On the Composition of Macro Instructions. Part II 1

Noriko Asamoto Ochanomizu University Tokyo Yatsuka Nakamura Shinshu University Nagano

Piotr Rudnicki University of Alberta Edmonton Andrzej Trybulec Warsaw University Białystok

Summary. We define the semantics of macro instructions (introduced in [26]) in terms of executions of \mathbf{SCM}_{FSA} . In a similar way, we define the semantics of macro composition. Several attributes of macro instructions are introduced (paraclosed, parahalting, keeping 0) and their usage enables a systematic treatment of the composition of macro intructions. This article is continued in [1].

MML Identifier: SCMFSA6B.

The notation and terminology used in this paper are introduced in the following articles: [20], [30], [14], [3], [28], [31], [9], [10], [4], [21], [8], [29], [12], [2], [19], [7], [13], [11], [15], [16], [25], [5], [18], [6], [27], [22], [23], [24], [26], and [17].

1. Preliminaries

The following propositions are true:

- (1) For all functions f, g and for all sets x, y such that $x \notin \text{dom } f$ and $f \subseteq g$ holds $f \subseteq g + (x, y)$.
- (2) For every function f and for all sets x, y, A such that $x \notin A$ holds $f \upharpoonright A = (f + (x, y)) \upharpoonright A$.
- (3) For all functions f, g and for every set A such that $A \cap \text{dom } f \subseteq A \cap \text{dom } g$ holds $(f + g \upharpoonright A) \upharpoonright A = g \upharpoonright A$.

41

C 1997 Warsaw University - Białystok ISSN 1426-2630

¹This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

2. Properties of Start-At

For simplicity we follow a convention: m, n will denote natural numbers, x will denote a set, i will denote an instruction of $\mathbf{SCM}_{\text{FSA}}$, I, J will denote macro instructions, a will denote an integer location, f will denote a finite sequence location, l, l_1 will denote instructions-locations of $\mathbf{SCM}_{\text{FSA}}$, and s, s_1, s_2 will denote states of $\mathbf{SCM}_{\text{FSA}}$.

We now state a number of propositions:

- (4) Start-At(insloc(0)) \subseteq Initialized(*I*).
- (5) If $I + \cdot \text{Start-At}(\text{insloc}(n)) \subseteq s$, then $I \subseteq s$.
- (6) $(I + \text{Start-At}(\text{insloc}(n))) \upharpoonright (\text{the instruction locations of } \mathbf{SCM}_{\text{FSA}}) = I.$
- (7) If $x \in \text{dom } I$, then I(x) = (I + Start-At(insloc(n)))(x).
- (8) If Initialized(I) $\subseteq s$, then $I + \cdot \text{Start-At}(\text{insloc}(0)) \subseteq s$.
- (9) $a \notin \text{dom Start-At}(l)$.
- (10) $f \notin \text{dom Start-At}(l)$.
- (11) $l_1 \notin \text{dom Start-At}(l)$.
- (12) $a \notin \operatorname{dom}(I + \cdot \operatorname{Start-At}(l)).$
- (13) $f \notin \operatorname{dom}(I + \operatorname{Start-At}(l)).$
- (14) s + I + Start-At(insloc(0)) = s + Start-At(insloc(0)) + I.

3. Properties of AMI structures

In the sequel N will denote a non empty set with non empty elements. Next we state two propositions:

- (15) If s = Following(s), then for every n holds (Computation(s))(n) = s.
- (16) Let S be a halting von Neumann definite AMI over N and let s be a state of S. If s is halting, then $\operatorname{Result}(s) = (\operatorname{Computation}(s))(\operatorname{LifeSpan}(s)).$

Let us consider N, let S be a von Neumann definite AMI over N, let s be a state of S, let l be an instruction-location of S, and let i be an instruction of S. Then s + (l, i) is a state of S.

Let s be a state of $\mathbf{SCM}_{\text{FSA}}$, let l_2 be an integer location, and let k be an integer. Then $s + (l_2, k)$ is a state of $\mathbf{SCM}_{\text{FSA}}$.

We now state the proposition

(17) Let S be a steady-programmed von Neumann definite AMI over N, and let s be a state of S, and given n. Then $s \upharpoonright$ (the instruction locations of S) = (Computation(s))(n) \upharpoonright (the instruction locations of S).

Let I be a macro instruction and let s be a state of \mathbf{SCM}_{FSA} . The functor IExec(I, s) yielding a state of \mathbf{SCM}_{FSA} is defined as follows:

(Def. 1) $\operatorname{IExec}(I, s) = \operatorname{Result}(s + \operatorname{Initialized}(I)) + s \upharpoonright (\text{the instruction locations of } \mathbf{SCM}_{FSA}).$

Let I be a macro instruction. We say that I is paraclosed if and only if:

(Def. 2) For every state s of \mathbf{SCM}_{FSA} and for every natural number n such that $I + \cdot \operatorname{Start-At}(\operatorname{insloc}(0)) \subseteq s$ holds $\mathbf{IC}_{(\operatorname{Computation}(s))(n)} \in \operatorname{dom} I$.

We say that I is parahalting if and only if:

(Def. 3) I + Start-At(insloc(0)) is halting.

We say that I is keeping 0 if and only if:

(Def. 4) For every state s of \mathbf{SCM}_{FSA} such that $I + \cdot \text{Start-At}(\text{insloc}(0)) \subseteq s$ and for every natural number k holds (Computation(s))(k)(intloc(0)) = s(intloc(0)).

Let us note that there exists a macro instruction which is parahalting. Next we state two propositions:

- (18) For every parahalting macro instruction I such that I +Start-At(insloc $(0)) \subseteq s$ holds s is halting.
- (19) For every parahalting macro instruction I such that $Initialized(I) \subseteq s$ holds s is halting.

Let I be a parahalting macro instruction. One can verify that Initialized(I) is halting.

We now state two propositions:

(20)
$$s_2 + (\mathbf{IC}_{(s_2)}, \text{goto } (\mathbf{IC}_{(s_2)}))$$
 is not halting.

- (21) Suppose that
 - (i) s_1 and s_2 are equal outside the instruction locations of **SCM**_{FSA},
 - (ii) $I \subseteq s_1$,
 - (iii) $I \subseteq s_2$, and
 - (iv) for every m such that m < n holds $\mathbf{IC}_{(\text{Computation}(s_2))(m)} \in \text{dom } I$. Given m. Suppose $m \leq n$. Then $(\text{Computation}(s_1))(m)$ and $(\text{Computation}(s_2))(m)$ are equal outside the instruction locations of $\mathbf{SCM}_{\text{FSA}}$.

One can check that every macro instruction which is parahalting is also paraclosed and every macro instruction which is keeping 0 is also paraclosed.

The following propositions are true:

- (22) Let I be a parahalting macro instruction and let a be a read-write integer location. If $a \notin \text{UsedIntLoc}(I)$, then (IExec(I, s))(a) = s(a).
- (23) For every parahalting macro instruction I such that $f \notin$ UsedInt*Loc(I) holds (IExec(I, s))(f) = s(f).
- (24) If $\mathbf{IC}_s = l$ and s(l) = goto l, then s is not halting.

One can verify that every macro instruction which is parahalting is also non empty.

One can prove the following propositions:

- (25) For every parahalting macro instruction I holds dom $I \neq \emptyset$.
- (26) For every parahalting macro instruction I holds $insloc(0) \in dom I$.
- (27) Let J be a parahalting macro instruction. Suppose J+·Start-At(insloc (0)) $\subseteq s_1$. Let n be a natural number. Suppose ProgramPart(Relocated (J, n)) $\subseteq s_2$ and $\mathbf{IC}_{(s_2)} = \operatorname{insloc}(n)$ and $s_1 \upharpoonright (\operatorname{Int-Locations} \cup$ FinSeq-Locations) = $s_2 \upharpoonright (\operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations})$. Let i be a natural number. Then $\mathbf{IC}_{(\operatorname{Computation}(s_1))(i)} + n =$ $\mathbf{IC}_{(\operatorname{Computation}(s_2))(i)}$ and $\operatorname{IncAddr}(\operatorname{CurInstr}((\operatorname{Computation}(s_1))(i)), n) =$ $\operatorname{CurInstr}((\operatorname{Computation}(s_2))(i))$ and $(\operatorname{Computation}(s_1))(i) \upharpoonright (\operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations}) = (\operatorname{Computation}(s_2))(i) \upharpoonright (\operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations}).$
- (28) Let I be a parahalting macro instruction. Suppose I+·Start-At(insloc (0)) $\subseteq s_1$ and I+·Start-At(insloc(0)) $\subseteq s_2$ and s_1 and s_2 are equal outside the instruction locations of **SCM**_{FSA}. Let k be a natural number. Then (Computation(s_1))(k) and (Computation(s_2))(k) are equal outside the instruction locations of **SCM**_{FSA} and CurInstr((Computation(s_1))(k)) = CurInstr((Computation(s_2))(k)).
- (29) Let I be a parahalting macro instruction. Suppose I+·Start-At(insloc (0)) $\subseteq s_1$ and I+·Start-At(insloc(0)) $\subseteq s_2$ and s_1 and s_2 are equal outside the instruction locations of **SCM**_{FSA}. Then LifeSpan(s_1) = LifeSpan(s_2) and Result(s_1) and Result(s_2) are equal outside the instruction locations of **SCM**_{FSA}.
- (30) For every parahalting macro instruction I holds $\mathbf{IC}_{\mathrm{IExec}(I,s)} = \mathbf{IC}_{\mathrm{Result}(s+\cdot \mathrm{Initialized}(I))}$.
- (31) For every non empty macro instruction I holds $insloc(0) \in dom I$ and $insloc(0) \in dom Initialized(I)$ and $insloc(0) \in dom(I + \cdot Start-At(insloc(0)))$.
- (32) $x \in \text{dom} \operatorname{Macro}(i)$ iff $x = \operatorname{insloc}(0)$ or $x = \operatorname{insloc}(1)$.
- (33) $(\text{Macro}(i))(\text{insloc}(0)) = i \text{ and } (\text{Macro}(i))(\text{insloc}(1)) = \text{halt}_{\mathbf{SCM}_{\text{FSA}}} \text{ and}$ (Initialized(Macro(i)))(insloc(0)) = i and (Initialized(Macro(i)))(insloc(1))) = \text{halt}_{\mathbf{SCM}_{\text{FSA}}} and (Macro(i)+· Start-At(insloc(0)))(insloc(0)) = i.
- (34) If Initialized $(I) \subseteq s$, then $\mathbf{IC}_s = \operatorname{insloc}(0)$.

Let us observe that there exists a macro instruction which is keeping 0 and parahalting.

One can prove the following proposition

(35) For every keeping 0 parahalting macro instruction I holds (IExec(I, s))(intloc(0)) = 1.

5. The composition of macro instructions

We now state several propositions:

- (36) Let I be a paraclosed macro instruction and let J be a macro instruction. Suppose $I + \operatorname{Start-At}(\operatorname{insloc}(0)) \subseteq s$ and s is halting. Given m. Suppose $m \leq \operatorname{LifeSpan}(s)$. Then $(\operatorname{Computation}(s))(m)$ and $(\operatorname{Computation}(s+\cdot(I;J)))(m)$ are equal outside the instruction locations of $\operatorname{\mathbf{SCM}}_{\mathrm{FSA}}$.
- (37) For every paraclosed macro instruction I such that s+I is halting and $\text{Directed}(I) \subseteq s$ and $\text{Start-At}(\text{insloc}(0)) \subseteq s$ holds $\mathbf{IC}_{(\text{Computation}(s))(\text{LifeSpan}(s+I)+1)} = \text{insloc}(\text{card }I).$
- (38) Let I be a paraclosed macro instruction. If $s+\cdot I$ is halting and Directed $(I) \subseteq s$ and Start-At $(insloc(0)) \subseteq s$, then $(Computation(s))(LifeSpan(s+\cdot I))\uparrow(Int-Locations \cup FinSeq-Locations) =$ $(Computation(s))(LifeSpan(s+\cdot I)+1)\uparrow(Int-Locations \cup FinSeq-Locations).$
- (39) Let *I* be a parahalting macro instruction. Suppose $\text{Initialized}(I) \subseteq s$. Let *k* be a natural number. If $k \leq \text{LifeSpan}(s)$, then $\text{CurInstr}((\text{Computation}(s+\cdot \text{Directed}(I)))(k)) \neq \text{halt}_{\mathbf{SCM}_{\text{FSA}}}$.
- (40) Let *I* be a paraclosed macro instruction. Suppose s + (I + Start-At (insloc(0))) is halting. Let *J* be a macro instruction and let *k* be a natural number. Suppose $k \leq \text{LifeSpan}(s + (I + \text{Start-At}(\text{insloc}(0))))$. Then (Computation(s + (I + Start-At(insloc(0))))(k) and (Computation(s + ((I;J) + Start-At(insloc(0)))))(k)) are equal outside the instruction locations of $\mathbf{SCM}_{\text{FSA}}$.

Let I, J be parahalting macro instructions. Note that I;J is parahalting. Next we state two propositions:

- (41) Let *I* be a keeping 0 macro instruction. Suppose s + (I + Start-At(insloc(0))) is not halting. Let *J* be a macro instruction and let *k* be a natural number. Then (Computation(s + (I + Start-At(insloc(0))))(k) and (Computation(s + ((I;J) + Start-At(insloc(0))))(k) are equal outside the instruction locations of $\mathbf{SCM}_{\text{FSA}}$.
- (42) Let I be a keeping 0 macro instruction. Suppose $s+\cdot I$ is halting. Let J be a paraclosed macro instruction. Suppose $(I;J)+\cdot$ Start-At(insloc(0)) \subseteq s. Let k be a natural number. Then (Computation(Result($s+\cdot I$)+ $\cdot(J+\cdot$ Start-At(insloc(0)))))(k)+ \cdot Start-At (IC_{(Computation(Result($s+\cdot I$)+ $\cdot(J+\cdot$ Start-At(insloc(0)))))(k) + card I) and (Computation($s+\cdot(I;J)$))(LifeSpan($s+\cdot I$) + 1 + k) are equal outside the instruction locations of SCM_{FSA}.}

Let I, J be keeping 0 macro instructions. Note that I; J is keeping 0. The following two propositions are true:

(43) Let I be a keeping 0 parahalting macro instruction and let J be a parahalting macro instruction. Then $\text{LifeSpan}(s+\cdot \text{Initialized}(I;J)) =$

 $LifeSpan(s+\cdot Initialized(I)) + 1 + LifeSpan(Result(s+\cdot Initialized(I))+\cdot Initialized(J)).$

(44) Let I be a keeping 0 parahalting macro instruction and let J be a parahalting macro instruction. Then $\text{IExec}(I;J,s) = \text{IExec}(J,\text{IExec}(I,s)) + \cdot \text{Start-At}(\mathbf{IC}_{\text{IExec}(J,\text{IExec}(I,s))} + \text{card } I).$

References

- Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.
 Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [5] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formalized Mathematics, 4(1):61–67, 1993.
- [6] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [7] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.
- Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [11] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [13] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
- [14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [15] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151–160, 1992.
- [16] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241–250, 1992.
- [17] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCM_{FSA}. Formalized Mathematics, 6(1):29–36, 1997.
- [18] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics, 5(1):1–8, 1996.
- [19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [21] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [22] Andrzej Trybulec and Yatsuka Nakamura. Computation in SCM_{FSA}. Formalized Mathematics, 5(4):537–542, 1996.
- [23] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of SCM_{FSA}. Formalized Mathematics, 5(4):571–576, 1996.
- [24] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCM_{FSA}. Formalized Mathematics, 5(4):583–586, 1996.
- [25] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51–56, 1993.

- [26] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.
- [27] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. Formalized Mathematics, 5(4):519–528, 1996.
- [28] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [30] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received July 22, 1996