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The terminology and notation used in this paper are introduced in the following
papers: [16], [22], [6], [10], [23], [11], [12], [9], [5], [7], [13], [19], [15], [21], [17],
[18], [2], [8], [20], [14], [4], [3], and [1].

One can prove the following propositions:

(1) For all functions f , g such that dom f misses dom g holds f+·g = g+·f.

(2) For all functions f , g and for every set D such that dom g misses D
holds (f+·g) � D = f � D.

(3) For every state s of SCMFSA holds dom(s � (the instruction locations
of SCMFSA)) = the instruction locations of SCMFSA.

(4) For every state s of SCMFSA such that s is halting and
for every natural number k such that LifeSpan(s) ≤ k holds
CurInstr((Computation(s))(k)) = haltSCMFSA

.

(5) For every state s of SCMFSA such that s is halting and for every nat-
ural number k such that LifeSpan(s) ≤ k holds IC(Computation(s))(k) =
IC(Computation(s))(LifeSpan(s)).

(6) Let s1, s2 be states of SCMFSA. Then s1 and s2 are
equal outside the instruction locations of SCMFSA if and only if
IC(s1) = IC(s2) and s1 � (Int-Locations∪FinSeq-Locations) = s2 �
(Int-Locations∪FinSeq-Locations).

(7) For every state s of SCMFSA and for every macro instruction I holds
ICIExec(I,s) = ICResult(s+· Initialized(I)).

(8) For every state s of SCMFSA and for every macro instruction I holds
Initialize(s)+· Initialized(I) = s+· Initialized(I).

(9) For every macro instruction I and for every instruction-location l of
SCMFSA holds I ⊆ I+· Start-At(l).
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(10) For every state s of SCMFSA and for every instruction-
location l of SCMFSA holds s � (Int-Locations∪FinSeq-Locations) =
(s+· Start-At(l)) � (Int-Locations∪FinSeq-Locations).

(11) Let s be a state of SCMFSA, and let I be a macro instruc-
tion, and let l be an instruction-location of SCMFSA. Then
s � (Int-Locations∪FinSeq-Locations) = (s+·(I+· Start-At(l))) �
(Int-Locations∪FinSeq-Locations).

(12) Let s be a state of SCMFSA and let l be an instruction-location of
SCMFSA. Then dom(s � (the instruction locations of SCMFSA)) misses
domStart-At(l).

(13) For every state s of SCMFSA and for every macro instruction I holds
s+· Initialized(I) = Initialize(s)+·(I+· Start-At(insloc(0))).

(14) Let s be a state of SCMFSA, and let I1, I2 be macro instructions, and
let l be an instruction-location of SCMFSA. Then s+·(I1+· Start-At(l))
and s+·(I2+·Start-At(l)) are equal outside the instruction locations of
SCMFSA.

(15) dom(StopSCMFSA
) = {insloc(0)}.

(16) insloc(0) ∈ dom(StopSCMFSA
) and StopSCMFSA

(insloc(0)) = haltSCMFSA
.

(17) card(StopSCMFSA
) = 1.

Let P be a programmed finite partial state of SCMFSA and let l be an
instruction-location of SCMFSA. The functor Directed(P, l) yields a programmed
finite partial state of SCMFSA and is defined as follows:

(Def. 1) Directed(P, l) = (id(the instructions of SCMFSA)+·(haltSCMFSA
7−→. goto l))·

P.

One can prove the following proposition

(18) For every programmed finite partial state I of SCMFSA holds
Directed(I) = Directed(I, insloc(card I)).

Let P be a programmed finite partial state of SCMFSA and let l be an
instruction-location of SCMFSA. One can check that Directed(P, l) is halt-free.

Let P be a programmed finite partial state of SCMFSA. Note that Directed(P )
is halt-free.

Next we state several propositions:

(19) For every programmed finite partial state P of SCMFSA and for every
instruction-location l of SCMFSA holds dom Directed(P, l) = domP.

(20) Let P be a programmed finite partial state of SCMFSA and let
l be an instruction-location of SCMFSA. Then Directed(P, l) =
P+·(haltSCMFSA

7−→. goto l) · P.

(21) Let P be a programmed finite partial state of SCMFSA, and let l be
an instruction-location of SCMFSA, and let x be arbitrary. Suppose x ∈
domP. Then if P (x) = haltSCMFSA

, then (Directed(P, l))(x) = goto l
and if P (x) 6= haltSCMFSA

, then (Directed(P, l))(x) = P (x).
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(22) Let i be an instruction of SCMFSA, and let a be an integer location,
and let n be a natural number. If i does not destroy a, then IncAddr(i, n)
does not destroy a.

(23) Let P be a programmed finite partial state of SCMFSA, and let n be a
natural number, and let a be an integer location. If P does not destroy
a, then ProgramPart(Relocated(P, n)) does not destroy a.

(24) For every good programmed finite partial state P of SCMFSA and for
every natural number n holds ProgramPart(Relocated(P, n)) is good.

(25) Let I, J be programmed finite partial states of SCMFSA and let a be
an integer location. Suppose I does not destroy a and J does not destroy
a. Then I+·J does not destroy a.

(26) For all good programmed finite partial states I, J of SCMFSA holds
I+·J is good.

(27) Let I be a programmed finite partial state of SCMFSA, and let l be an
instruction-location of SCMFSA, and let a be an integer location. If I
does not destroy a, then Directed(I, l) does not destroy a.

Let I be a good programmed finite partial state of SCMFSA and let l be an
instruction-location of SCMFSA. Note that Directed(I, l) is good.

Let I be a good macro instruction. Note that Directed(I) is good.
Let I be a macro instruction and let l be an instruction-location of SCMFSA.

One can verify that Directed(I, l) is initial.
Let I, J be good macro instructions. Observe that I;J is good.
Let l be an instruction-location of SCMFSA. The functor Goto(l) yields a

halt-free good macro instruction and is defined by:

(Def. 2) Goto(l) = insloc(0)7−→. goto l.

Let s be a state of SCMFSA and let I be a finite partial state of SCMFSA.
We say that I is psuedo-closed on s if and only if the condition (Def. 3) is
satisfied.

(Def. 3) There exists a natural number k such that
IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) = insloc(card I) and for every
natural number n such that n < k holds
IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) ∈ dom I.

Let I be a finite partial state of SCMFSA. We say that I is psuedo-paraclosed
if and only if:

(Def. 4) For every state s of SCMFSA holds I is psuedo-closed on s.

Let us observe that there exists a macro instruction which is psuedo-paraclosed.
Let s be a state of SCMFSA and let I be a macro instruction. Let us assume

that I is psuedo-closed on s. The functor psuedo− LifeSpan(s, I) yielding a
natural number is defined by:

(Def. 5) IC(Computation(s+·(I+·Start-At(insloc(0)))))(psuedo−LifeSpan(s,I)) = insloc(card I)
and for every natural number n such that
IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) /∈ dom I holds
psuedo− LifeSpan(s, I) ≤ n.
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We now state a number of propositions:

(28) For all macro instructions I, J and for arbitrary x such that x ∈ dom I
holds (I;J)(x) = (Directed(I))(x).

(29) For every instruction-location l of SCMFSA holds card Goto(l) = 1.

(30) Let P be a programmed finite partial state of SCMFSA and let x
be arbitrary. Suppose x ∈ dom P. Then if P (x) = haltSCMFSA

, then
(Directed(P ))(x) = goto insloc(card P ) and if P (x) 6= haltSCMFSA

, then
(Directed(P ))(x) = P (x).

(31) Let s be a state of SCMFSA and let I be a macro instruction. Sup-
pose I is psuedo-closed on s. Let n be a natural number. If n <
psuedo− LifeSpan(s, I), then IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) ∈
dom I and CurInstr((Computation(s+·(I+· Start-At(insloc(0)))))(n)) 6=
haltSCMFSA

.

(32) Let s be a state of SCMFSA and let I, J be macro in-
structions. Suppose I is psuedo-closed on s. Let k be a
natural number. Suppose k ≤ psuedo − LifeSpan(s, I). Then
(Computation(s+·(I+· Start-At(insloc(0)))))(k) and (Computation(s+·

((I;J)+·Start-At(insloc(0)))))(k) are equal outside the instruction loca-
tions of SCMFSA.

(33) For every programmed finite partial state I of SCMFSA and for every
instruction-location l of SCMFSA holds card Directed(I, l) = card I.

(34) For every macro instruction I holds card Directed(I) = card I.

(35) Let s be a state of SCMFSA and let I be a macro instruction.
Suppose I is closed on s and halting on s. Let k be a natural
number. Suppose k ≤ LifeSpan(s+·(I+· Start-At(insloc(0)))). Then
(Computation(s+·(I+· Start-At(insloc(0)))))(k) and (Computation(s+·

(Directed(I)+·Start-At(insloc(0)))))(k) are equal outside the instruction
locations of SCMFSA and CurInstr((Computation(s+·(Directed(I)+·

Start-At(insloc(0)))))(k)) 6= haltSCMFSA
.

(36) Let s be a state of SCMFSA and let I be a macro instruction. Suppose
I is closed on s and halting on s.

Then IC(Computation(s+·(Directed(I)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+· Start-At

(insloc(0))))+1) = insloc(card I) and (Computation(s+·(I+· Start-At(insloc

(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0))))) � (Int-Locations

∪FinSeq-Locations) = (Computation(s+·(Directed(I)+·Start-At(insloc

(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))) + 1) � (Int-Locations∪

FinSeq-Locations).

(37) Let s be a state of SCMFSA and let I be a macro instruction. If I is
closed on s and halting on s, then Directed(I) is psuedo-closed on s.

(38) Let s be a state of SCMFSA and let I be a macro instruction. If I is
closed on s and halting on s, then psuedo− LifeSpan(s,Directed(I)) =
LifeSpan(s+·(I+·Start-At(insloc(0)))) + 1.
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(39) Let I be a programmed finite partial state of SCMFSA and let l be an
instruction-location of SCMFSA. If I is halt-free, then Directed(I, l) = I.

(40) For every macro instruction I such that I is halt-free holds
Directed(I) = I.

(41) For all macro instructions I, J holds Directed(I);J = I;J.

(42) Let s be a state of SCMFSA and let I, J be macro instructions. Suppose
I is closed on s and halting on s. Then

(i) for every natural number k such that k ≤ LifeSpan(s+·(I+·Start-At
(insloc(0)))) holds IC(Computation(s+·(Directed(I)+· Start-At(insloc(0)))))(k) =
IC(Computation(s+·((I;J)+·Start-At(insloc(0)))))(k) and CurInstr((Computation
(s+·(Directed(I)+·Start-At(insloc(0)))))(k)) = CurInstr((Computation
(s+·((I;J)+·Start-At(insloc(0)))))(k)),

(ii) (Computation(s+·(Directed(I)+·Start-At(insloc(0)))))(LifeSpan(s+·
(I+·Start-At(insloc(0)))) + 1) � (Int-Locations∪FinSeq-Locations) =
(Computation(s+·((I;J)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·
Start-At(insloc(0)))) + 1) � (Int-Locations∪FinSeq-Locations), and

(iii) IC(Computation(s+·(Directed(I)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+· Start-At

(insloc(0))))+1) = IC(Computation(s+·((I;J)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·

Start-At(insloc(0))))+1) .

(43) Let s be a state of SCMFSA and let I, J be macro instructions. Suppose
I is closed on Initialize(s) and halting on Initialize(s). Then

(i) for every natural number k such that k ≤ LifeSpan(s+· Initialized(I))
holds IC(Computation(s+· Initialized(Directed(I))))(k) =
IC(Computation(s+· Initialized(I;J)))(k) and CurInstr((Computation(s+· Initialized
(Directed(I))))(k)) = CurInstr((Computation(s+· Initialized(I;J)))(k)),

(ii) (Computation(s+· Initialized(Directed(I))))(LifeSpan(s+· Initialized
(I))+1) � (Int-Locations∪FinSeq-Locations) = (Computation(s+· Initialized
(I;J)))(LifeSpan(s+· Initialized(I))+1) � (Int-Locations∪FinSeq-Locations),
and

(iii) IC(Computation(s+· Initialized(Directed(I))))(LifeSpan(s+· Initialized(I))+1) =
IC(Computation(s+· Initialized(I;J)))(LifeSpan(s+· Initialized(I))+1).

(44) Let s be a state of SCMFSA and let I be a macro in-
struction. Suppose I is closed on Initialize(s) and halting on
Initialize(s). Let k be a natural number. Suppose k ≤
LifeSpan(s+· Initialized(I)). Then (Computation(s+· Initialized(I)))(k)
and (Computation(s+· Initialized(Directed(I))))(k) are equal outside the
instruction locations of SCMFSA and CurInstr((Computation(s+·
Initialized(Directed(I))))(k)) 6= haltSCMFSA

.

(45) Let s be a state of SCMFSA and let I be a macro instruc-
tion. Suppose I is closed on Initialize(s) and halting on Initialize(s).
Then IC(Computation(s+· Initialized(Directed(I))))(LifeSpan(s+· Initialized(I))+1) =
insloc(card I) and (Computation(s+· Initialized(I)))(LifeSpan(s+·
Initialized(I))) � (Int-Locations∪FinSeq-Locations) = (Computation(s+·
Initialized(Directed(I))))(LifeSpan(s+· Initialized(I))+1) � (Int-Locations
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∪FinSeq-Locations).

(46) Let I be a macro instruction and let s be a state of SCMFSA. Suppose
I is closed on s and halting on s. Then I;StopSCMFSA

is closed on s and
I;StopSCMFSA

is halting on s.

(47) For every instruction-location l of SCMFSA holds insloc(0) ∈
domGoto(l) and (Goto(l))(insloc(0)) = goto l.

(48) Let I be a programmed finite partial state of SCMFSA and let x be
arbitrary. If x ∈ dom I, then I(x) is an instruction of SCMFSA.

(49) Let I be a programmed finite partial state of SCMFSA, and
let x be arbitrary, and let k be a natural number. If x ∈
domProgramPart(Relocated(I, k)), then (ProgramPart(Relocated(I, k)))
(x) = (Relocated(I, k))(x).

(50) For every programmed finite partial state I of SCMFSA and for ev-
ery natural number k holds ProgramPart(Relocated(Directed(I), k)) =
Directed(ProgramPart(Relocated(I, k)), insloc(card I + k)).

(51) Let I, J be programmed finite partial states of SCMFSA and let
l be an instruction-location of SCMFSA. Then Directed(I+·J, l) =
Directed(I, l)+·Directed(J, l).

(52) For all macro instructions I, J holds Directed(I;J) = I; Directed(J).

(53) Let I be a macro instruction and let s be a state of
SCMFSA. If I is closed on Initialize(s) and halting on Initialize(s),
then IC(Computation(s+· Initialized(I;StopSCMFSA

)))(LifeSpan(s+· Initialized(I))+1) =

insloc(card I).

(54) Let I be a macro instruction and let s be a state of SCMFSA.
Suppose I is closed on Initialize(s) and halting on Initialize(s).
Then (Computation(s+· Initialized(I)))(LifeSpan(s+· Initialized(I))) �
(Int-Locations∪FinSeq-Locations) = (Computation(s+· Initialized(I;
StopSCMFSA

)))(LifeSpan(s+· Initialized(I)) + 1) � (Int-Locations∪
FinSeq-Locations).

(55) Let I be a macro instruction and let s be a state of SCMFSA.
If I is closed on Initialize(s) and halting on Initialize(s), then
s+· Initialized(I;StopSCMFSA

) is halting.

(56) Let I be a macro instruction and let s be a state of SCMFSA.
If I is closed on Initialize(s) and halting on Initialize(s), then
LifeSpan(s+· Initialized(I;StopSCMFSA

)) = LifeSpan(s+· Initialized(I)) +
1.

(57) Let s be a state of SCMFSA and let I be a macro instruc-
tion. If I is closed on Initialize(s) and halting on Initialize(s), then
IExec(I;StopSCMFSA

, s) = IExec(I, s)+·Start-At(insloc(card I)).

(58) Let I, J be macro instructions and let s be a state of
SCMFSA. Suppose I is closed on s and halting on s.
Then I; Goto(insloc(card J + 1));J ;StopSCMFSA

is closed on s and
I; Goto(insloc(card J + 1));J ;StopSCMFSA

is halting on s.
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(59) Let I, J be macro instructions and let s be a state of SCMFSA.
If I is closed on s and halting on s, then s+·((I; Goto(insloc(card J +
1));J ;StopSCMFSA

)+·Start-At(insloc(0))) is halting.

(60) Let I, J be macro instructions and let s be a state of SCMFSA.
If I is closed on Initialize(s) and halting on Initialize(s), then
s+· Initialized(I; Goto(insloc(card J + 1));J ;StopSCMFSA

) is halting.

(61) Let I, J be macro instructions and let s be a state of SCMFSA.
If I is closed on Initialize(s) and halting on Initialize(s), then
ICIExec(I; Goto(insloc(card J+1));J ;StopSCMFSA

,s) = insloc(card I + card J + 1).

(62) Let I, J be macro instructions and let s be a state of
SCMFSA. Suppose I is closed on Initialize(s) and halting on
Initialize(s). Then IExec(I; Goto(insloc(card J + 1));J ;StopSCMFSA

, s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 1)).
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