
FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

On the Composition of Macro Instructions.

Part III 1

Noriko Asamoto

Ochanomizu University

Tokyo

Yatsuka Nakamura

Shinshu University

Nagano

Piotr Rudnicki

University of Alberta

Edmonton

Andrzej Trybulec

Warsaw University

Bia lystok

Summary. This article is a continuation of [27] and [2]. First,
we recast the semantics of the macro composition in more convenient
terms. Then, we introduce terminology and basic properties of macros
constructed out of single instructions of SCMFSA. We give the complete
semantics of composing a macro instruction with an instruction and for
composing two machine instructions (this is also done in terms of macros).
The introduced terminology is tested on the simple example of a macro
for swapping two integer locations.

MML Identifier: SCMFSA6C.

The papers [23], [31], [15], [4], [29], [18], [32], [10], [11], [5], [24], [9], [30], [13],
[3], [21], [8], [14], [12], [22], [16], [17], [26], [6], [20], [7], [28], [25], [27], [19], and
[1] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity we adopt the following rules: i will denote an instruction of
SCMFSA, a, b will denote integer locations, f will denote a finite sequence
location, l will denote an instruction-location of SCMFSA, and s, s1, s2 will
denote states of SCMFSA.

The following propositions are true:

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

53
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

54 noriko asamoto et al.

(1) Let I be a keeping 0 parahalting macro instruction and let J

be a parahalting macro instruction. Then (IExec(I;J, s))(a) =
(IExec(J, IExec(I, s)))(a).

(2) Let I be a keeping 0 parahalting macro instruction and let J

be a parahalting macro instruction. Then (IExec(I;J, s))(f) =
(IExec(J, IExec(I, s)))(f).

2. Parahalting and keeping 0 macro instructions

Let i be an instruction of SCMFSA. We say that i is parahalting if and only
if:

(Def. 1) Macro(i) is parahalting.

We say that i is keeping 0 if and only if:

(Def. 2) Macro(i) is keeping 0.

Let us observe that haltSCMFSA
is keeping 0 and parahalting.

Let us note that there exists an instruction of SCMFSA which is keeping 0
and parahalting.

Let i be a parahalting instruction of SCMFSA. Observe that Macro(i) is
parahalting.

Let i be a keeping 0 instruction of SCMFSA. Observe that Macro(i) is
keeping 0.

Let a, b be integer locations. One can check the following observations:

∗ a:=b is parahalting,

∗ AddTo(a, b) is parahalting,

∗ SubFrom(a, b) is parahalting,

∗ MultBy(a, b) is parahalting, and

∗ Divide(a, b) is parahalting.

Let f be a finite sequence location. Note that b:=fa is parahalting and fa:=b is
parahalting and keeping 0.

Let a be an integer location and let f be a finite sequence location. Note
that a:=lenf is parahalting and f :=〈0, . . . , 0

︸ ︷︷ ︸

a

〉 is parahalting and keeping 0.

Let a be a read-write integer location and let b be an integer location. One
can verify the following observations:

∗ a:=b is keeping 0,

∗ AddTo(a, b) is keeping 0,

∗ SubFrom(a, b) is keeping 0, and

∗ MultBy(a, b) is keeping 0.

Let a, b be read-write integer locations. Note that Divide(a, b) is keeping 0.
Let a be an integer location, let f be a finite sequence location, and let b be

a read-write integer location. Observe that b:=fa is keeping 0.

on the composition of macro instructions. . . . 55

Let f be a finite sequence location and let b be a read-write integer location.
Observe that b:=lenf is keeping 0.

Let i be a parahalting instruction of SCMFSA and let J be a parahalting
macro instruction. One can verify that i;J is parahalting.

Let I be a parahalting macro instruction and let j be a parahalting instruc-
tion of SCMFSA. Note that I;j is parahalting.

Let i be a parahalting instruction of SCMFSA and let j be a parahalting
instruction of SCMFSA. Note that i;j is parahalting.

Let i be a keeping 0 instruction of SCMFSA and let J be a keeping 0 macro
instruction. Observe that i;J is keeping 0.

Let I be a keeping 0 macro instruction and let j be a keeping 0 instruction
of SCMFSA. One can check that I;j is keeping 0.

Let i, j be keeping 0 instructions of SCMFSA. One can check that i;j is
keeping 0.

3. Semantics of compositions

Let s be a state of SCMFSA. The functor Initialize(s) yielding a state of
SCMFSA is defined as follows:

(Def. 3) Initialize(s) = s+·(intloc(0)7−→. 1)+·Start-At(insloc(0)).

The following propositions are true:

(3) (i) ICInitialize(s) = insloc(0),

(ii) (Initialize(s))(intloc(0)) = 1,

(iii) for every read-write integer location a holds (Initialize(s))(a) = s(a),

(iv) for every f holds (Initialize(s))(f) = s(f), and

(v) for every l holds (Initialize(s))(l) = s(l).

(4) s1 and s2 are equal outside the instruction locations of SCMFSA

iff s1 � (Int-Locations∪FinSeq-Locations∪{ICSCMFSA
}) = s2 �

(Int-Locations∪FinSeq-Locations∪{ICSCMFSA
}).

(5) If s1 � (Int-Locations∪FinSeq-Locations) = s2 � (Int-Locations∪
FinSeq-Locations), then Exec(i, s1) � (Int-Locations∪FinSeq-Locations) =
Exec(i, s2) � (Int-Locations∪FinSeq-Locations).

(6) For every parahalting instruction i of SCMFSA holds Exec(i, Initialize

(s)) = IExec(Macro(i), s).

(7) Let I be a keeping 0 parahalting macro instruction and let j be
a parahalting instruction of SCMFSA. Then (IExec(I;j, s))(a) =
(Exec(j, IExec(I, s)))(a).

(8) Let I be a keeping 0 parahalting macro instruction and let j be
a parahalting instruction of SCMFSA. Then (IExec(I;j, s))(f) =
(Exec(j, IExec(I, s)))(f).

56 noriko asamoto et al.

(9) Let i be a keeping 0 parahalting instruction of SCMFSA and let j

be a parahalting instruction of SCMFSA. Then (IExec(i;j, s))(a) =
(Exec(j,Exec(i, Initialize(s))))(a).

(10) Let i be a keeping 0 parahalting instruction of SCMFSA and let j

be a parahalting instruction of SCMFSA. Then (IExec(i;j, s))(f) =
(Exec(j,Exec(i, Initialize(s))))(f).

4. An example: swap

Let a, b be integer locations. The functor swap(a, b) yields a macro instruc-
tion and is defined as follows:

(Def. 4) swap(a, b) = (FirstNotUsed(Macro(a:=b)):=a);(a:=b);(b:= FirstNotUsed
(Macro(a:=b))).

Let a, b be integer locations. Observe that swap(a, b) is parahalting.
Let a, b be read-write integer locations. Note that swap(a, b) is keeping 0.
We now state two propositions:

(11) For all read-write integer locations a, b holds (IExec(swap(a, b), s))(a) =
s(b) and (IExec(swap(a, b), s))(b) = s(a).

(12) UsedInt∗ Loc(swap(a, b)) = ∅.

References

[1] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[2] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-

ized Mathematics, 4(1):61–67, 1993.
[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[8] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[9] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[10] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[11] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[12] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[13] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[14] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.

on the composition of macro instructions. . . . 57

[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[16] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[17] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[18] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[19] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized

Mathematics, 6(1):29–36, 1997.
[20] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[24] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized Mathematics,

1(1):187–190, 1990.
[25] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[26] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[27] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of

macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.
[28] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.

Formalized Mathematics, 5(4):519–528, 1996.
[29] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[30] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[31] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received July 22, 1996

