, a unary functor H yielding
a finite sequence of elements of � , and an instruction-location A of SCMFSA,
and states that:

There exists a state S of SCMFSA such that ICS = A and for every
natural number i holds S(insloc(i)) = F(i) and S(intloc(i)) = G(i)
and S(fsloc(i)) = H(i)

for all values of the parameters.
One can prove the following propositions:

(34) For every state s of SCMFSA holds dom s = Int-Locations∪
FinSeq-Locations∪{ICSCMFSA

} ∪ the instruction locations of SCMFSA.

(35) Let s be a state of SCMFSA and let x be arbitrary. Suppose x ∈ dom s.
Then

24 andrzej trybulec et al.

(i) x is an integer location or a finite sequence location, or

(ii) x = ICSCMFSA
, or

(iii) x is an instruction-location of SCMFSA.

(36) Let s1, s2 be states of SCMFSA. Then for every instruction-location l
of SCMFSA holds s1(l) = s2(l) if and only if s1 � (the instruction locations
of SCMFSA) = s2 � (the instruction locations of SCMFSA).

(37) For every instruction-location i of SCMFSA holds i /∈ Int-Locations∪

FinSeq-Locations and ICSCMFSA
/∈ Int-Locations∪FinSeq-Locations .

(38) Let s1, s2 be states of SCMFSA. Then for every integer location
a holds s1(a) = s2(a) and for every finite sequence location f holds
s1(f) = s2(f) if and only if s1 � (Int-Locations∪FinSeq-Locations) =
s2 � (Int-Locations∪FinSeq-Locations).

(39) Let s1, s2 be states of SCMFSA. Suppose s1 and s2 are equal outside
the instruction locations of SCMFSA.

Then s1 � (Int-Locations∪FinSeq-Locations) = s2 � (Int-Locations∪

FinSeq-Locations).

(40) For all states s, s3 of SCMFSA and for every set A holds (s3+·s � A) � A =
s � A.

(41) Let s1, s2 be states of SCMFSA, and let n be a natu-
ral number, and let i be an instruction of SCMFSA. Suppose
IC(s1) + n = IC(s2) and s1 � (Int-Locations∪FinSeq-Locations) =
s2 � (Int-Locations∪FinSeq-Locations). Then ICExec(i,s1) + n =
ICExec(IncAddr(i,n),s2) and Exec(i, s1) � (Int-Locations∪FinSeq-Locations) =
Exec(IncAddr(i, n), s2) � (Int-Locations∪FinSeq-Locations).

(42) For all macro instructions I, J holds I and J are equal outside the
instruction locations of SCMFSA.

(43) For every macro instruction I holds dom Initialized(I) = dom I ∪
{intloc(0)} ∪ {ICSCMFSA

}.

(44) For every macro instruction I and for arbitrary x such that x ∈
domInitialized(I) holds x ∈ dom I or x = intloc(0) or x = ICSCMFSA

.

(45) For every macro instruction I holds intloc(0) ∈ dom Initialized(I).

(46) For every macro instruction I holds (Initialized(I))(intloc(0)) = 1 and
(Initialized(I))(ICSCMFSA

) = insloc(0).

(47) For every macro instruction I holds intloc(0) /∈ dom I and ICSCMFSA
/∈

dom I.

(48) For every macro instruction I and for every integer location a such that
a 6= intloc(0) holds a /∈ domInitialized(I).

(49) For every macro instruction I and for every finite sequence location f
holds f /∈ dom Initialized(I).

(50) For every macro instruction I and for arbitrary x such that x ∈ dom I
holds I(x) = (Initialized(I))(x).

on the compositions of macro instructions. . . . 25

(51) For all macro instructions I, J and for every state s of SCMFSA such
that Initialized(J) ⊆ s holds s+· Initialized(I) = s+·I.

(52) For all macro instructions I, J and for every state s of SCMFSA such
that Initialized(J) ⊆ s holds Initialized(I) ⊆ s+·I.

(53) Let I, J be macro instructions and let s be a state of SCMFSA. Then
s+· Initialized(I) and s+· Initialized(J) are equal outside the instruction
locations of SCMFSA.

3. The composition of macroinstructions

Let I, J be macro instructions. The functor I;J yields a macro instruction
and is defined by:

(Def. 4) I;J = Directed(I)+·ProgramPart(Relocated(J, card I)).

Let I, J be macro instructions. Note that I;J is initial.
Next we state several propositions:

(54) Let I, J be macro instructions and let l be an instruction-location of
SCMFSA. If l ∈ dom I and I(l) 6= haltSCMFSA

, then (I;J)(l) = I(l).

(55) For all macro instructions I, J holds Directed(I) ⊆ I;J.

(56) For all macro instructions I, J holds dom I ⊆ dom(I;J).

(57) For all macro instructions I, J holds I+·(I;J) = I;J.

(58) For all macro instructions I, J holds Initialized(I)+·(I;J) =
Initialized(I;J).

4. The compostion of instruction and macroinstructions

Let us consider i, J . The functor i;J yielding a macro instruction is defined
as follows:

(Def. 5) i;J = Macro(i);J.

Let us consider I, j. The functor I;j yields a macro instruction and is defined
by:

(Def. 6) I;j = I; Macro(j).

Let us consider i, j. The functor i;j yields a macro instruction and is defined
by:

(Def. 7) i;j = Macro(i); Macro(j).

The following propositions are true:

(59) i;j = Macro(i);j.

(60) i;j = i; Macro(j).

(61) card(I;J) = card I + card J.

(62) (I;J);K = I;(J ;K).

26 andrzej trybulec et al.

(63) (I;J);k = I;(J ;k).

(64) (I;j);K = I;(j;K).

(65) (I;j);k = I;(j;k).

(66) (i;J);K = i;(J ;K).

(67) (i;J);k = i;(J ;k).

(68) (i;j);K = i;(j;K).

(69) (i;j);k = i;(j;k).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-

ized Mathematics, 4(1):61–67, 1993.
[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[6] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[7] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[8] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[9] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[10] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[11] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[12] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[13] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[15] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[16] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[17] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[18] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[20] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[22] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[23] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Math-

ematics, 5(4):583–586, 1996.
[24] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.

on the compositions of macro instructions. . . . 27

[25] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[26] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[28] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 20, 1996

