FORMALIZED MATHEMATICS Volume 6, Number 2, 1997 University of Białystok

2's Complement Circuit

Katsumi Wasaki National College of Technology Nagano Pauline N. Kawamoto Shinshu University Nagano

Summary. This article introduces various Boolean operators which are used in discussing the properties and stability of a 2's complement circuit. We present the definitions and related theorems for the following logical operators which include negative input/output: 'and2a', 'or2a', 'xor2a' and 'nand2a', 'nor2a', etc. We formalize the concept of a 2's complement circuit, define the structures of complementors/incrementors for binary operations, and prove the stability of the circuit.

MML Identifier: TWOSCOMP.

The terminology and notation used here are introduced in the following articles: [13], [15], [12], [1], [17], [5], [6], [16], [2], [4], [11], [14], [10], [8], [9], [7], and [3].

1. BOOLEAN OPERATORS

Let x be a set. Then $\langle x \rangle$ is a finite sequence with length 1. Let y be a set. Then $\langle x, y \rangle$ is a finite sequence with length 2. Let z be a set. Then $\langle x, y, z \rangle$ is a finite sequence with length 3.

Let n, m be natural numbers, let p be a finite sequence with length n, and let q be a finite sequence with length m. Then $p \cap q$ is a finite sequence with length n + m.

Let S be an unsplit non void non empty many sorted signature, let A be a Boolean circuit of S, let s be a state of A, and let v be a vertex of S. Then s(v) is an element of *Boolean*.

Next we state two propositions:

(1) For every function f and for all sets x_1, x_2 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ holds $f \cdot \langle x_1, x_2 \rangle = \langle f(x_1), f(x_2) \rangle$.

C 1997 University of Białystok ISSN 1426-2630

(2) For every function f and for all sets x_1, x_2, x_3 such that $x_1 \in \text{dom } f$ and $x_2 \in \operatorname{dom} f$ and $x_3 \in \operatorname{dom} f$ holds $f \cdot \langle x_1, x_2, x_3 \rangle = \langle f(x_1), f(x_2), f(x_3) \rangle$. The function and_2 from $\operatorname{Boolean}^2$ into $\operatorname{Boolean}$ is defined by: (Def. 1) For all elements x, y of *Boolean* holds $\operatorname{and}_2(\langle x, y \rangle) = x \wedge y$. The function and_{2a} from $\operatorname{Boolean}^2$ into $\operatorname{Boolean}$ is defined by: (Def. 2) For all elements x, y of Boolean holds $(\operatorname{and}_{2a})(\langle x, y \rangle) = \neg x \wedge y$. The function and_{2b} from $\operatorname{Boolean}^2$ into $\operatorname{Boolean}$ is defined as follows: (Def. 3) For all elements x, y of Boolean holds $(\operatorname{and}_{2b})(\langle x, y \rangle) = \neg x \land \neg y$. The function nand_2 from $\operatorname{Boolean}^2$ into $\operatorname{Boolean}$ is defined by: (Def. 4) For all elements x, y of Boolean holds nand₂($\langle x, y \rangle$) = $\neg(x \land y)$. The function nand_{2a} from $Boolean^2$ into Boolean is defined as follows: (Def. 5) For all elements x, y of Boolean holds $(\operatorname{nand}_{2a})(\langle x, y \rangle) = \neg(\neg x \land y)$. The function nand_{2b} from $Boolean^2$ into Boolean is defined as follows: (Def. 6) For all elements x, y of Boolean holds $(\operatorname{nand}_{2b})(\langle x, y \rangle) = \neg(\neg x \land \neg y)$. The function or_2 from $Boolean^2$ into Boolean is defined by: (Def. 7) For all elements x, y of Boolean holds $\operatorname{or}_2(\langle x, y \rangle) = x \lor y$. The function or_{2a} from $Boolean^2$ into Boolean is defined as follows: (Def. 8) For all elements x, y of Boolean holds $(or_{2a})(\langle x, y \rangle) = \neg x \lor y$. The function or_{2b} from $Boolean^2$ into Boolean is defined as follows: (Def. 9) For all elements x, y of Boolean holds $(or_{2b})(\langle x, y \rangle) = \neg x \vee \neg y$. The function nor_2 from $Boolean^2$ into Boolean is defined by: (Def. 10) For all elements x, y of Boolean holds $\operatorname{nor}_2(\langle x, y \rangle) = \neg(x \lor y)$. The function nor_{2a} from $Boolean^2$ into Boolean is defined by: (Def. 11) For all elements x, y of Boolean holds $(nor_{2a})(\langle x, y \rangle) = \neg(\neg x \lor y)$. The function nor_{2b} from $Boolean^2$ into Boolean is defined as follows: (Def. 12) For all elements x, y of Boolean holds $(\operatorname{nor}_{2b})(\langle x, y \rangle) = \neg(\neg x \lor \neg y)$. The function xor_2 from *Boolean*² into *Boolean* is defined by: (Def. 13) For all elements x, y of Boolean holds $\operatorname{xor}_2(\langle x, y \rangle) = x \oplus y$. The function xor_{2a} from $Boolean^2$ into Boolean is defined as follows: (Def. 14) For all elements x, y of Boolean holds $(xor_{2a})(\langle x, y \rangle) = \neg x \oplus y$. The function xor_{2b} from $Boolean^2$ into Boolean is defined as follows: (Def. 15) For all elements x, y of Boolean holds $(xor_{2b})(\langle x, y \rangle) = \neg x \oplus \neg y$. We now state a number of propositions: (3) For all elements x, y of Boolean holds and $2(\langle x, y \rangle) = x \wedge y$ and $(and_{2a})(\langle x, y \rangle) = x \wedge y$ $y\rangle) = \neg x \land y$ and $(\operatorname{and}_{2b})(\langle x, y \rangle) = \neg x \land \neg y.$ (4) For all elements x, y of Boolean holds nand₂($\langle x, y \rangle$) = $\neg(x \land y)$ and $(\operatorname{nand}_{2a})(\langle x, y \rangle) = \neg(\neg x \land y) \text{ and } (\operatorname{nand}_{2b})(\langle x, y \rangle) = \neg(\neg x \land \neg y).$ (5) For all elements x, y of Boolean holds $\operatorname{or}_2(\langle x, y \rangle) = x \vee y$ and $(\operatorname{or}_{2a})(\langle x, y \rangle)$ $y\rangle = \neg x \lor y \text{ and } (\operatorname{or}_{2b})(\langle x, y \rangle) = \neg x \lor \neg y.$

190

- (6) For all elements x, y of *Boolean* holds $\operatorname{nor}_2(\langle x, y \rangle) = \neg(x \lor y)$ and $(\operatorname{nor}_{2a})(\langle x, y \rangle) = \neg(\neg x \lor y)$ and $(\operatorname{nor}_{2b})(\langle x, y \rangle) = \neg(\neg x \lor \neg y)$.
- (7) For all elements x, y of *Boolean* holds $\operatorname{xor}_2(\langle x, y \rangle) = x \oplus y$ and $(\operatorname{xor}_{2a})(\langle x, y \rangle) = \neg x \oplus y$ and $(\operatorname{xor}_{2b})(\langle x, y \rangle) = \neg x \oplus \neg y$.
- (8) For all elements x, y of *Boolean* holds $\operatorname{and}_2(\langle x, y \rangle) = (\operatorname{nor}_{2b})(\langle x, y \rangle)$ and $(\operatorname{and}_{2a})(\langle x, y \rangle) = (\operatorname{nor}_{2a})(\langle y, x \rangle)$ and $(\operatorname{and}_{2b})(\langle x, y \rangle) = \operatorname{nor}_2(\langle x, y \rangle)$.
- (9) For all elements x, y of *Boolean* holds $\operatorname{or}_2(\langle x, y \rangle) = (\operatorname{nand}_{2b})(\langle x, y \rangle)$ and $(\operatorname{or}_{2a})(\langle x, y \rangle) = (\operatorname{nand}_{2a})(\langle y, x \rangle)$ and $(\operatorname{or}_{2b})(\langle x, y \rangle) = \operatorname{nand}_2(\langle x, y \rangle)$.
- (10) For all elements x, y of Boolean holds $(xor_{2b})(\langle x, y \rangle) = xor_2(\langle x, y \rangle).$
- (11)(i) $\text{and}_2(\langle 0, 0 \rangle) = 0,$
- (ii) $\operatorname{and}_2(\langle 0, 1 \rangle) = 0,$
- (iii) $\operatorname{and}_2(\langle 1, 0 \rangle) = 0,$
- (iv) $\operatorname{and}_2(\langle 1,1\rangle) = 1,$
- (v) $(\operatorname{and}_{2a})(\langle 0, 0 \rangle) = 0,$
- (vi) $(\operatorname{and}_{2a})(\langle 0,1\rangle) = 1,$
- (vii) $(\operatorname{and}_{2a})(\langle 1, 0 \rangle) = 0,$
- (viii) $(\operatorname{and}_{2a})(\langle 1,1\rangle) = 0,$
- (ix) $(\operatorname{and}_{2b})(\langle 0, 0 \rangle) = 1,$
- (x) $(\operatorname{and}_{2b})(\langle 0,1\rangle) = 0,$
- (xi) $(\operatorname{and}_{2b})(\langle 1, 0 \rangle) = 0$, and
- (xii) $(\operatorname{and}_{2b})(\langle 1,1\rangle) = 0.$
- (12)(i) $\operatorname{or}_2(\langle 0, 0 \rangle) = 0,$
- (ii) $\operatorname{or}_2(\langle 0, 1 \rangle) = 1$,
- (iii) $\operatorname{or}_2(\langle 1, 0 \rangle) = 1,$
- (iv) $\operatorname{or}_2(\langle 1,1\rangle) = 1$,
- $(\mathbf{v}) \quad (\mathrm{or}_{2a})(\langle 0, 0 \rangle) = 1,$
- $(vi) \quad (or_{2a})(\langle 0, 1 \rangle) = 1,$
- $(\text{vii}) \quad (\text{or}_{2a})(\langle 1, 0 \rangle) = 0,$
- (viii) $(\operatorname{or}_{2a})(\langle 1,1\rangle) = 1,$
- (ix) $(\text{or}_{2b})(\langle 0, 0 \rangle) = 1,$
- (x) $(\operatorname{or}_{2b})(\langle 0,1\rangle) = 1,$
- (xi) $(or_{2b})(\langle 1, 0 \rangle) = 1$, and
- (xii) $(or_{2b})(\langle 1,1\rangle) = 0.$
- (13) $\operatorname{xor}_2(\langle 0, 0 \rangle) = 0$ and $\operatorname{xor}_2(\langle 0, 1 \rangle) = 1$ and $\operatorname{xor}_2(\langle 1, 0 \rangle) = 1$ and $\operatorname{xor}_2(\langle 1, 1 \rangle) = 0$ and $(\operatorname{xor}_{2a})(\langle 0, 0 \rangle) = 1$ and $(\operatorname{xor}_{2a})(\langle 0, 1 \rangle) = 0$ and $(\operatorname{xor}_{2a})(\langle 1, 1 \rangle) = 0$.
 - The function and_3 from $Boolean^3$ into Boolean is defined as follows:
- (Def. 16) For all elements x, y, z of *Boolean* holds $\operatorname{and}_3(\langle x, y, z \rangle) = x \wedge y \wedge z$.
 - The function and_{3a} from $\operatorname{Boolean}^3$ into $\operatorname{Boolean}$ is defined by:
- (Def. 17) For all elements x, y, z of *Boolean* holds $(\text{and}_{3a})(\langle x, y, z \rangle) = \neg x \land y \land z$. The function and_{3b} from *Boolean*³ into *Boolean* is defined by:
- (Def. 18) For all elements x, y, z of *Boolean* holds $(\operatorname{and}_{3b})(\langle x, y, z \rangle) = \neg x \land \neg y \land z$. The function and_{3c} from *Boolean*³ into *Boolean* is defined by:

- (Def. 19) For all elements x, y, z of Boolean holds $(\operatorname{and}_{3c})(\langle x, y, z \rangle) = \neg x \land \neg y \land \neg z$. The function nand₃ from Boolean³ into Boolean is defined by:
- (Def. 20) For all elements x, y, z of *Boolean* holds nand₃($\langle x, y, z \rangle$) = $\neg(x \land y \land z)$. The function nand_{3a} from *Boolean*³ into *Boolean* is defined as follows:
- (Def. 21) For all elements x, y, z of *Boolean* holds $(\operatorname{nand}_{3a})(\langle x, y, z \rangle) = \neg(\neg x \land y \land z)$.

The function $nand_{3b}$ from $Boolean^3$ into Boolean is defined as follows:

(Def. 22) For all elements x, y, z of *Boolean* holds $(\operatorname{nand}_{3b})(\langle x, y, z \rangle) = \neg(\neg x \land \neg y \land z).$

The function nand_{3c} from $\operatorname{Boolean}^3$ into $\operatorname{Boolean}$ is defined by:

- (Def. 23) For all elements x, y, z of *Boolean* holds $(\operatorname{nand}_{3c})(\langle x, y, z \rangle) = \neg(\neg x \land \neg y \land \neg z).$
 - The function or_3 from $Boolean^3$ into Boolean is defined by:
- (Def. 24) For all elements x, y, z of Boolean holds $\operatorname{or}_3(\langle x, y, z \rangle) = x \lor y \lor z$. The function or_{3a} from Boolean³ into Boolean is defined as follows:
- (Def. 25) For all elements x, y, z of *Boolean* holds $(or_{3a})(\langle x, y, z \rangle) = \neg x \lor y \lor z$. The function or_{3b} from *Boolean*³ into *Boolean* is defined as follows:
- (Def. 26) For all elements x, y, z of *Boolean* holds $(or_{3b})(\langle x, y, z \rangle) = \neg x \vee \neg y \vee z$. The function or_{3c} from *Boolean*³ into *Boolean* is defined as follows:
- (Def. 27) For all elements x, y, z of *Boolean* holds $(\text{or}_{3c})(\langle x, y, z \rangle) = \neg x \vee \neg y \vee \neg z$. The function nor₃ from *Boolean*³ into *Boolean* is defined by:
- (Def. 28) For all elements x, y, z of *Boolean* holds $\operatorname{nor}_3(\langle x, y, z \rangle) = \neg(x \lor y \lor z)$. The function nor_{3a} from *Boolean*³ into *Boolean* is defined as follows:
- (Def. 29) For all elements x, y, z of *Boolean* holds $(nor_{3a})(\langle x, y, z \rangle) = \neg(\neg x \lor y \lor z)$. The function nor_{3b} from *Boolean*³ into *Boolean* is defined by:
- (Def. 30) For all elements x, y, z of *Boolean* holds $(\operatorname{nor}_{3b})(\langle x, y, z \rangle) = \neg(\neg x \lor \neg y \lor z)$.

The function nor_{3c} from $Boolean^3$ into Boolean is defined by:

(Def. 31) For all elements x, y, z of *Boolean* holds $(nor_{3c})(\langle x, y, z \rangle) = \neg(\neg x \lor \neg y \lor \neg z).$

The function xor_3 from *Boolean*³ into *Boolean* is defined by:

- (Def. 32) For all elements x, y, z of *Boolean* holds $xor_3(\langle x, y, z \rangle) = x \oplus y \oplus z$. Next we state a number of propositions:
 - (14) For all elements x, y, z of *Boolean* holds $\operatorname{and}_3(\langle x, y, z \rangle) = x \wedge y \wedge z$ and $(\operatorname{and}_{3a})(\langle x, y, z \rangle) = \neg x \wedge y \wedge z$ and $(\operatorname{and}_{3b})(\langle x, y, z \rangle) = \neg x \wedge \neg y \wedge z$ and $(\operatorname{and}_{3c})(\langle x, y, z \rangle) = \neg x \wedge \neg y \wedge \neg z$.
 - (15) Let x, y, z be elements of *Boolean*. Then $\operatorname{nand}_3(\langle x, y, z \rangle) = \neg(x \land y \land z)$ and $(\operatorname{nand}_{3a})(\langle x, y, z \rangle) = \neg(\neg x \land y \land z)$ and $(\operatorname{nand}_{3b})(\langle x, y, z \rangle) = \neg(\neg x \land \neg y \land z)$.

192

- (16) For all elements x, y, z of *Boolean* holds $\operatorname{or}_3(\langle x, y, z \rangle) = x \lor y \lor z$ and $(\operatorname{or}_{3a})(\langle x, y, z \rangle) = \neg x \lor y \lor z$ and $(\operatorname{or}_{3b})(\langle x, y, z \rangle) = \neg x \lor \neg y \lor z$ and $(\operatorname{or}_{3c})(\langle x, y, z \rangle) = \neg x \lor \neg y \lor z$.
- (17) Let x, y, z be elements of *Boolean*. Then $\operatorname{nor}_3(\langle x, y, z \rangle) = \neg(x \lor y \lor z)$ and $(\operatorname{nor}_{3a})(\langle x, y, z \rangle) = \neg(\neg x \lor y \lor z)$ and $(\operatorname{nor}_{3b})(\langle x, y, z \rangle) = \neg(\neg x \lor \neg y \lor z)$ and $(\operatorname{nor}_{3c})(\langle x, y, z \rangle) = \neg(\neg x \lor \neg y \lor \neg z)$.
- (18) For all elements x, y, z of Boolean holds $\operatorname{xor}_3(\langle x, y, z \rangle) = x \oplus y \oplus z$.
- (19) For all elements x, y, z of *Boolean* holds $\operatorname{and}_3(\langle x, y, z \rangle) = (\operatorname{nor}_{3c})(\langle x, y, z \rangle)$ and $(\operatorname{and}_{3a})(\langle x, y, z \rangle) = (\operatorname{nor}_{3b})(\langle z, y, x \rangle)$ and $(\operatorname{and}_{3b})(\langle x, y, z \rangle) = (\operatorname{nor}_{3a})(\langle z, y, x \rangle)$ and $(\operatorname{and}_{3c})(\langle x, y, z \rangle) = \operatorname{nor}_3(\langle x, y, z \rangle).$
- (20) For all elements x, y, z of *Boolean* holds $\operatorname{or}_3(\langle x, y, z \rangle) = (\operatorname{nand}_{3c})(\langle x, y, z \rangle)$ and $(\operatorname{or}_{3a})(\langle x, y, z \rangle) = (\operatorname{nand}_{3b})(\langle z, y, x \rangle)$ and $(\operatorname{or}_{3b})(\langle x, y, z \rangle) = (\operatorname{nand}_{3a})(\langle z, y, x \rangle)$ and $(\operatorname{or}_{3c})(\langle x, y, z \rangle) = \operatorname{nand}_3(\langle x, y, z \rangle).$
- (21) and₃($\langle 0, 0, 0 \rangle$) = 0 and and₃($\langle 0, 0, 1 \rangle$) = 0 and and₃($\langle 0, 1, 0 \rangle$) = 0 and and₃($\langle 0, 1, 1 \rangle$) = 0 and and₃($\langle 1, 0, 0 \rangle$) = 0 and and₃($\langle 1, 0, 1 \rangle$) = 0 and and₃($\langle 1, 1, 0 \rangle$) = 0 and and₃($\langle 1, 1, 1 \rangle$) = 1.
- (22) $(\operatorname{and}_{3a})(\langle 0, 0, 0 \rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 0, 0, 1 \rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 0, 1, 0 \rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 0, 1, 1 \rangle) = 1$ and $(\operatorname{and}_{3a})(\langle 1, 0, 0 \rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 1, 0, 1, 0 \rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 1, 1, 0 \rangle) = 0$.
- (23) $(\operatorname{and}_{3b})(\langle 0, 0, 0 \rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 0, 0, 1 \rangle) = 1$ and $(\operatorname{and}_{3b})(\langle 0, 1, 0 \rangle) = 0$ 0 and $(\operatorname{and}_{3b})(\langle 0, 1, 1 \rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 1, 0, 0 \rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 1, 0, 0 \rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 1, 0, 0 \rangle) = 0$.
- (24) $(\operatorname{and}_{3c})(\langle 0, 0, 0 \rangle) = 1$ and $(\operatorname{and}_{3c})(\langle 0, 0, 1 \rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 0, 1, 0 \rangle) = 0$ 0 and $(\operatorname{and}_{3c})(\langle 0, 1, 1 \rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 1, 0, 0 \rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 1, 0, 0 \rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 1, 0, 0 \rangle) = 0$.
- (25) $\operatorname{or}_3(\langle 0, 0, 0 \rangle) = 0$ and $\operatorname{or}_3(\langle 0, 0, 1 \rangle) = 1$ and $\operatorname{or}_3(\langle 0, 1, 0 \rangle) = 1$ and $\operatorname{or}_3(\langle 0, 1, 1 \rangle) = 1$ and $\operatorname{or}_3(\langle 1, 0, 0 \rangle) = 1$ and $\operatorname{or}_3(\langle 1, 0, 1 \rangle) = 1$ and $\operatorname{or}_3(\langle 1, 1, 0 \rangle) = 1$.
- (26) $(or_{3a})(\langle 0, 0, 0 \rangle) = 1$ and $(or_{3a})(\langle 0, 0, 1 \rangle) = 1$ and $(or_{3a})(\langle 0, 1, 0 \rangle) = 1$ and $(or_{3a})(\langle 0, 1, 1 \rangle) = 1$ and $(or_{3a})(\langle 1, 0, 0 \rangle) = 0$ and $(or_{3a})(\langle 1, 0, 1 \rangle) = 1$ and $(or_{3a})(\langle 1, 1, 0 \rangle) = 1$ and $(or_{3a})(\langle 1, 1, 1 \rangle) = 1$.
- (27) $(\operatorname{or}_{3b})(\langle 0, 0, 0 \rangle) = 1$ and $(\operatorname{or}_{3b})(\langle 0, 0, 1 \rangle) = 1$ and $(\operatorname{or}_{3b})(\langle 0, 1, 0 \rangle) = 1$ and $(\operatorname{or}_{3b})(\langle 0, 1, 1 \rangle) = 1$ and $(\operatorname{or}_{3b})(\langle 1, 0, 0 \rangle) = 1$ and $(\operatorname{or}_{3b})(\langle 1, 0, 1 \rangle) = 1$ and $(\operatorname{or}_{3b})(\langle 1, 1, 0 \rangle) = 0$ and $(\operatorname{or}_{3b})(\langle 1, 1, 1 \rangle) = 1$.
- (28) $(\text{or}_{3c})(\langle 0, 0, 0 \rangle) = 1$ and $(\text{or}_{3c})(\langle 0, 0, 1 \rangle) = 1$ and $(\text{or}_{3c})(\langle 0, 1, 0 \rangle) = 1$ and $(\text{or}_{3c})(\langle 0, 1, 1 \rangle) = 1$ and $(\text{or}_{3c})(\langle 1, 0, 0 \rangle) = 1$ and $(\text{or}_{3c})(\langle 1, 0, 1 \rangle) = 1$ and $(\text{or}_{3c})(\langle 1, 1, 0 \rangle) = 1$ and $(\text{or}_{3c})(\langle 1, 1, 0 \rangle) = 1$ and $(\text{or}_{3c})(\langle 1, 1, 0 \rangle) = 1$ and $(\text{or}_{3c})(\langle 1, 1, 1 \rangle) = 0$.
- (29) $\operatorname{xor}_3(\langle 0, 0, 0 \rangle) = 0$ and $\operatorname{xor}_3(\langle 0, 0, 1 \rangle) = 1$ and $\operatorname{xor}_3(\langle 0, 1, 0 \rangle) = 1$ and $\operatorname{xor}_3(\langle 0, 1, 1 \rangle) = 0$ and $\operatorname{xor}_3(\langle 1, 0, 0 \rangle) = 1$ and $\operatorname{xor}_3(\langle 1, 0, 1 \rangle) = 0$ and $\operatorname{xor}_3(\langle 1, 1, 0 \rangle) = 0$ and $\operatorname{xor}_3(\langle 1, 1, 1 \rangle) = 1$.

2. 2'S COMPLEMENT CIRCUIT PROPERTIES

Let x, b be sets. The functor CompStr(x, b) yields an unsplit non void strict non empty many sorted signature with arity held in gates and Boolean denotation held in gates and is defined by:

(Def. 33) CompStr(x, b) = 1GateCircStr $(\langle x, b \rangle, xor_{2a})$.

Let x, b be sets. The functor CompCirc(x, b) yields a strict Boolean circuit of CompStr(x, b) with denotation held in gates and is defined as follows:

(Def. 34) CompCirc(x, b) = 1GateCircuit (x, b, xor_{2a}) .

Let x, b be sets. The functor CompOutput(x, b) yielding an element of InnerVertices(CompStr(x, b)) is defined by:

(Def. 35) CompOutput $(x, b) = \langle \langle x, b \rangle, \operatorname{xor}_{2a} \rangle$.

Let x, b be sets. The functor IncrementStr(x, b) yielding an unsplit non void strict non empty many sorted signature with arity held in gates and Boolean denotation held in gates is defined by:

(Def. 36) IncrementStr(x, b) = 1GateCircStr $(\langle x, b \rangle, \text{and}_{2a})$.

Let x, b be sets. The functor IncrementCirc(x, b) yields a strict Boolean circuit of IncrementStr(x, b) with denotation held in gates and is defined as follows:

(Def. 37) IncrementCirc(x, b) = 1GateCircuit (x, b, and_{2a}) .

Let x, b be sets. The functor IncrementOutput(x, b) yields an element of InnerVertices(IncrementStr(x, b)) and is defined by:

(Def. 38) IncrementOutput $(x, b) = \langle \langle x, b \rangle, \operatorname{and}_{2a} \rangle$.

Let x, b be sets. The functor BitCompStr(x, b) yielding an unsplit non void strict non empty many sorted signature with arity held in gates and Boolean denotation held in gates is defined as follows:

(Def. 39) BitCompStr(x, b) = CompStr(x, b)+·IncrementStr(x, b).

Let x, b be sets. The functor BitCompCirc(x, b) yielding a strict Boolean circuit of BitCompStr(x, b) with denotation held in gates is defined by:

(Def. 40) BitCompCirc(x, b) = CompCirc(x, b)+·IncrementCirc(x, b).

One can prove the following propositions:

- (30) For all non pair sets x, b holds InnerVertices(CompStr(x, b)) is a binary relation.
- (31) For all non pair sets x, b holds $x \in$ the carrier of CompStr(x, b) and $b \in$ the carrier of CompStr(x, b) and $\langle \langle x, b \rangle, \operatorname{xor}_{2a} \rangle \in$ the carrier of CompStr(x, b).
- (32) For all non pair sets x, b holds the carrier of $\text{CompStr}(x, b) = \{x, b\} \cup \{\langle \langle x, b \rangle, \operatorname{xor}_{2a} \rangle\}.$
- (33) For all non pair sets x, b holds InnerVertices(CompStr(x, b)) = { $\langle \langle x, b \rangle$, xor_{2a} }}.

- (34) For all non pair sets x, b holds $\langle \langle x, b \rangle, \operatorname{xor}_{2a} \rangle \in$ InnerVertices(CompStr(x, b)).
- (35) For all non pair sets x, b holds InputVertices(CompStr(x, b)) = $\{x, b\}$.
- (36) For all non pair sets x, b holds $x \in \text{InputVertices}(\text{CompStr}(x, b))$ and $b \in \text{InputVertices}(\text{CompStr}(x, b))$.
- (37) For all non pair sets x, b holds InputVertices(CompStr(x, b)) has no pairs.
- (38) For all non pair sets x, b holds InnerVertices(IncrementStr(x, b)) is a binary relation.
- (39) For all non pair sets x, b holds $x \in$ the carrier of IncrementStr(x, b) and $b \in$ the carrier of IncrementStr(x, b) and $\langle \langle x, b \rangle$, $\operatorname{and}_{2a} \rangle \in$ the carrier of IncrementStr(x, b).
- (40) For all non pair sets x, b holds the carrier of IncrementStr(x, b) = $\{x, b\} \cup \{\langle \langle x, b \rangle, \text{ and}_{2a} \rangle\}.$
- (41) For all non pair sets x, b holds InnerVertices(IncrementStr(x, b)) = { $\langle \langle x, b \rangle$, and_{2a} }}.
- (42) For all non pair sets x, b holds $\langle \langle x, b \rangle$, and $a_{2a} \rangle \in$ InnerVertices(IncrementStr(x, b)).
- (43) For all non pair sets x, b holds InputVertices(IncrementStr(x, b)) = $\{x, b\}$.
- (44) For all non pair sets x, b holds $x \in \text{InputVertices}(\text{IncrementStr}(x, b))$ and $b \in \text{InputVertices}(\text{IncrementStr}(x, b))$.
- (45) For all non pair sets x, b holds InputVertices(IncrementStr(x, b)) has no pairs.
- (46) For all non pair sets x, b holds InnerVertices(BitCompStr(x, b)) is a binary relation.
- (47) Let x, b be non pair sets. Then
 - (i) $x \in \text{the carrier of BitCompStr}(x, b),$
- (ii) $b \in \text{the carrier of BitCompStr}(x, b)$,
- (iii) $\langle \langle x, b \rangle, \operatorname{xor}_{2a} \rangle \in \text{the carrier of BitCompStr}(x, b), \text{ and}$
- (iv) $\langle \langle x, b \rangle$, and_{2a} $\rangle \in$ the carrier of BitCompStr(x, b).
- (48) For all non pair sets x, b holds the carrier of BitCompStr $(x, b) = \{x, b\} \cup \{\langle \langle x, b \rangle, \operatorname{xor}_{2a} \rangle, \langle \langle x, b \rangle, \operatorname{and}_{2a} \rangle \}.$
- (49) For all non pair sets x, b holds InnerVertices(BitCompStr(x, b)) = { $\langle \langle x, b \rangle, xor_{2a} \rangle, \langle \langle x, b \rangle, and_{2a} \rangle$ }.
- (50) For all non pair sets x, b holds $\langle \langle x, b \rangle, \operatorname{xor}_{2a} \rangle \in$ InnerVertices(BitCompStr(x, b)) and $\langle \langle x, b \rangle, \operatorname{and}_{2a} \rangle \in$ InnerVertices(BitCompStr(x, b)).
- (51) For all non pair sets x, b holds Input Vertices (BitCompStr(x, b)) = $\{x, b\}$.
- (52) For all non pair sets x, b holds $x \in \text{InputVertices}(\text{BitCompStr}(x, b))$ and $b \in \text{InputVertices}(\text{BitCompStr}(x, b)).$
- (53) For all non pair sets x, b holds InputVertices(BitCompStr(x, b)) has no pairs.

- (54) For all non pair sets x, b and for every state s of CompCirc(x, b)holds (Following(s))(CompOutput(x, b)) = $(xor_{2a})(\langle s(x), s(b) \rangle)$ and (Following(s))(x) = s(x) and (Following(s))(b) = s(b).
- (55) Let x, b be non pair sets, s be a state of CompCirc(x, b), and a_1 , a_2 be elements of *Boolean*. If $a_1 = s(x)$ and $a_2 = s(b)$, then (Following(s))(CompOutput(x, b)) = $\neg a_1 \oplus a_2$ and (Following(s)) $(x) = a_1$ and (Following(s)) $(b) = a_2$.
- (56) For all non pair sets x, b and for every state s of BitCompCirc(x, b)holds (Following(s))(CompOutput(x, b)) = $(xor_{2a})(\langle s(x), s(b) \rangle)$ and (Following(s))(x) = s(x) and (Following(s))(b) = s(b).
- (57) Let x, b be non pair sets, s be a state of BitCompCirc(x, b), and a_1, a_2 be elements of *Boolean*. If $a_1 = s(x)$ and $a_2 = s(b)$, then (Following(s))(CompOutput(x, b)) = $\neg a_1 \oplus a_2$ and (Following(s))(x) = a_1 and (Following(s))(b) = a_2 .
- (58) For all non pair sets x, b and for every state s of IncrementCirc(x, b) holds (Following(s))(IncrementOutput(x, b)) = $(\text{and}_{2a})(\langle s(x), s(b) \rangle)$ and (Following(s))(x) = s(x) and (Following(s))(b) = s(b).
- (59) Let x, b be non pair sets, s be a state of IncrementCirc(x, b), and a_1 , a_2 be elements of *Boolean*. If $a_1 = s(x)$ and $a_2 = s(b)$, then (Following(s))(IncrementOutput(x, b)) = $\neg a_1 \land a_2$ and (Following(s))(x) = a_1 and (Following(s))(b) = a_2 .
- (60) For all non pair sets x, b and for every state s of BitCompCirc(x, b) holds (Following(s))(IncrementOutput(x, b)) = $(\text{and}_{2a})(\langle s(x), s(b) \rangle)$ and (Following(s))(x) = s(x) and (Following(s))(b) = s(b).
- (61) Let x, b be non pair sets, s be a state of BitCompCirc(x, b), and a_1 , a_2 be elements of *Boolean*. If $a_1 = s(x)$ and $a_2 = s(b)$, then (Following(s))(IncrementOutput(x, b)) = $\neg a_1 \land a_2$ and (Following(s)) $(x) = a_1$ and (Following(s)) $(b) = a_2$.
- (62) Let x, b be non pair sets and s be a state of BitCompCirc(x, b). Then (Following(s))(CompOutput(x, b)) = $(xor_{2a})(\langle s(x), s(b) \rangle)$ and (Following(s))(IncrementOutput(x, b)) = $(and_{2a})(\langle s(x), s(b) \rangle)$ and (Following(s))(x) = s(x) and (Following(s))(b) = s(b).
- (63) Let x, b be non pair sets, s be a state of BitCompCirc(x, b), and a_1 , a_2 be elements of *Boolean*. Suppose $a_1 = s(x)$ and $a_2 = s(b)$. Then (Following(s))(CompOutput(x, b)) = $\neg a_1 \oplus$ a_2 and (Following(s))(IncrementOutput(x, b)) = $\neg a_1 \wedge a_2$ and (Following(s)) $(x) = a_1$ and (Following(s)) $(b) = a_2$.
- (64) For all non pair sets x, b and for every state s of BitCompCirc(x, b) holds Following(s) is stable.

References

 Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.

196

- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [3] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Mathematics, 5(3):367–380, 1996.
- [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits. Formalized Mathematics, 5(2):283–295, 1996.
- [8] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, I. Formalized Mathematics, 5(2):227–232, 1996.
- [9] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, II. Formalized Mathematics, 5(2):273–278, 1996.
- [10] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, II. Formalized Mathematics, 5(2):215-220, 1996.
- [11] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [12] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [14] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [15] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [16] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
- [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 25, 1996