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Summary. We define the semantics of macro instructions (intro-
duced in [26]) in terms of executions of SCMFSA. In a similar way, we
define the semantics of macro composition. Several attributes of macro
instructions are introduced (paraclosed, parahalting, keeping 0) and their
usage enables a systematic treatment of the composition of macro intruc-
tions. This article is continued in [1].

MML Identifier: SCMFSA6B.

The notation and terminology used in this paper are introduced in the following
articles: [20], [30], [14], [3], [28], [31], [9], [10], [4], [21], [8], [29], [12], [2], [19],
[7], [13], [11], [15], [16], [25], [5], [18], [6], [27], [22], [23], [24], [26], and [17].

1. Preliminaries

The following propositions are true:

(1) For all functions f , g and for all sets x, y such that x /∈ dom f and
f ⊆ g holds f ⊆ g +· (x, y).

(2) For every function f and for all sets x, y, A such that x /∈ A holds
f � A = (f +· (x, y)) � A.

(3) For all functions f , g and for every set A such that A∩dom f ⊆ A∩dom g
holds (f+·g � A) � A = g � A.
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2. Properties of Start-At

For simplicity we follow a convention: m, n will denote natural numbers, x
will denote a set, i will denote an instruction of SCMFSA, I, J will denote macro
instructions, a will denote an integer location, f will denote a finite sequence
location, l, l1 will denote instructions-locations of SCMFSA, and s, s1, s2 will
denote states of SCMFSA.

We now state a number of propositions:

(4) Start-At(insloc(0)) ⊆ Initialized(I).

(5) If I+· Start-At(insloc(n)) ⊆ s, then I ⊆ s.

(6) (I+·Start-At(insloc(n))) � (the instruction locations of SCMFSA) = I.

(7) If x ∈ dom I, then I(x) = (I+· Start-At(insloc(n)))(x).

(8) If Initialized(I) ⊆ s, then I+·Start-At(insloc(0)) ⊆ s.

(9) a /∈ dom Start-At(l).

(10) f /∈ dom Start-At(l).

(11) l1 /∈ dom Start-At(l).

(12) a /∈ dom(I+·Start-At(l)).

(13) f /∈ dom(I+·Start-At(l)).

(14) s+·I+·Start-At(insloc(0)) = s+·Start-At(insloc(0))+·I.

3. Properties of AMI structures

In the sequel N will denote a non empty set with non empty elements.

Next we state two propositions:

(15) If s = Following(s), then for every n holds (Computation(s))(n) = s.

(16) Let S be a halting von Neumann definite AMI over N and let s be a state
of S. If s is halting, then Result(s) = (Computation(s))(LifeSpan(s)).

Let us consider N , let S be a von Neumann definite AMI over N , let s be a
state of S, let l be an instruction-location of S, and let i be an instruction of S.
Then s +· (l, i) is a state of S.

Let s be a state of SCMFSA, let l2 be an integer location, and let k be an
integer. Then s +· (l2, k) is a state of SCMFSA.

We now state the proposition

(17) Let S be a steady-programmed von Neumann definite AMI over N , and
let s be a state of S, and given n. Then s � (the instruction locations of
S) = (Computation(s))(n) � (the instruction locations of S).
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4. Execution of macro instructions

Let I be a macro instruction and let s be a state of SCMFSA. The functor
IExec(I, s) yielding a state of SCMFSA is defined as follows:

(Def. 1) IExec(I, s) = Result(s+· Initialized(I))+·s � (the instruction locations
of SCMFSA).

Let I be a macro instruction. We say that I is paraclosed if and only if:

(Def. 2) For every state s of SCMFSA and for every natural number n such that
I+·Start-At(insloc(0)) ⊆ s holds IC(Computation(s))(n) ∈ dom I.

We say that I is parahalting if and only if:

(Def. 3) I+·Start-At(insloc(0)) is halting.

We say that I is keeping 0 if and only if:

(Def. 4) For every state s of SCMFSA such that I+·Start-At(insloc(0)) ⊆ s
and for every natural number k holds (Computation(s))(k)(intloc(0)) =
s(intloc(0)).

Let us note that there exists a macro instruction which is parahalting.
Next we state two propositions:

(18) For every parahalting macro instruction I such that I+·Start-At(insloc
(0)) ⊆ s holds s is halting.

(19) For every parahalting macro instruction I such that Initialized(I) ⊆ s
holds s is halting.

Let I be a parahalting macro instruction. One can verify that Initialized(I)
is halting.

We now state two propositions:

(20) s2 +· (IC(s2), goto (IC(s2))) is not halting.

(21) Suppose that
(i) s1 and s2 are equal outside the instruction locations of SCMFSA,
(ii) I ⊆ s1,
(iii) I ⊆ s2, and
(iv) for every m such that m < n holds IC(Computation(s2))(m) ∈ dom I.

Given m. Suppose m ≤ n. Then (Computation(s1))(m) and
(Computation(s2))(m) are equal outside the instruction locations of
SCMFSA.

One can check that every macro instruction which is parahalting is also
paraclosed and every macro instruction which is keeping 0 is also paraclosed.

The following propositions are true:

(22) Let I be a parahalting macro instruction and let a be a read-write
integer location. If a /∈ UsedIntLoc(I), then (IExec(I, s))(a) = s(a).

(23) For every parahalting macro instruction I such that f /∈
UsedInt∗ Loc(I) holds (IExec(I, s))(f) = s(f).

(24) If ICs = l and s(l) = goto l, then s is not halting.
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One can verify that every macro instruction which is parahalting is also non
empty.

One can prove the following propositions:

(25) For every parahalting macro instruction I holds dom I 6= ∅.

(26) For every parahalting macro instruction I holds insloc(0) ∈ dom I.

(27) Let J be a parahalting macro instruction. Suppose J+·Start-At(insloc

(0)) ⊆ s1. Let n be a natural number. Suppose ProgramPart(Relocated

(J, n)) ⊆ s2 and IC(s2) = insloc(n) and s1 � (Int-Locations∪

FinSeq-Locations) = s2 � (Int-Locations∪FinSeq-Locations). Let
i be a natural number. Then IC(Computation(s1))(i) + n =
IC(Computation(s2))(i) and IncAddr(CurInstr((Computation(s1))(i)), n) =
CurInstr((Computation(s2))(i)) and (Computation(s1))(i) � (Int-Locations

∪FinSeq-Locations) = (Computation(s2))(i) � (Int-Locations

∪FinSeq-Locations).

(28) Let I be a parahalting macro instruction. Suppose I+·Start-At(insloc

(0)) ⊆ s1 and I+·Start-At(insloc(0)) ⊆ s2 and s1 and s2 are equal outside
the instruction locations of SCMFSA. Let k be a natural number. Then
(Computation(s1))(k) and (Computation(s2))(k) are equal outside the
instruction locations of SCMFSA and CurInstr((Computation(s1))(k)) =
CurInstr((Computation(s2))(k)).

(29) Let I be a parahalting macro instruction. Suppose I+·Start-At(insloc

(0)) ⊆ s1 and I+·Start-At(insloc(0)) ⊆ s2 and s1 and s2 are equal outside
the instruction locations of SCMFSA. Then LifeSpan(s1) = LifeSpan(s2)
and Result(s1) and Result(s2) are equal outside the instruction locations
of SCMFSA.

(30) For every parahalting macro instruction I holds ICIExec(I,s) =
ICResult(s+· Initialized(I)).

(31) For every non empty macro instruction I holds insloc(0) ∈ dom I and
insloc(0) ∈ dom Initialized(I) and insloc(0) ∈ dom(I+·Start-At(insloc(0))).

(32) x ∈ dom Macro(i) iff x = insloc(0) or x = insloc(1).

(33) (Macro(i))(insloc(0)) = i and (Macro(i))(insloc(1)) = haltSCMFSA
and

(Initialized(Macro(i)))(insloc(0)) = i and (Initialized(Macro(i)))(insloc(1))

= haltSCMFSA
and (Macro(i)+· Start-At(insloc(0)))(insloc(0)) = i.

(34) If Initialized(I) ⊆ s, then ICs = insloc(0).

Let us observe that there exists a macro instruction which is keeping 0 and
parahalting.

One can prove the following proposition

(35) For every keeping 0 parahalting macro instruction I holds
(IExec(I, s))(intloc(0)) = 1.
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5. The composition of macro instructions

We now state several propositions:

(36) Let I be a paraclosed macro instruction and let J be a macro
instruction. Suppose I+· Start-At(insloc(0)) ⊆ s and s is halting.
Given m. Suppose m ≤ LifeSpan(s). Then (Computation(s))(m) and
(Computation(s+·(I;J)))(m) are equal outside the instruction locations
of SCMFSA.

(37) For every paraclosed macro instruction I such that s+·I is halt-
ing and Directed(I) ⊆ s and Start-At(insloc(0)) ⊆ s holds
IC(Computation(s))(LifeSpan(s+·I)+1) = insloc(card I).

(38) Let I be a paraclosed macro instruction. If s+·I is halt-
ing and Directed(I) ⊆ s and Start-At(insloc(0)) ⊆ s, then
(Computation(s))(LifeSpan(s+·I)) � (Int-Locations∪FinSeq-Locations) =
(Computation(s))(LifeSpan(s+·I)+1) � (Int-Locations∪FinSeq-Locations).

(39) Let I be a parahalting macro instruction. Suppose Initialized(I) ⊆
s. Let k be a natural number. If k ≤ LifeSpan(s), then
CurInstr((Computation(s+·Directed(I)))(k)) 6= haltSCMFSA

.

(40) Let I be a paraclosed macro instruction. Suppose s+·(I+·Start-At
(insloc(0))) is halting. Let J be a macro instruction and let k be a nat-
ural number. Suppose k ≤ LifeSpan(s+·(I+· Start-At(insloc(0)))). Then
(Computation(s+·(I+·Start-At(insloc(0)))))(k) and (Computation(s+·
((I;J)+·Start-At(insloc(0)))))(k) are equal outside the instruction loca-
tions of SCMFSA.

Let I, J be parahalting macro instructions. Note that I;J is parahalting.
Next we state two propositions:

(41) Let I be a keeping 0 macro instruction. Suppose s+·(I+· Start-At(insloc
(0))) is not halting. Let J be a macro instruction and let k be a nat-
ural number. Then (Computation(s+·(I+·Start-At(insloc(0)))))(k) and
(Computation(s+·((I;J)+·Start-At(insloc(0)))))(k) are equal outside the
instruction locations of SCMFSA.

(42) Let I be a keeping 0 macro instruction. Suppose s+·I is
halting. Let J be a paraclosed macro instruction. Suppose
(I;J)+·Start-At(insloc(0)) ⊆ s. Let k be a natural number. Then
(Computation(Result(s+·I)+·(J+·Start-At(insloc(0)))))(k)+· Start-At
(IC(Computation(Result(s+·I)+·(J+·Start-At(insloc(0)))))(k) + card I) and
(Computation(s+·(I;J)))(LifeSpan(s+·I) + 1 + k) are equal outside the
instruction locations of SCMFSA.

Let I, J be keeping 0 macro instructions. Note that I;J is keeping 0.
The following two propositions are true:

(43) Let I be a keeping 0 parahalting macro instruction and let J be a
parahalting macro instruction. Then LifeSpan(s+· Initialized(I;J)) =
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LifeSpan(s+· Initialized(I)) + 1 + LifeSpan(Result(s+· Initialized(I))+·
Initialized(J)).

(44) Let I be a keeping 0 parahalting macro instruction and let
J be a parahalting macro instruction. Then IExec(I;J, s) =
IExec(J, IExec(I, s))+· Start-At(ICIExec(J,IExec(I,s)) + card I).
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[7] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
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