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Summary. In the paper the “way-below” relation, in symbols
x ≪ y, is introduced. Some authors prefer the term “relatively compact”
or “way inside”, since in the poset of open sets of a topology it is natural
to read U ≪ V as “U is relatively compact in V ”. A compact element of
a poset (or an element isolated from below) is defined to be way below
itself. So, the compactness in the poset of open sets of a topology is
equivalent to the compactness in that topology.

The article includes definitions, facts and examples 1.1–1.8 presented
in [15, pp. 38–42].

MML Identifier: WAYBEL 3.

The terminology and notation used in this paper have been introduced in the
following articles: [5], [25], [29], [30], [31], [20], [14], [23], [8], [28], [10], [11], [22],
[24], [6], [19], [7], [26], [33], [27], [21], [32], [13], [12], [9], [4], [2], [1], [16], [3], [17],
and [18].

1. The “Way-Below” Relation

Let L be a non empty reflexive relational structure and let x, y be elements
of L. We say that x is way below y if and only if:

(Def. 1) For every non empty directed subset D of L such that y ≤ supD there
exists an element d of L such that d ∈ D and x ≤ d.

We introduce x ≪ y and y ≫ x as synonyms of x is way below y.
Let L be a non empty reflexive relational structure and let x be an element

of L. We say that x is compact if and only if:

(Def. 2) x is way below x.

1This work has been partially supported by Office of Naval Research Grant N00014-95-1-
1336.
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We introduce x is isolated from below as a synonym of x is compact.

Next we state several propositions:

(1) Let L be a non empty reflexive antisymmetric relational structure and
let x, y be elements of L. If x ≪ y, then x ≤ y.

(2) Let L be a non empty reflexive transitive relational structure and let u,
x, y, z be elements of L. If u ≤ x and x ≪ y and y ≤ z, then u ≪ z.

(3) Let L be a non empty poset. Suppose L is inf-complete or has l.u.b.’s.
Let x, y, z be elements of L. If x ≪ z and y ≪ z, then sup {x, y} exists
in L and x ⊔ y ≪ z.

(4) Let L be a lower-bounded antisymmetric reflexive non empty relational
structure and let x be an element of L. Then ⊥L ≪ x.

(5) For every non empty poset L and for all elements x, y, z of L such that
x ≪ y and y ≪ z holds x ≪ z.

(6) Let L be a non empty reflexive antisymmetric relational structure and
let x, y be elements of L. If x ≪ y and x ≫ y, then x = y.

Let L be a non empty reflexive relational structure and let x be an element
of L. The functor ↓↓x yields a subset of L and is defined as follows:

(Def. 3) ↓↓x = {y : y ranges over elements of L, y ≪ x}.

The functor ↑↑x yielding a subset of L is defined by:

(Def. 4) ↑↑x = {y : y ranges over elements of L, y ≫ x}.

We now state several propositions:

(7) For every non empty reflexive relational structure L and for all elements
x, y of L holds x ∈ ↓↓y iff x ≪ y.

(8) For every non empty reflexive relational structure L and for all elements
x, y of L holds x ∈ ↑↑y iff x ≫ y.

(9) For every non empty reflexive antisymmetric relational structure L and
for every element x of L holds x ≥ ↓↓x.

(10) For every non empty reflexive antisymmetric relational structure L and
for every element x of L holds x ≤ ↑↑x.

(11) Let L be a non empty reflexive antisymmetric relational structure and
let x be an element of L. Then ↓↓x ⊆ ↓x and ↑↑x ⊆ ↑x.

(12) Let L be a non empty reflexive transitive relational structure and let x,
y be elements of L. If x ≤ y, then ↓↓x ⊆ ↓↓y and ↑↑y ⊆ ↑↑x.

Let L be a lower-bounded non empty reflexive antisymmetric relational struc-
ture and let x be an element of L. Note that ↓↓x is non empty.

Let L be a non empty reflexive transitive relational structure and let x be
an element of L. Note that ↓↓x is lower and ↑↑x is upper.

Let L be a sup-semilattice and let x be an element of L. One can verify that
↓↓x is directed.

Let L be an inf-complete non empty poset and let x be an element of L.
Note that ↓↓x is directed.
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Let L be a connected non empty relational structure. One can check that
every subset of L is directed and filtered.

Let us note that every non empty chain which is up-complete and lower-
bounded is also complete.

One can verify that there exists a non empty chain which is complete.
We now state several propositions:

(13) For every up-complete non empty chain L and for all elements x, y of
L such that x < y holds x ≪ y.

(14) Let L be a non empty reflexive antisymmetric relational structure and
let x, y be elements of L. If x is not compact and x ≪ y, then x < y.

(15) For every non empty lower-bounded reflexive antisymmetric relational
structure L holds ⊥L is compact.

(16) For every up-complete non empty poset L and for every non empty
finite directed subset D of L holds supD ∈ D.

(17) For every up-complete non empty poset L such that L is finite holds
every element of L is isolated from below.

2. The Way-Below Relation in Other Terms

The scheme SSubsetEx deals with a non empty relational structure A and a
unary predicate P, and states that:

There exists a subset X of A such that for every element x of A
holds x ∈ X iff P[x]

for all values of the parameters.
We now state several propositions:

(18) Let L be a complete lattice and let x, y be elements of L. Suppose
x ≪ y. Let X be a subset of L. If y ≤ supX, then there exists a finite
subset A of L such that A ⊆ X and x ≤ supA.

(19) Let L be a complete lattice and let x, y be elements of L. Suppose that
for every subset X of L such that y ≤ supX there exists a finite subset
A of L such that A ⊆ X and x ≤ supA. Then x ≪ y.

(20) Let L be a non empty reflexive transitive relational structure and let
x, y be elements of L. If x ≪ y, then for every ideal I of L such that
y ≤ sup I holds x ∈ I.

(21) Let L be an up-complete non empty poset and let x, y be elements of
L. If for every ideal I of L such that y ≤ sup I holds x ∈ I, then x ≪ y.

(22) Let L be a lower-bounded lattice. Suppose L is meet-continuous. Let
x, y be elements of L. Then x ≪ y if and only if for every ideal I of L
such that y = sup I holds x ∈ I.

(23) Let L be a complete lattice. Then every element of L is compact if and
only if for every non empty subset X of L there exists an element x of



172 grzegorz bancerek

L such that x ∈ X and for every element y of L such that y ∈ X holds
x 6< y.

3. Continuous Lattices

Let L be a non empty reflexive relational structure. We say that L satisfies
axiom of approximation if and only if:

(Def. 5) For every element x of L holds x = sup ↓↓x.

Let us note that every non empty reflexive relational structure which is trivial
satisfies axiom of approximation.

Let L be a non empty reflexive relational structure. We say that L is con-
tinuous if and only if:

(Def. 6) For every element x of L holds ↓↓x is non empty and directed and L is
up-complete and satisfies axiom of approximation.

One can check that every non empty reflexive relational structure which is
continuous is also up-complete and satisfies axiom of approximation and ev-
ery lower-bounded sup-semilattice which is up-complete and satisfies axiom of
approximation is also continuous.

Let us note that there exists a lattice which is continuous, complete, and
strict.

Let L be a continuous non empty reflexive relational structure and let x be
an element of L. One can verify that ↓↓x is non empty and directed.

Next we state two propositions:

(24) Let L be an up-complete semilattice. Suppose that for every element
x of L holds ↓↓x is non empty and directed. Then L satisfies axiom of
approximation if and only if for all elements x, y of L such that x 6≤ y
there exists an element u of L such that u ≪ x and u 6≤ y.

(25) For every continuous lattice L and for all elements x, y of L holds x ≤ y
iff ↓↓x ⊆ ↓↓y.

One can verify that every non empty chain which is complete satisfies axiom
of approximation.

The following proposition is true

(26) For every complete lattice L such that every element of L is compact
holds L satisfies axiom of approximation.

4. The Way-Below Relation in Direct Powers

Let f be a binary relation. We say that f is nonempty if and only if:

(Def. 7) For every 1-sorted structure S such that S ∈ rng f holds S is non empty.

We say that f is reflexive-yielding if and only if:
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(Def. 8) For every relational structure S such that S ∈ rng f holds S is reflexive.

Let I be a set. Observe that there exists a many sorted set indexed by I
which is relational structure yielding, nonempty, and reflexive-yielding.

Let I be a set and let J be a relational structure yielding nonempty many
sorted set indexed by I. Observe that

∏
J is non empty.

Let I be a non empty set, let J be a relational structure yielding nonempty
many sorted set indexed by I, and let i be an element of I. Then J(i) is a non
empty relational structure.

Let I be a set and let J be a relational structure yielding nonempty many
sorted set indexed by I. Note that every element of

∏
J is function-like and

relation-like.

Let I be a non empty set, let J be a relational structure yielding nonempty
many sorted set indexed by I, let x be an element of

∏
J, and let i be an element

of I. Then x(i) is an element of J(i).

Let I be a non empty set, let J be a relational structure yielding nonempty
many sorted set indexed by I, let i be an element of I, and let X be a subset of
∏

J. Then πiX is a subset of J(i).

Next we state two propositions:

(27) Let I be a non empty set, and let J be a relational structure yielding
nonempty many sorted set indexed by I, and let x be a function. Then x
is an element of

∏
J if and only if domx = I and for every element i of

I holds x(i) is an element of J(i).

(28) Let I be a non empty set, and let J be a relational structure yielding
nonempty many sorted set indexed by I, and let x, y be elements of

∏
J.

Then x ≤ y if and only if for every element i of I holds x(i) ≤ y(i).

Let I be a non empty set and let J be a relational structure yielding nonempty
reflexive-yielding many sorted set indexed by I. Note that

∏
J is reflexive. Let

i be an element of I. Then J(i) is a non empty reflexive relational structure.

Let I be a non empty set, let J be a relational structure yielding nonempty
reflexive-yielding many sorted set indexed by I, let x be an element of

∏
J, and

let i be an element of I. Then x(i) is an element of J(i).

One can prove the following propositions:

(29) Let I be a non empty set and let J be a relational structure yielding
nonempty many sorted set indexed by I. If for every element i of I holds
J(i) is transitive, then

∏
J is transitive.

(30) Let I be a non empty set and let J be a relational structure yielding
nonempty many sorted set indexed by I. Suppose that for every element
i of I holds J(i) is antisymmetric. Then

∏
J is antisymmetric.

(31) Let I be a non empty set and let J be a relational structure yielding
nonempty reflexive-yielding many sorted set indexed by I. Suppose that
for every element i of I holds J(i) is a complete lattice. Then

∏
J is a

complete lattice.

(32) Let I be a non empty set and let J be a relational structure yielding
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nonempty reflexive-yielding many sorted set indexed by I. Suppose that
for every element i of I holds J(i) is a complete lattice. Let X be a subset
of

∏
J and let i be an element of I. Then (sup X)(i) = supπiX.

(33) Let I be a non empty set and let J be a relational structure yielding
nonempty reflexive-yielding many sorted set indexed by I. Suppose that
for every element i of I holds J(i) is a complete lattice. Let x, y be
elements of

∏
J. Then x ≪ y if and only if the following conditions are

satisfied:
(i) for every element i of I holds x(i) ≪ y(i), and
(ii) there exists a finite subset K of I such that for every element i of I

such that i /∈ K holds x(i) = ⊥J(i).

5. The Way-Below Relation in Topological Spaces

One can prove the following four propositions:

(34) Let T be a non empty topological space and let x, y be elements of
〈the topology of T , ⊆〉. Suppose x is way below y. Let F be a family of
subsets of T . If F is open and y ⊆

⋃
F, then there exists a finite subset

G of F such that x ⊆
⋃

G.

(35) Let T be a non empty topological space and let x, y be elements of 〈the
topology of T , ⊆〉. Suppose that for every family F of subsets of T such
that F is open and y ⊆

⋃
F there exists a finite subset G of F such that

x ⊆
⋃

G. Then x is way below y.

(36) Let T be a non empty topological space, and let x be an element of
〈the topology of T , ⊆〉, and let X be a subset of T . If x = X, then x is
compact iff X is compact.

(37) Let T be a non empty topological space and let x be an element of 〈the
topology of T , ⊆〉. Suppose x = the carrier of T . Then x is compact if
and only if T is compact.

Let T be a non empty topological space. We say that T is locally-compact
if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x be a point of T and let X be a subset of T . Suppose x ∈ X and
X is open. Then there exists a subset Y of T such that x ∈ IntY and
Y ⊆ X and Y is compact.

Let us observe that every non empty topological space which is compact and
T2 is also T3 , T4 , and locally-compact.

We now state the proposition

(38) For every set x holds {x}top is T2.

One can verify that there exists a non empty topological space which is
compact and T2 .

One can prove the following two propositions:
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(39) Let T be a non empty topological space and let x, y be elements of 〈the
topology of T , ⊆〉. If there exists a subset Z of T such that x ⊆ Z and
Z ⊆ y and Z is compact, then x ≪ y.

(40) Let T be a non empty topological space. Suppose T is locally-compact.
Let x, y be elements of 〈the topology of T , ⊆〉. If x ≪ y, then there exists
a subset Z of T such that x ⊆ Z and Z ⊆ y and Z is compact.

Let T be a topological structure and let X be a subset of the carrier of T .
Then X is a subset of T .

The following three propositions are true:

(41) Let T be a non empty topological space. Suppose T is locally-compact
and a T2 space. Let x, y be elements of 〈the topology of T , ⊆〉. If x ≪ y,
then there exists a subset Z of T such that Z = x and Z ⊆ y and Z is
compact.

(42) Let X be a non empty topological space. Suppose X is a T3 space and
〈the topology of X, ⊆〉 is continuous. Then X is locally-compact.

(43) For every non empty topological space T such that T is locally-compact
holds 〈the topology of T , ⊆〉 is continuous.
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[11] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[12] Agata Darmochwa l. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[13] Agata Darmochwa l. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[14] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[15] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

[16] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and
products of relational structures. Formalized Mathematics, 6(1):117–121, 1997.

[17] Artur Korni lowicz. Definitions and properties of the join and meet of subsets. Formalized
Mathematics, 6(1):153–158, 1997.



176 grzegorz bancerek

[18] Artur Korni lowicz. Meet – continuous lattices. Formalized Mathematics, 6(1):159–167,
1997.

[19] Beata Madras. Product of family of universal algebras. Formalized Mathematics,
4(1):103–108, 1993.

[20] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[21] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[22] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[23] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[24] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[26] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[27] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[29] Zinaida Trybulec and Halina Świe
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