
FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Constant Assignment Macro Instructions

of SCMFSA. Part II

Noriko Asamoto

Ochanomizu University

Tokyo

MML Identifier: SCMFSA7B.

The notation and terminology used in this paper have been introduced in the
following articles: [20], [28], [12], [4], [25], [29], [10], [11], [7], [5], [9], [27], [15],
[26], [18], [6], [3], [19], [8], [13], [14], [22], [17], [24], [21], [1], [23], [16], and [2].

In this paper m is a natural number.
Next we state two propositions:

(1) For every finite sequence p of elements of the instructions of SCMFSA

holds dom Load(p) = {insloc(m) : m < len p}.

(2) For every finite sequence p of elements of the instructions of SCMFSA

holds rng Load(p) = rng p.

Let p be a finite sequence of elements of the instructions of SCMFSA. Ob-
serve that Load(p) is initial and programmed.

We now state several propositions:

(3) For every instruction i of SCMFSA holds Load(〈i〉) = insloc(0)7−→. i.

(4) For every instruction i of SCMFSA holds dom Macro(i) =
{insloc(0), insloc(1)}.

(5) For every instruction i of SCMFSA holds Macro(i) = Load(〈i,
haltSCMFSA

〉).

(6) For every instruction i of SCMFSA holds card Macro(i) = 2.

(7) For every instruction i of SCMFSA holds if i = haltSCMFSA
, then

(Directed(Macro(i)))(insloc(0)) = goto insloc(2) and if i 6= haltSCMFSA
,

then (Directed(Macro(i)))(insloc(0)) = i.

(8) For every instruction i of SCMFSA holds (Directed(Macro(i)))(insloc(1))
= goto insloc(2).

Let a be an integer location and let k be an integer. Observe that a:=k is
initial and programmed.

59
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630



60 noriko asamoto

Let a be an integer location and let k be an integer. Observe that a:=k is
parahalting.

We now state the proposition

(9) Let s be a state of SCMFSA, and let a be a read-write integer location,
and let k be an integer. Then

(i) (IExec(a:=k, s))(a) = k,
(ii) for every read-write integer location b such that b 6= a holds

(IExec(a:=k, s))(b) = s(b), and
(iii) for every finite sequence location f holds (IExec(a:=k, s))(f) = s(f).

Let f be a finite sequence location and let p be a finite sequence of elements
of � . One can check that f :=p is initial and programmed.

Let f be a finite sequence location and let p be a finite sequence of elements
of � . Observe that f :=p is parahalting.

The following proposition is true

(10) Let s be a state of SCMFSA, and let f be a finite sequence location,
and let p be a finite sequence of elements of � . Then

(i) (IExec(f :=p, s))(f) = p,
(ii) for every read-write integer location a such that a 6= intloc(1) and

a 6= intloc(2) holds (IExec(f :=p, s))(a) = s(a), and
(iii) for every finite sequence location g such that g 6= f holds

(IExec(f :=p, s))(g) = s(g).

Let i be an instruction of SCMFSA and let a be an integer location. We say
that i does not refer a if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let b be an integer location, and let l be an instruction-location of
SCMFSA, and let f be a finite sequence location. Then

(i) b:=a 6= i,
(ii) AddTo(b, a) 6= i,
(iii) SubFrom(b, a) 6= i,
(iv) MultBy(b, a) 6= i,
(v) Divide(b, a) 6= i,
(vi) Divide(a, b) 6= i,
(vii) if a = 0 goto l 6= i,
(viii) if a > 0 goto l 6= i,
(ix) b:=fa 6= i,
(x) fb:=a 6= i,
(xi) fa:=b 6= i, and
(xii) f :=〈0, . . . , 0

︸ ︷︷ ︸

a

〉 6= i.

Let I be a programmed finite partial state of SCMFSA and let a be an integer
location. We say that I does not refer a if and only if:

(Def. 2) For every instruction i of SCMFSA such that i ∈ rng I holds i does not
refer a.

Let i be an instruction of SCMFSA and let a be an integer location. We say
that i does not destroy a if and only if the condition (Def. 3) is satisfied.



constant assignment macro instructions of . . . 61

(Def. 3) Let b be an integer location and let f be a finite sequence location. Then
a:=b 6= i and AddTo(a, b) 6= i and SubFrom(a, b) 6= i and MultBy(a, b) 6= i
and Divide(a, b) 6= i and Divide(b, a) 6= i and a:=fb 6= i and a:=lenf 6= i.

Let I be a finite partial state of SCMFSA and let a be an integer location.
We say that I does not destroy a if and only if:

(Def. 4) For every instruction i of SCMFSA such that i ∈ rng I holds i does not
destroy a.

Let I be a finite partial state of SCMFSA. We say that I is good if and only
if:

(Def. 5) I does not destroy intloc(0).

Let I be a finite partial state of SCMFSA. We say that I is halt-free if and
only if:

(Def. 6) haltSCMFSA
/∈ rng I.

Let us observe that there exists a macro instruction which is halt-free and
good.

The following propositions are true:

(11) For every integer location a holds haltSCMFSA
does not destroy a.

(12) For all integer locations a, b, c such that a 6= b holds b:=c does not
destroy a.

(13) For all integer locations a, b, c such that a 6= b holds AddTo(b, c) does
not destroy a.

(14) For all integer locations a, b, c such that a 6= b holds SubFrom(b, c) does
not destroy a.

(15) For all integer locations a, b, c such that a 6= b holds MultBy(b, c) does
not destroy a.

(16) For all integer locations a, b, c such that a 6= b and a 6= c holds
Divide(b, c) does not destroy a.

(17) For every integer location a and for every instruction-location l of
SCMFSA holds goto l does not destroy a.

(18) For all integer locations a, b and for every instruction-location l of
SCMFSA holds if b = 0 goto l does not destroy a.

(19) For all integer locations a, b and for every instruction-location l of
SCMFSA holds if b > 0 goto l does not destroy a.

(20) Let a, b, c be integer locations and let f be a finite sequence location.
If a 6= b, then b:=fc does not destroy a.

(21) For all integer locations a, b, c and for every finite sequence location f
holds fc:=b does not destroy a.

(22) Let a, b be integer locations and let f be a finite sequence location. If
a 6= b, then b:=lenf does not destroy a.

(23) For all integer locations a, b and for every finite sequence location f
holds f :=〈0, . . . , 0

︸ ︷︷ ︸

b

〉 does not destroy a.



62 noriko asamoto

Let I be a finite partial state of SCMFSA and let s be a state of SCMFSA.
We say that I is closed on s if and only if:

(Def. 7) For every natural number k holds
IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) ∈ dom I.

We say that I is halting on s if and only if:

(Def. 8) s+·(I+· Start-At(insloc(0))) is halting.

We now state several propositions:

(24) For every macro instruction I holds I is paraclosed iff for every state s
of SCMFSA holds I is closed on s.

(25) For every macro instruction I holds I is parahalting iff for every state
s of SCMFSA holds I is halting on s.

(26) Let i be an instruction of SCMFSA, and let a be an integer location, and
let s be a state of SCMFSA. If i does not destroy a then (Exec(i, s))(a) =
s(a).

(27) Let s be a state of SCMFSA, and let I be a macro instruc-
tion, and let a be an integer location. Suppose I does not de-
stroy a and I is closed on s. Let k be a natural number. Then
(Computation(s+·(I+· Start-At(insloc(0)))))(k)(a) = s(a).

(28) StopSCMFSA
does not destroy intloc(0).

One can verify that there exists a macro instruction which is parahalting and
good.

One can check that StopSCMFSA
is parahalting and good.

One can check that every macro instruction which is paraclosed and good is
also keeping 0.

One can prove the following two propositions:

(29) For every integer location a and for every integer k holds
rng aSeq(a, k) ⊆ {a:= intloc(0),AddTo(a, intloc(0)),SubFrom(a, intloc(0))}.

(30) For every integer location a and for every integer k holds rng(a:=k) ⊆
{haltSCMFSA

, a:= intloc(0),AddTo(a, intloc(0)),SubFrom(a, intloc(0))}.

Let a be a read-write integer location and let k be an integer. One can check
that a:=k is good.

Let a be a read-write integer location and let k be an integer. Observe that
a:=k is keeping 0.

References

[1] Noriko Asamoto. Some multi instructions defined by sequence of instructions of
SCMFSA. Formalized Mathematics, 5(4):615–619, 1996.

[2] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.



constant assignment macro instructions of . . . 63

[6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized

Mathematics, 4(1):91–101, 1993.
[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[8] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[9] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[10] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[11] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[14] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[16] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized

Mathematics, 6(1):29–36, 1997.
[17] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[21] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[22] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[23] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of

macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.
[24] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.

Formalized Mathematics, 5(4):519–528, 1996.
[25] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[26] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,

1(5):979–981, 1990.
[27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[28] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received August 27, 1996


