FORMALIZED MATHEMATICS
Volume 6, Number 1, 1997
Warsaw University - Bialystok

Conditional Branch Macro Instructions of
SCMpgp. Part 1

Noriko Asamoto

Ochanomizu University
Tokyo

MML Identifier: SCMFSA8A.

The terminology and notation used in this paper are introduced in the following
papers: [16], [22], [6], [10], [23], [11], [12], [9], [5], [7], [13], [19], [15], [21], [17],
[18], [2], [8], [20], [14], [4], [3], and [1].

One can prove the following propositions:

(1) For all functions f, g such that dom f misses dom g holds f+-g = g+-f.

(2) For all functions f, g and for every set D such that dom g misses D
holds (f+-g) I D= f| D.

(3) For every state s of SCMpga holds dom(s | (the instruction locations
of SCMFpgya)) = the instruction locations of SCMpga .

(4) For every state s of SCMpga such that s is halting and
for every natural number k such that LifeSpan(s) < k& holds
Curlnstr((Computation(s))(k)) = haltgcng , -

(5) For every state s of SCMpga such that s is halting and for every nat-
ural number k such that LifeSpan(s) < k holds IC computation(s))(k) =
IC(Computation(s))(LifeSpan(s)) :

(6) Let sj, s2 be states of SCMrpga. Then s; and sy are
equal outside the instruction locations of SCMpgga if and only if
IC(,) = IC(, and s1 | (Int-Locations U FinSeq-Locations) = sy |
(Int-Locations U FinSeq-Locations).

(7) For every state s of SCMpga and for every macro instruction I holds
ICIEXCC(I,S) = ICRosuIt(s+-Initializcd([))'

(8) For every state s of SCMpgs and for every macro instruction I holds
Initialize(s)+- Initialized (I) = s+- Initialized ().

(9) For every macro instruction I and for every instruction-location [of
SCMpgga holds I C I+- Start-At(1).

© 1997 Warsaw University - Bialystok
65 ISSN 1426-2630

66 NORIKO ASAMOTO

(10) For every state s of SCMpsa and for every instruction-
location [of SCMpga holds s | (Int-Locations U FinSeqg-Locations) =
(s+- Start-At(l)) | (Int-Locations U FinSeq-Locations).

(I11) Let s be a state of SCMpga, and let I be a macro instruc-
tion, and let [be an instruction-location of SCMpgga. Then
s | (Int-Locations U FinSeqg-Locations) = (s+-(I+- Start-At(l))) |
(Int-Locations U FinSeq-Locations).

(12) Let s be a state of SCMpga and let [be an instruction-location of
SCMpgga. Then dom(s | (the instruction locations of SCMpgya)) misses
dom Start-At(l).

(13) For every state s of SCMrpga and for every macro instruction / holds
s+- Initialized (I) = Initialize(s)+-(I+- Start-At(insloc(0))).

(14) Let s be a state of SCMyga, and let I, I be macro instructions, and
let [be an instruction-location of SCMpgga. Then s+-(I;+- Start-At(1))

and s+-(Ia+- Start-At(l)) are equal outside the instruction locations of
SCMFsa.

(15) dom(Stopgcmyg,) = {insloc(0)}.
(16) insloc(0) € dom(Stopgcnyg,) and Stopganyg , (insloc(0)) = haltgcom,g , -

(17) card(Stopscnpe,) = 1-

Let P be a programmed finite partial state of SCMpga and let | be an
instruction-location of SCMpga. The functor Directed (P, 1) yields a programmed
finite partial state of SCMpga and is defined as follows:

(Def 1) DireCted(Pﬂ l) = (id(the instructions of SCMFSA)—F’(haltSCMFsA';)gOtO l))
P.

One can prove the following proposition

(18) For every programmed finite partial state I of SCMpga holds
Directed(I) = Directed (I, insloc(card I)).

Let P be a programmed finite partial state of SCMpga and let | be an
instruction-location of SCMpga. One can check that Directed(P, 1) is halt-free.

Let P be a programmed finite partial state of SCMpga. Note that Directed (P)
is halt-free.

Next we state several propositions:

(19) For every programmed finite partial state P of SCMpga and for every
instruction-location [of SCMpga holds dom Directed(P,1) = dom P.

(20) Let P be a programmed finite partial state of SCMpgga and let
[be an instruction-location of SCMpgga. Then Directed(P,l) =
P+-(haltgcn,g,, ——goto 1) - P.

(21) Let P be a programmed finite partial state of SCMpga, and let [be
an instruction-location of SCMFpga, and let z be arbitrary. Suppose x €
dom P. Then if P(xz) = haltgcm,.,, then (Directed(P,[))(x) = goto
and if P(z) # haltgcm,.,, then (Directed(P,1))(z) = P(x).

CONDITIONAL BRANCH MACRO INSTRUCTIONS OF ... 67

(22) Let i be an instruction of SCMrpga, and let a be an integer location,
and let n be a natural number. If 7 does not destroy a, then IncAddr(i, n)
does not destroy a.

(23) Let P be a programmed finite partial state of SCMpga, and let n be a
natural number, and let a be an integer location. If P does not destroy
a, then ProgramPart(Relocated (P, n)) does not destroy a.

(24) For every good programmed finite partial state P of SCMyga and for
every natural number n holds ProgramPart(Relocated (P, n)) is good.

(25) Let I, J be programmed finite partial states of SCMpga and let a be
an integer location. Suppose I does not destroy a and J does not destroy
a. Then I+-J does not destroy a.

(26) For all good programmed finite partial states I, J of SCMpga holds
I+-J is good.

(27) Let I be a programmed finite partial state of SCMrpga, and let [be an
instruction-location of SCMpggya, and let a be an integer location. If [
does not destroy a, then Directed(/,1) does not destroy a.

Let I be a good programmed finite partial state of SCMgga and let [be an
instruction-location of SCMpga. Note that Directed(Z,1) is good.

Let I be a good macro instruction. Note that Directed([) is good.

Let I be a macro instruction and let [be an instruction-location of SCMFpga .
One can verify that Directed(7,!) is initial.

Let I, J be good macro instructions. Observe that I;J is good.

Let [be an instruction-location of SCMpga. The functor Goto(l) yields a
halt-free good macro instruction and is defined by:

(Def. 2) Goto(l) = insloc(0)——goto I.

Let s be a state of SCMpga and let I be a finite partial state of SCMpga.
We say that I is psuedo-closed on s if and only if the condition (Def. 3) is
satisfied.

(Def. 3) There exists a natural number k such that

IC(Computation(s+~(I+~ Start-At(insloc(0))))) (k) — insloc(card I) and for every
natural number n such that n < k holds
IC(Computation(s+~(I+~ Start-At(insloc(0)))))(n) € dom .
Let I be a finite partial state of SCMpga. We say that I is psuedo-paraclosed
if and only if:

(Def. 4) For every state s of SCMpga holds I is psuedo-closed on s.

Let us observe that there exists a macro instruction which is psuedo-paraclosed.

Let s be a state of SCMFpga and let I be a macro instruction. Let us assume
that I is psuedo-closed on s. The functor psuedo — LifeSpan(s, I) yielding a
natural number is defined by:

(Def 5) IC(Computation (s+-(I+- Start-At(insloc(0)))))(psuedo—LifeSpan (s,I)) — insloc(card I)

and for every natural number n such that

IC(Computation(s+-(I+- Start-At(insloc(0)))))(n) 9—5 dom I holds
psuedo — LifeSpan(s, I) < n.

68

NORIKO ASAMOTO

We now state a number of propositions:

(28) For all macro instructions I, J and for arbitrary x such that x € dom I
holds (I;J)(z) = (Directed(I))(x).

(29) For every instruction-location { of SCMpga holds card Goto(l) = 1.

(30) Let P be a programmed finite partial state of SCMpgy and let x
be arbitrary. Suppose x € dom P. Then if P(z) = haltgcm,,, then
(Directed(P))(z) = goto insloc(card P) and if P(z) # haltgcm,, then
(Directed(P))(xz) = P(x).

(31) Let s be a state of SCMpga and let I be a macro instruction. Sup-
pose I is psuedo-closed on s. Let m be a natural number. If n <

psuedo — LifeSpan(s, I)7 then IC(Computation(s—i--(I—i-- Start-At(insloc(0)))))(n) €
dom] and Curlnstr((Computation(s+-(I+- Start-At(insloc(0)))))(n)) #

haltscmg, -

(32) Let s be a state of SCMpga and let I, J be macro in-
structions. Suppose [is psuedo-closed on s. Let k& be a
natural number. Suppose k < psuedo — LifeSpan(s,I). Then

(Computation(s+-(I+- Start-At(insloc(0)))))(k) and (Computation(s+-
((I;J)+- Start-At(insloc(0))))) (k) are equal outside the instruction loca-
tions of SCMpga.

(33) For every programmed finite partial state I of SCMpga and for every
instruction-location [of SCMpga holds card Directed(I,1) = card I.

(34) For every macro instruction I holds card Directed(I) = card I.

(35) Let s be a state of SCMpgs and let I be a macro instruction.
Suppose I is closed on s and halting on s. Let k& be a natural
number. Suppose k < LifeSpan(s+-(/+- Start-At(insloc(0)))). Then
(Computation(s+-(I+- Start-At(insloc(0)))))(k) and (Computation(s+-
(Directed(I)+- Start-At(insloc(0)))))(k) are equal outside the instruction
locations of SCMpga and Curlnstr((Computation(s+-(Directed (I)+-
Start-At(insloc(0)))))(k)) # haltgcmyg, -

(36) Let s be a state of SCMpga and let I be a macro instruction. Suppose
I is closed on s and halting on s.

Then IC(Computation(s+-(Directed(l)+~ Start-At(insloc(0))))) (LifeSpan (s+-(I+- Start-At
(insloc(0))))+1) = insloc(card I') and (Computation(s+-(/+- Start-At(insloc
(0)))))(LifeSpan(s+-(I+- Start-At(insloc(0))))) I (Int-Locations
U FinSeq-Locations) = (Computation(s+-(Directed(I)+- Start-At(insloc
(0)))))(LifeSpan(s+-(I+- Start-At(insloc(0)))) + 1) | (Int-Locations U
FinSeq-Locations).

(37) Let s be a state of SCMypga and let I be a macro instruction. If I is
closed on s and halting on s, then Directed(I) is psuedo-closed on s.

(38) Let s be a state of SCMypga and let I be a macro instruction. If I is
closed on s and halting on s, then psuedo — LifeSpan(s, Directed(I)) =
LifeSpan(s+-(I+- Start-At(insloc(0)))) + 1.

CONDITIONAL BRANCH MACRO INSTRUCTIONS OF ... 69

(39) Let I be a programmed finite partial state of SCMpga and let [be an
instruction-location of SCMpgga. If I is halt-free, then Directed(7,1) = I.

(40) For every macro instruction I such that I is halt-free holds
Directed(I) = I.
(41) For all macro instructions I, J holds Directed(I);J = I;J.

(42) Let s be astate of SCMpga and let I, J be macro instructions. Suppose
I is closed on s and halting on s. Then
(i) for every natural number k such that & < LifeSpan(s+-(I+- Start-At

(iIlSlOC(O)))) holds IC(Computation(s+- (Directed(I)+- Start-At(insloc(0))))) (k) —

IC(Computation(s+-((I;J)—l—-Start-At(insloc(O)))))(k) and CurInStr((ComPUtation
(s+-(Directed (I)+- Start-At(insloc(0)))))(k)) = Curlnstr((Computation

(s+-((I;J)+- Start-At(insloc(0))))) (k)),

(i) (Computation(s+-(Directed(I)+- Start-At(insloc(0)))))(LifeSpan(s-+-
(I+- Start-At(insloc(0)))) + 1) | (Int-Locations U FinSeq-Locations) =
(Computation(s+-((I;J)+- Start-At(insloc(0))))) (LifeSpan (s+-(I+-
Start-At(insloc(0)))) + 1) I (Int-Locations U FinSeq-Locations), and

(111) IC(Computation(s+-(Directed(l)+~ Start-At(insloc(0)))))(LifeSpan (s+-(I+- Start-At
(insloc(0))))+1) — IC(Computation(s+-((I;J)—l—- Start-At(insloc(0))))) (LifeSpan (s+-(I+-
Start-At(insloc(0))))+1) -

(43) Let s be a state of SCMpga and let I, J be macro instructions. Suppose
I is closed on Initialize(s) and halting on Initialize(s). Then
(i) for every natural number k such that k& < LifeSpan(s+- Initialized(I))
holds IC(Computation(s+-Initializcd(Diroctcd(I))))(k) =
IC (Computation (s+- Iitialized(I5.7))) (k) and Curlnstr((Computation(s+- Initialized
(Directed(1))))(k)) = Curlnstr((Computation(s+- Initialized(I;.J)))(k)),

(ii) (Computation(s+- Initialized (Directed(I))))(LifeSpan(s+- Initialized
(I))+1)I (Int-Locations U FinSeqg-Locations) = (Computation(s+- Initialized
(I;J)))(LifeSpan(s+- Initialized (I))+1)[(Int-Locations U FinSeq-Locations),
and

(111) IC(Computation(s—l-- Initialized (Directed([))))(LifeSpan(s+- Initialized(I))+1) —
IC(Computation(s+~ Initialized(Z;J)))(LifeSpan(s+- Initialized (I))+1) -

(44) Let s be a state of SCMpga and let I be a macro in-
struction. Suppose [is closed on Initialize(s) and halting on
Initialize(s). Let k£ be a natural number. Suppose k <
LifeSpan(s+- Initialized(/)). Then (Computation(s+-Initialized([)))(k)
and (Computation(s+- Initialized(Directed(I))))(k) are equal outside the
instruction locations of SCMpga and Curlnstr((Computation(s—+-
Initialized (Directed(1))))(k)) # haltgcmyg, -

(45) Let s be a state of SCMpga and let I be a macro instruc-
tion. Suppose [is closed on Initialize(s) and halting on Initialize(s).
Then IC(Computation(s+~ Initialized (Directed(I))))(LifeSpan(s+- Initialized(I))+1) —
insloc(card I') and (Computation(s+- Initialized(I)))(LifeSpan(s-+-
Initialized(I))) | (Int-Locations U FinSeq-Locations) = (Computation(s+-
Initialized (Directed (1))))(LifeSpan(s+- Initialized (I))+1) | (Int-Locations

70

NORIKO ASAMOTO

U FinSeq-Locations).

(46) Let I be a macro instruction and let s be a state of SCMpga. Suppose
I is closed on s and halting on s. Then I;Stopgcp,, is closed on s and
I;Stopgcmyg,, 18 halting on s.

(47) For every instruction-location | of SCMpga holds insloc(0) €
dom Goto(l) and (Goto(l))(insloc(0)) = goto I.

(48) Let I be a programmed finite partial state of SCMpga and let x be
arbitrary. If x € dom I, then I(x) is an instruction of SCMpga .

(49) Let I be a programmed finite partial state of SCMpga, and
let x be arbitrary, and let k¥ be a natural number. If 2 €
dom ProgramPart(Relocated (7, k)), then (ProgramPart(Relocated (I, k)))
(x) = (Relocated (1, k))(z).

(50) For every programmed finite partial state I of SCMypga and for ev-
ery natural number & holds ProgramPart(Relocated (Directed(I),k)) =
Directed (ProgramPart(Relocated (I, k)), insloc(card I + k)).

(51) Let I, J be programmed finite partial states of SCMpgga and let
[be an instruction-location of SCMpgs. Then Directed(I+-J,1) =
Directed(I,1)+- Directed(J,1).

(52) For all macro instructions I, J holds Directed(I;J) = I; Directed(J).

(53) Let I be a macro instruction and let s be a state of
SCMpsa. If I is closed on Initialize(s) and halting on Initialize(s),
then IC(Computation(s+- Initialized(I;StopSCMFSA)))(LifeSpan(s+~ Initialized(I))+1) —
insloc(card I).

(54) Let I be a macro instruction and let s be a state of SCMpgga.
Suppose I is closed on Initialize(s) and halting on Initialize(s).
Then (Computation(s+- Initialized(I)))(LifeSpan(s+- Initialized(I))) I
(Int-Locations U FinSeq-Locations) = (Computation(s+- Initialized(1;
Stopscmps,) (LifeSpan (s+- Initialized (7)) + 1) [(Int-Locations U
FinSeq-Locations).

(55) Let I be a macro instruction and let s be a state of SCMpgga.
If T is closed on Initialize(s) and halting on Initialize(s), then
s+ Initialized (I;Stopgomy,,) is halting.

(56) Let I be a macro instruction and let s be a state of SCMpyga.
If T is closed on Initialize(s) and halting on Initialize(s), then
LifeSpan(s+- Initialized (I;Stopgopyg,) = LifeSpan(s+- Initialized (1)) +
1.

(57) Let s be a state of SCMpga and let I be a macro instruc-
tion. If I is closed on Initialize(s) and halting on Initialize(s), then
IExec(I;Stopgomypg, » §) = [Exec(I, s)+- Start-At(insloc(card I)).

(58) Let I, J be macro instructions and let s be a state of
SCMEpsa . Suppose [is closed on s and halting on s.
Then [; Goto(insloc(card J + 1));J;Stopgcemyg, 1S closed on s and
I; Goto(insloc(card J + 1));J;Stopgcnyg,, is halting on s.

CONDITIONAL BRANCH MACRO INSTRUCTIONS OF ... 71

(59) Let I, J be macro instructions and let s be a state of SCMpgga.
If I is closed on s and halting on s, then s+-((I; Goto(insloc(card J +
1));J;St0pscnpg 4)+ Start-At(insloc(0))) is halting.

(60) Let I, J be macro instructions and let s be a state of SCMpgga.
If T is closed on Initialize(s) and halting on Initialize(s), then
s+ Initialized (I; Goto(insloc(card J + 1));J;Stopscyg,) is halting.

(61) Let I, J be macro instructions and let s be a state of SCMpgga.
If I is closed on Initialize(s) and halting on Initialize(s), then

ICIEXCC(I; Goto(insloc(card J+1));J;St0pSCMFSA,s) = inSIOC(Card I+ card J + 1)

(62) Let I, J be macro instructions and let s be a state of
SCMpsa. Suppose I is closed on Initialize(s) and halting on
Initialize(s). Then IExec(l; Goto(insloc(card J + 1));.J;Stopgcnmpg >) =
IExec(, s)+- Start-At(insloc(card I 4 card J + 1)).

REFERENCES

[1] Noriko Asamoto. Constant assignment macro instructions of SCMpga. Part II. For-
malized Mathematics, 6(1):59-63, 1997.
[2] Noriko Asamoto. Some multi instructions defined by sequence of instructions of
SCMrsa. Formalized Mathematics, 5(4):615-619, 1996.
[3] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53-57, 1997.
[4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41-47, 1997.
[5] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[6] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.
[8] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-
ized Mathematics, 4(1):61-67, 1993.
[9] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-
ized Mathematics, 5(4):485-492, 1996.
[10] Cuzestaw Byliriski. A classical first order language. Formalized Mathematics, 1(4):669—
676, 1990.
[11] Czestaw Byliriski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.
[12] Czestaw Byliniski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.
[14] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMpgsa. Formalized
Mathematics, 6(1):29-36, 1997.
[15] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.
[17] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMrsa. Formalized Mathematics, 5(4):571-576, 1996.
[18] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMpsa. Formalized Math-
ematics, 5(4):583-586, 1996.
[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51-56, 1993.

72

[20]
21]
[22]

23]

NORIKO ASAMOTO

Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21-27, 1997.

Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMggga computer.
Formalized Mathematics, 5(4):519-528, 1996.

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized
Mathematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received August 27, 1996

