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Summary. In this paper the definitions of cartesian products of
relations and relational structures are introduced. Facts about these no-
tions are proved. This work is the continuation of formalization of [8].
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The articles [11], [7], [14], [16], [15], [5], [12], [10], [6], [9], [3], [13], [2], [1], [17],
and [4] provide the terminology and notation for this paper.

1. Preliminaries

In this article we present several logical schemes. The scheme FraenkelA2

concerns a non empty set A, a binary functor F yielding a set, and two binary
predicates P, Q, and states that:

{F(s, t) : s ranges over elements of A, t ranges over elements of A,

P[s, t]} is a subset of A
provided the following condition is met:

• For every element s of A and for every element t of A holds F(s, t) ∈
A.

The scheme ExtensionalityR deals with binary relations A, B and a binary
predicate P, and states that:

A = B
provided the following requirements are met:

• For all sets a, b holds 〈〈a, b〉〉 ∈ A iff P[a, b],
• For all sets a, b holds 〈〈a, b〉〉 ∈ B iff P[a, b].

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.
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Let X be an empty set. Observe that π1(X) is empty and π2(X) is empty.
Let X, Y be non empty sets and let D be a non empty subset of [: X, Y :].

Observe that π1(D) is non empty and π2(D) is non empty.
Let L be a non empty relational structure and let X be an empty subset of

L. Observe that ↓X is empty.
Let L be a non empty relational structure and let X be an empty subset of

L. Observe that ↑X is empty.
The following propositions are true:

(1) For all sets X, Y and for every subset D of [: X, Y :] holds D ⊆ [:π1(D),
π2(D) :].

(2) Let L be a transitive antisymmetric relational structure with g.l.b.’s
and let a, b, c, d be elements of L. If a ≤ c and b ≤ d, then a ⊓ b ≤ c ⊓ d.

(3) Let L be a transitive antisymmetric relational structure with l.u.b.’s
and let a, b, c, d be elements of L. If a ≤ c and b ≤ d, then a ⊔ b ≤ c ⊔ d.

(4) Let L be a complete reflexive antisymmetric non empty relational struc-
ture, and let D be a subset of L, and let x be an element of L. If x ∈ D,

then supD ⊓ x = x.

(5) Let L be a complete reflexive antisymmetric non empty relational struc-
ture, and let D be a subset of L, and let x be an element of L. If x ∈ D,

then inf D ⊔ x = x.

(6) For every non empty relational structure L and for all subsets X, Y of
L such that X ⊆ Y holds ↓X ⊆ ↓Y.

(7) For every non empty relational structure L and for all subsets X, Y of
L such that X ⊆ Y holds ↑X ⊆ ↑Y.

(8) Let S, T be posets with g.l.b.’s, and let f be a map from S into T , and
let x, y be elements of S. Then f preserves inf of {x, y} if and only if
f(x ⊓ y) = f(x) ⊓ f(y).

(9) Let S, T be posets with l.u.b.’s, and let f be a map from S into T , and
let x, y be elements of S. Then f preserves sup of {x, y} if and only if
f(x ⊔ y) = f(x) ⊔ f(y).

Now we present four schemes. The scheme Inf Union concerns a complete
antisymmetric non empty relational structure A and a unary predicate P, and
states that:

⌈−⌉A{⌈
−⌉AX : X ranges over subsets of A, P[X]} ≥ ⌈−⌉A

⋃
{X : X

ranges over subsets of A, P[X]}
for all values of the parameters.

The scheme Inf of Infs deals with a complete lattice A and a unary predicate
P, and states that:

⌈−⌉A{⌈
−⌉AX : X ranges over subsets of A, P[X]} = ⌈−⌉A

⋃
{X : X

ranges over subsets of A, P[X]}
for all values of the parameters.

The scheme Sup Union concerns a complete antisymmetric non empty rela-
tional structure A and a unary predicate P, and states that:
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⊔
A{

⊔
A X : X ranges over subsets of A, P[X]} ≤

⊔
A

⋃
{X : X

ranges over subsets of A, P[X]}
for all values of the parameters.

The scheme Sup of Sups concerns a complete lattice A and a unary predicate
P, and states that:

⊔
A{

⊔
A X : X ranges over subsets of A, P[X]} =

⊔
A

⋃
{X : X

ranges over subsets of A, P[X]}
for all values of the parameters.

2. Properties of Cartesian Products of Relational Structures

Let P , R be binary relations. The functor P × R yielding a binary relation
is defined by:

(Def. 1) For all sets x, y holds 〈〈x, y〉〉 ∈ P × R iff there exist sets p, q, s, t such
that x = 〈〈p, q〉〉 and y = 〈〈s, t〉〉 and 〈〈p, s〉〉 ∈ P and 〈〈q, t〉〉 ∈ R.

One can prove the following proposition

(10) Let P , R be binary relations and let x be a set. Then x ∈ P ×R if and
only if the following conditions are satisfied:

(i) 〈〈(x1)1, (x2)1〉〉 ∈ P,

(ii) 〈〈(x1)2, (x2)2〉〉 ∈ R,

(iii) there exist sets a, b such that x = 〈〈a, b〉〉,
(iv) there exist sets c, d such that x1 = 〈〈c, d〉〉, and
(v) there exist sets e, f such that x2 = 〈〈e, f〉〉.

Let A, B, X, Y be sets, let P be a relation between A and B, and let R be a
relation between X and Y . Then P × R is a relation between [:A, X :] and [: B,

Y :].
Let X, Y be relational structures. The functor [:X, Y :] yielding a strict

relational structure is defined by the conditions (Def. 2).

(Def. 2) (i) The carrier of [: X, Y :] = [: the carrier of X, the carrier of Y :], and
(ii) the internal relation of [:X, Y :] = (the internal relation of X)×(the

internal relation of Y ).

Let L1, L2 be relational structures and let D be a subset of the carrier of
[:L1, L2 :]. Then π1(D) is a subset of L1. Then π2(D) is a subset of L2.

Let S1, S2 be relational structures, let D1 be a subset of the carrier of S1,
and let D2 be a subset of the carrier of S2. Then [:D1, D2 :] is a subset of [:S1,

S2 :].
Let S1, S2 be non empty relational structures, let x be an element of the

carrier of S1, and let y be an element of the carrier of S2. Then 〈〈x, y〉〉 is an
element of [: S1, S2 :].

Let L1, L2 be non empty relational structures and let x be an element of the
carrier of [: L1, L2 :]. Then x1 is an element of L1. Then x2 is an element of L2.

The following three propositions are true:
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(11) Let S1, S2 be non empty relational structures, and let a, c be elements
of S1, and let b, d be elements of S2. Then a ≤ c and b ≤ d if and only if
〈〈a, b〉〉 ≤ 〈〈c, d〉〉.

(12) Let S1, S2 be non empty relational structures and let x, y be elements of
[:S1, S2 :]. Then x ≤ y if and only if the following conditions are satisfied:

(i) x1 ≤ y1, and
(ii) x2 ≤ y2.

(13) Let A, B be relational structures, and let C be a non empty relational
structure, and let f , g be maps from [:A, B :] into C. Suppose that for
every element x of A and for every element y of B holds f(〈〈x, y〉〉) = g(〈〈x,

y〉〉). Then f = g.

Let X, Y be non empty relational structures. Note that [: X, Y :] is non
empty.

Let X, Y be reflexive relational structures. Note that [: X, Y :] is reflexive.
Let X, Y be antisymmetric relational structures. Note that [:X, Y :] is anti-

symmetric.
Let X, Y be transitive relational structures. One can verify that [: X, Y :] is

transitive.
Let X, Y be relational structures with l.u.b.’s. One can verify that [: X, Y :]

has l.u.b.’s.
Let X, Y be relational structures with g.l.b.’s. One can verify that [: X, Y :]

has g.l.b.’s.
The following propositions are true:

(14) For all relational structures X, Y such that [: X, Y :] is non empty holds
X is non empty and Y is non empty.

(15) For all non empty relational structures X, Y such that [:X, Y :] is re-
flexive holds X is reflexive and Y is reflexive.

(16) Let X, Y be non empty reflexive relational structures. If [: X, Y :] is
antisymmetric, then X is antisymmetric and Y is antisymmetric.

(17) Let X, Y be non empty reflexive relational structures. If [: X, Y :] is
transitive, then X is transitive and Y is transitive.

(18) For all non empty reflexive relational structures X, Y such that [: X,

Y :] has l.u.b.’s holds X has l.u.b.’s and Y has l.u.b.’s.

(19) For all non empty reflexive relational structures X, Y such that [: X,

Y :] has g.l.b.’s holds X has g.l.b.’s and Y has g.l.b.’s.

Let S1, S2 be relational structures, let D1 be a directed subset of S1, and let
D2 be a directed subset of S2. Then [: D1, D2 :] is a directed subset of [: S1, S2 :].

We now state three propositions:

(20) Let S1, S2 be non empty relational structures, and let D1 be a non
empty subset of S1, and let D2 be a non empty subset of S2. If [: D1, D2 :]
is directed, then D1 is directed and D2 is directed.

(21) For all non empty relational structures S1, S2 and for every non empty
subset D of [:S1, S2 :] holds π1(D) is non empty and π2(D) is non empty.
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(22) Let S1, S2 be non empty reflexive relational structures and let D be a
non empty directed subset of [:S1, S2 :]. Then π1(D) is directed and π2(D)
is directed.

Let S1, S2 be relational structures, let D1 be a filtered subset of S1, and let
D2 be a filtered subset of S2. Then [: D1, D2 :] is a filtered subset of [: S1, S2 :].

Next we state two propositions:

(23) Let S1, S2 be non empty relational structures, and let D1 be a non
empty subset of S1, and let D2 be a non empty subset of S2. If [:D1, D2 :]
is filtered, then D1 is filtered and D2 is filtered.

(24) Let S1, S2 be non empty reflexive relational structures and let D be a
non empty filtered subset of [: S1, S2 :]. Then π1(D) is filtered and π2(D)
is filtered.

Let S1, S2 be relational structures, let D1 be an upper subset of S1, and let
D2 be an upper subset of S2. Then [:D1, D2 :] is an upper subset of [: S1, S2 :].

We now state two propositions:

(25) Let S1, S2 be non empty reflexive relational structures, and let D1 be a
non empty subset of S1, and let D2 be a non empty subset of S2. If [: D1,

D2 :] is upper, then D1 is upper and D2 is upper.

(26) Let S1, S2 be non empty reflexive relational structures and let D be a
non empty upper subset of [:S1, S2 :]. Then π1(D) is upper and π2(D) is
upper.

Let S1, S2 be relational structures, let D1 be a lower subset of S1, and let
D2 be a lower subset of S2. Then [: D1, D2 :] is a lower subset of [:S1, S2 :].

Next we state two propositions:

(27) Let S1, S2 be non empty reflexive relational structures, and let D1 be a
non empty subset of S1, and let D2 be a non empty subset of S2. If [: D1,

D2 :] is lower, then D1 is lower and D2 is lower.

(28) Let S1, S2 be non empty reflexive relational structures and let D be a
non empty lower subset of [: S1, S2 :]. Then π1(D) is lower and π2(D) is
lower.

Let R be a relational structure. We say that R is void if and only if:

(Def. 3) The internal relation of R is empty.

Let us observe that every relational structure which is empty is also void.
Let us note that there exists a poset which is non void, non empty, and strict.
One can check that every relational structure which is non void is also non

empty.
Let us observe that every relational structure which is non empty and reflex-

ive is also non void.
Let R be a non void relational structure. One can check that the internal

relation of R is non empty.
Next we state a number of propositions:

(29) Let S1, S2 be non empty relational structures, and let D1 be a non
empty subset of S1, and let D2 be a non empty subset of S2, and let x be
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an element of S1, and let y be an element of S2. If 〈〈x, y〉〉 ≥ [: D1, D2 :],
then x ≥ D1 and y ≥ D2.

(30) Let S1, S2 be non empty relational structures, and let D1 be a subset
of S1, and let D2 be a subset of S2, and let x be an element of S1, and let
y be an element of S2. If x ≥ D1 and y ≥ D2, then 〈〈x, y〉〉 ≥ [:D1, D2 :].

(31) Let S1, S2 be non empty relational structures, and let D be a subset of
[:S1, S2 :], and let x be an element of S1, and let y be an element of S2.
Then 〈〈x, y〉〉 ≥ D if and only if x ≥ π1(D) and y ≥ π2(D).

(32) Let S1, S2 be non empty relational structures, and let D1 be a non
empty subset of S1, and let D2 be a non empty subset of S2, and let x be
an element of S1, and let y be an element of S2. If 〈〈x, y〉〉 ≤ [: D1, D2 :],
then x ≤ D1 and y ≤ D2.

(33) Let S1, S2 be non empty relational structures, and let D1 be a subset
of S1, and let D2 be a subset of S2, and let x be an element of S1, and let
y be an element of S2. If x ≤ D1 and y ≤ D2, then 〈〈x, y〉〉 ≤ [:D1, D2 :].

(34) Let S1, S2 be non empty relational structures, and let D be a subset of
[:S1, S2 :], and let x be an element of S1, and let y be an element of S2.
Then 〈〈x, y〉〉 ≤ D if and only if x ≤ π1(D) and y ≤ π2(D).

(35) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a subset of S1, and let D2 be a subset of S2, and let x be an element
of S1, and let y be an element of S2. Suppose sup D1 exists in S1 and sup
D2 exists in S2 and for every element b of [: S1, S2 :] such that b ≥ [:D1,

D2 :] holds 〈〈x, y〉〉 ≤ b. Then for every element c of S1 such that c ≥ D1

holds x ≤ c and for every element d of S2 such that d ≥ D2 holds y ≤ d.

(36) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a subset of S1, and let D2 be a subset of S2, and let x be an element
of S1, and let y be an element of S2. Suppose inf D1 exists in S1 and inf
D2 exists in S2 and for every element b of [: S1, S2 :] such that b ≤ [:D1,

D2 :] holds 〈〈x, y〉〉 ≥ b. Then for every element c of S1 such that c ≤ D1

holds x ≥ c and for every element d of S2 such that d ≤ D2 holds y ≥ d.

(37) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a non empty subset of S1, and let D2 be a non empty subset of S2,
and let x be an element of S1, and let y be an element of S2. Suppose for
every element c of S1 such that c ≥ D1 holds x ≤ c and for every element
d of S2 such that d ≥ D2 holds y ≤ d. Let b be an element of [:S1, S2 :]. If
b ≥ [:D1, D2 :], then 〈〈x, y〉〉 ≤ b.

(38) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a non empty subset of S1, and let D2 be a non empty subset of S2,
and let x be an element of S1, and let y be an element of S2. Suppose for
every element c of S1 such that c ≥ D1 holds x ≥ c and for every element
d of S2 such that d ≥ D2 holds y ≥ d. Let b be an element of [:S1, S2 :]. If
b ≥ [:D1, D2 :], then 〈〈x, y〉〉 ≥ b.

(39) Let S1, S2 be antisymmetric non empty relational structures, and let
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D1 be a non empty subset of S1, and let D2 be a non empty subset of S2.
Then sup D1 exists in S1 and sup D2 exists in S2 if and only if sup [: D1,

D2 :] exists in [: S1, S2 :].

(40) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a non empty subset of S1, and let D2 be a non empty subset of S2.
Then inf D1 exists in S1 and inf D2 exists in S2 if and only if inf [: D1,

D2 :] exists in [: S1, S2 :].

(41) Let S1, S2 be antisymmetric non empty relational structures and let
D be a subset of [: S1, S2 :]. Then sup π1(D) exists in S1 and sup π2(D)
exists in S2 if and only if sup D exists in [:S1, S2 :].

(42) Let S1, S2 be antisymmetric non empty relational structures and let D

be a subset of [:S1, S2 :]. Then inf π1(D) exists in S1 and inf π2(D) exists
in S2 if and only if inf D exists in [: S1, S2 :].

(43) Let S1, S2 be antisymmetric non empty relational structures, and let D1

be a non empty subset of S1, and let D2 be a non empty subset of S2. If
sup D1 exists in S1 and sup D2 exists in S2, then sup[:D1, D2 :] = 〈〈 supD1,

supD2〉〉.

(44) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a non empty subset of S1, and let D2 be a non empty subset of S2.
If inf D1 exists in S1 and inf D2 exists in S2, then inf[:D1, D2 :] = 〈〈 inf D1,

inf D2〉〉.

Let X, Y be complete antisymmetric non empty relational structures. Ob-
serve that [:X, Y :] is complete.

We now state several propositions:

(45) Let X, Y be non empty lower-bounded antisymmetric relational struc-
tures. If [: X, Y :] is complete, then X is complete and Y is complete.

(46) Let L1, L2 be antisymmetric non empty relational structures and let
D be a non empty subset of [: L1, L2 :]. If [:L1, L2 :] is complete or sup D

exists in [:L1, L2 :], then supD = 〈〈 supπ1(D), supπ2(D)〉〉.

(47) Let L1, L2 be antisymmetric non empty relational structures and let
D be a non empty subset of [:L1, L2 :]. If [:L1, L2 :] is complete or inf D

exists in [:L1, L2 :], then inf D = 〈〈 inf π1(D), inf π2(D)〉〉.

(48) For all non empty reflexive relational structures S1, S2 and for every
non empty directed subset D of [:S1, S2 :] holds [:π1(D), π2(D) :] ⊆ ↓D.

(49) For all non empty reflexive relational structures S1, S2 and for every
non empty filtered subset D of [: S1, S2 :] holds [: π1(D), π2(D) :] ⊆ ↑D.

The scheme Kappa2DS concerns non empty relational structures A, B, C and
a binary functor F yielding a set, and states that:

There exists a map f from [:A, B :] into C such that for every element
x of A and for every element y of B holds f(〈〈x, y〉〉) = F(x, y)

provided the following requirement is met:
• For every element x of A and for every element y of B holds F(x, y)

is an element of C.
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[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
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