FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997
Warsaw University - Bialystok

On the Compositions of Macro
Instructions. Part I

Andrzej Trybulec Yatsuka Nakamura Noriko Asamoto
Warsaw University Shinshu University Ochanomizu University
Biatystok Nagano Tokyo

MML Identifier: SCMFSA6A.

The notation and terminology used here are introduced in the following papers:
[21], [28], [14], [2], [26], [17], [29], [8], [9], (3], [7], [27], [11], [1], [19], [6], [12], [13],
[10], [20], [15], [16], [24], [4], [18], [5], [25], [22], and [23].

1. PRELIMINARIES

One can prove the following propositions:

(1) For all functions f, g and for all sets x, y such that g C f and = ¢ dom g
holds g C f +- (z,y).

(2) For all functions f, g and for every set A such that f|] A =gl A and
f and g are equal outside A holds f = g.

(3) For every function f and for all sets a, b, A such that a € A holds f
and f +- (a,b) are equal outside A.

(4) For every function f and for all sets a, b, A holds a € A or (f+-(a,b))!
A=f1A

(5) For all functions f, g and for all sets a, b, A such that f| A=g¢gl A
holds (f +- (a,b)) I A= (g +- (a,b)) I A.

(6) For all functions f, g, h such that f C h and g C h holds f+-g C h.

(7) For arbitrary a, b and for every function f holds a——b C fiff a € dom f
and f(a) =b.

(8) For every function f and for every set A holds dom(f | (dom f\ A)) =
dom f\ A.

© 1997 Warsaw University - Bialystok
21 ISSN 1426-2630

22 ANDRZEJ TRYBULEC et al.

(9) Let f, g be functions and let D be a set. Suppose D C dom f and

D Cdomg. Then f| D =g D if and only if for arbitrary = such that
x € D holds f(z) = g(z).

(10) For every function f and for every set D holds f | D = f | (dom f N D).

(11) Let f, g, h be functions and let A be a set. Suppose f and g are equal
outside A. Then f+-h and g+-h are equal outside A.

(12) Let f, g, h be functions and let A be a set. Suppose f and g are equal
outside A. Then h+-f and h+-g are equal outside A.

(13) For all functions f, g, h holds f+-h = g+-h iff f and g are equal outside
dom h.

2. MACROINSTRUCTIONS

A macro instruction is an initial programmed finite partial state of SCMpga .
We follow a convention: m, n denote natural numbers, ¢, j, k denote instruc-
tions of SCMyga, and I, J, K denote macro instructions.
Let I be a programmed finite partial state of SCMpga. The functor Directed (1)
yields a programmed finite partial state of SCMpga and is defined by:
(Def 1) Directed([) = (id(thc instructions of SCMFSA)+'(ha1tSCMFSA’.—>gOtO
insloc(card I))) - I.

The following proposition is true
(14) dom Directed(I) = dom I.

Let I be a macro instruction. Note that Directed (/) is initial.
Let us consider i. The functor Macro(i) yields a macro instruction and is
defined by:
(Def. 2) Macro(i) = [insloc(0) +— i, insloc(1) —— haltgcnipg, |-
Let us consider i. One can check that Macro(i) is non empty.
We now state the proposition
(15) For every macro instruction P and for every n holds n < card P iff
insloc(n) € dom P.
Let I be an initial finite partial state of SCMpga. Observe that ProgramPart(])
is initial.
One can prove the following propositions:
(16) dom I misses dom ProgramPart(Relocated(.J, card I)).
(17) For every programmed finite partial state I of SCMpga holds
card ProgramPart(Relocated (I, m)) = card I.
(18) haltgcm,s, ¢ rngDirected([).
(19) ProgramPart(Relocated (Directed (), m)) = (id she instructions of SCMypga)
+-(haltgcm,g,, ——goto insloc(m+-card I)))-ProgramPart(Relocated (1, m)).
(20) For all finite partial states I, J of SCMpga holds ProgramPart(/+-J) =
ProgramPart(/)+- ProgramPart(.J).

ON THE COMPOSITIONS OF MACRO INSTRUCTIONS. ...

(21) For all finite partial states I, J of SCMpga holds ProgramPart
(Relocated (I+-J,n)) = ProgramPart(Relocated(I,n))
+- ProgramPart(Relocated(J, n)).

(22) ProgramPart(Relocated (ProgramPart(Relocated(I,m)),n)) =
ProgramPart(Relocated (I, m + n)).

In the sequel s, s1, so denote states of SCMpga.
Let us consider I. The functor Initialized(I) yields a finite partial state of
SCMygga and is defined by:

(Def. 3) Initialized(I) = I+-(intloc(0)——1)+- Start-At(insloc(0)).

Next we state a number of propositions:
23) InsCode(i) € {0,6,7,8} or (Exec(i,s))(ICscMyg,) = Next(IC;).
2

=~

ICscMy, € dom Initialized([).

[\
ot

IChitialized(r) = insloc(0).
I C Initialized(I).
s and s+-I are equal outside the instruction locations of SCMpga .

N N N N /N /N
[\)
[

— — — — ~—

Let s1, s2 be states of SCMpga. Suppose IC(,,) = IC,,) and for
every integer location a holds s1(a) = s2(a) and for every finite sequence
location f holds s1(f) = s2(f). Then s; and s9 are equal outside the
instruction locations of SCMgga .

(29) If s; and sy are equal outside the instruction locations of SCMpga,
then IC(sl) = IC(SQ).

(30) Suppose s; and sy are equal outside the instruction locations of

SCMrsa. Let a be an integer location. Then s1(a) = sa(a).

(31) Suppose s; and s2 are equal outside the instruction locations of
SCMpgga. Let f be a finite sequence location. Then s1(f) = sa2(f).

(32) Suppose s; and s2 are equal outside the instruction locations of
SCMpga. Then Exec(i, s1) and Exec(i, s2) are equal outside the instruc-
tion locations of SCMFpga .

(33) Initialized(I) | (the instruction locations of SCMpgy) = I.

The scheme SCMFSAFEx deals with a unary functor F yielding an instruction
of SCMFrga, a unary functor G yielding an integer, a unary functor H yielding
a finite sequence of elements of Z, and an instruction-location A of SCMgga,
and states that:
There exists a state S of SCMrgga such that ICg = A and for every
natural number ¢ holds S(insloc(7)) = F (i) and S(intloc(i)) = G(7)
and S(fsloc(i)) = H(i)

for all values of the parameters.

One can prove the following propositions:

(34) For every state s of SCMpga holds dom s = Int-Locations U
FinSeq-Locations U{ICgcM,., } U the instruction locations of SCMrga.

(35) Let s be a state of SCMpga and let = be arbitrary. Suppose x € dom s.
Then

23

24

ANDRZEJ TRYBULEC et al.

(i) =z is an integer location or a finite sequence location, or
(ii) 2 =ICsCMyg,> OF
(iii) « is an instruction-location of SCMpga .

(36) Let s1, s2 be states of SCMpga. Then for every instruction-location [
of SCMpsa holds s1(l) = s2(l) if and only if s1 [(the instruction locations
of SCMFpsa) = s2 | (the instruction locations of SCMygap).

(37) For every instruction-location i of SCMpgga holds ¢ ¢ Int-Locations U
FinSeq-Locations and ICgcm,s, ¢ Int-Locations U FinSeq-Locations .

(38) Let s1, s2 be states of SCMpgs. Then for every integer location
a holds s1(a) = sa(a) and for every finite sequence location f holds
s1(f) = s2(f) if and only if s; | (Int-Locations U FinSeq-Locations) =
s2 | (Int-Locations U FinSeq-Locations).

(39) Let s1, so be states of SCMpga. Suppose s1 and sy are equal outside
the instruction locations of SCMpga .

Then s1 | (Int-Locations U FinSeq-Locations) = s | (Int-Locations U
FinSeq-Locations).

(40) For all states s, s3 of SCMpga and for every set A holds (sg+-s[A)[A =

sl A.
(41) Let s1, so2 be states of SCMpgs, and let n be a natu-
ral number, and let ¢ be an instruction of SCMpga. Suppose

IC(,) + n = IC,) and si | (Int-Locations U FinSeq-Locations) =
s2 | (Int-Locations U FinSeq-Locations). Then ICggec(is;) + 7 =
ICExcc(IncAddr(i,n),so) a0d Exec(i, s1)[(Int-Locations U FinSeq-Locations) =
Exec(IncAddr(i,n), s2) | (Int-Locations U FinSeqg-Locations).

(42) For all macro instructions I, J holds I and J are equal outside the
instruction locations of SCMpga .

(43) For every macro instruction I holds dom Initialized(/) = domI U
{intloc(0)} U {ICsCcMyss }-

(44) For every macro instruction I and for arbitrary x such that z €
dom Initialized (/) holds = € dom I or z = intloc(0) or x = ICgcM,q, -

(45) For every macro instruction I holds intloc(0) € dom Initialized ().

(46) For every macro instruction I holds (Initialized(I))(intloc(0)) = 1 and
(Initialized(1))(ICscMyg,) = insloc(0).

(47) For every macro instruction I holds intloc(0) ¢ dom I and ICgcm,, &
dom I.

(48) For every macro instruction I and for every integer location a such that
a # intloc(0) holds a ¢ dom Initialized(I).

(49) For every macro instruction I and for every finite sequence location f
holds f ¢ dom Initialized(I).

(50) For every macro instruction I and for arbitrary x such that x € dom I
holds I(z) = (Initialized(I))(x).

ON THE COMPOSITIONS OF MACRO INSTRUCTIONS. ... 25

(51) For all macro instructions I, J and for every state s of SCMpga such
that Initialized(J) C s holds s+- Initialized(I) = s+-I.

(52) For all macro instructions I, J and for every state s of SCMpga such
that Initialized(J) C s holds Initialized(I) C s+-1I.

(53) Let I, J be macro instructions and let s be a state of SCMpga. Then
s+- Initialized(I) and s+- Initialized(J) are equal outside the instruction
locations of SCMFpga .

3. THE COMPOSITION OF MACROINSTRUCTIONS

Let I, J be macro instructions. The functor I;J yields a macro instruction
and is defined by:

(Def. 4) I;J = Directed(I)+- ProgramPart(Relocated (., card I)).

Let I, J be macro instructions. Note that I;.J is initial.
Next we state several propositions:

(54) Let I, J be macro instructions and let | be an instruction-location of
SCMpga. If I € dom I and I(1) # haltSCMFSAv then (I;J)(1) = I(1).

(55) For all macro instructions I, J holds Directed(I) C I;J.
(56) For all macro instructions I, J holds dom I C dom(I;J).
(57) For all macro instructions I, J holds I+-(I;J) = I;J.
(58)

For all macro instructions I, J holds Initialized(I)+-(I;J) =
Initialized(I;J).

4. THE COMPOSTION OF INSTRUCTION AND MACROINSTRUCTIONS

Let us consider i, J. The functor i;J yielding a macro instruction is defined
as follows:

(Def. 5) 4;J = Macro(i);J.
Let us consider I, j. The functor I;j yields a macro instruction and is defined
by:
(Def. 6) I;j = I;Macro(j).
Let us consider 4, j. The functor i;j yields a macro instruction and is defined
by:
(Def. 7) 435 = Macro(i); Macro(j).
The following propositions are true:
(59) i35 = Macro(i);j].
(60) ;5 = i; Macro(j).
(61) card(I;J) = card I + card J.
(62) (L;J):K = I;(J;K).

26

D O O
U =~ W

S O
o

e e e R R e
D D
=) D
~— O~ Y ~— ~— ~—

[1]
2]

8]
[4]
[5]
(6]
[7]
8]
[9]
[10]

[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]

[20]
[21]

22]
[23]

[24]

ANDRZEJ TRYBULEC et al.

(L;J]);k = I;(J;k)
(I;5); K = I;(j;K)
(I;9);k = I;(j;k)
(4J);K = i3(J;K)
(4)sk = ;(J;k)
(49); K = i5(j; K)
(4:9):k = i;(4;K)

REFERENCES

Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-
ized Mathematics, 4(1):61-67, 1993.

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-
ized Mathematics, 5(4):485-492, 1996.

Czestaw Byliriski. A classical first order language. Formalized Mathematics, 1(4):669—
676, 1990.

Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formal-
ized Mathematics, 1(3):529-536, 1990.

Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

Czeslaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

Czestaw Byliriski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Czeslaw Byliriski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Czestaw Bylinski. Products and coproducts in categories. Formalized Mathematics,
2(5):701-709, 1991.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMprsa. Formalized Mathematics, 5(4):571-576, 1996.

Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMgsa. Formalized Math-
ematics, 5(4):583-586, 1996.

Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51-56, 1993.

[25]

[26]
[27]

[28]

29]

ON THE COMPOSITIONS OF MACRO INSTRUCTIONS. ... 27

Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMggga computer.
Formalized Mathematics, 5(4):519-528, 1996.

Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17-23, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received June 20, 1996

