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Summary. This article introduces various Boolean operators which are
used in discussing the properties and stability of a 2’s complement circuit. We pre-
sent the definitions and related theorems for the following logical operators which
include negative input/output: ’and2a’, ’or2a’, ’xor2a’ and ’nand2a’, ’nor2a’, etc.
We formalize the concept of a 2’s complement circuit, define the structures of
complementors/incrementors for binary operations, and prove the stability of the
circuit.

MML Identifier: TWOSCOMP.

The terminology and notation used here are introduced in the following articles:
[13], [15], [12], [1], [17], [5], [6], [16], [2], [4], [11], [14], [10], [8], [9], [7], and [3].

1. Boolean Operators

Let x be a set. Then 〈x〉 is a finite sequence with length 1. Let y be a set.
Then 〈x, y〉 is a finite sequence with length 2. Let z be a set. Then 〈x, y, z〉 is a
finite sequence with length 3.
Let n, m be natural numbers, let p be a finite sequence with length n, and

let q be a finite sequence with length m. Then p a q is a finite sequence with
length n + m.

Let S be an unsplit non void non empty many sorted signature, let A be a
Boolean circuit of S, let s be a state of A, and let v be a vertex of S. Then s(v)
is an element of Boolean .
Next we state two propositions:

(1) For every function f and for all sets x1, x2 such that x1 ∈ dom f and
x2 ∈ dom f holds f · 〈x1, x2〉 = 〈f(x1), f(x2)〉.
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(2) For every function f and for all sets x1, x2, x3 such that x1 ∈ dom f and
x2 ∈ dom f and x3 ∈ dom f holds f · 〈x1, x2, x3〉 = 〈f(x1), f(x2), f(x3)〉.

The function and2 from Boolean
2 into Boolean is defined by:

(Def. 1) For all elements x, y of Boolean holds and2(〈x, y〉) = x ∧ y.

The function and2a from Boolean
2 into Boolean is defined by:

(Def. 2) For all elements x, y of Boolean holds (and2a)(〈x, y〉) = ¬x ∧ y.

The function and2b from Boolean
2 into Boolean is defined as follows:

(Def. 3) For all elements x, y of Boolean holds (and2b)(〈x, y〉) = ¬x ∧ ¬y.

The function nand2 from Boolean
2 into Boolean is defined by:

(Def. 4) For all elements x, y of Boolean holds nand2(〈x, y〉) = ¬(x ∧ y).

The function nand2a from Boolean
2 into Boolean is defined as follows:

(Def. 5) For all elements x, y of Boolean holds (nand2a)(〈x, y〉) = ¬(¬x ∧ y).

The function nand2b from Boolean
2 into Boolean is defined as follows:

(Def. 6) For all elements x, y of Boolean holds (nand2b)(〈x, y〉) = ¬(¬x ∧ ¬y).

The function or2 from Boolean
2 into Boolean is defined by:

(Def. 7) For all elements x, y of Boolean holds or2(〈x, y〉) = x ∨ y.

The function or2a from Boolean
2 into Boolean is defined as follows:

(Def. 8) For all elements x, y of Boolean holds (or2a)(〈x, y〉) = ¬x ∨ y.

The function or2b from Boolean
2 into Boolean is defined as follows:

(Def. 9) For all elements x, y of Boolean holds (or2b)(〈x, y〉) = ¬x ∨ ¬y.

The function nor2 from Boolean
2 into Boolean is defined by:

(Def. 10) For all elements x, y of Boolean holds nor2(〈x, y〉) = ¬(x ∨ y).

The function nor2a from Boolean
2 into Boolean is defined by:

(Def. 11) For all elements x, y of Boolean holds (nor2a)(〈x, y〉) = ¬(¬x ∨ y).

The function nor2b from Boolean
2 into Boolean is defined as follows:

(Def. 12) For all elements x, y of Boolean holds (nor2b)(〈x, y〉) = ¬(¬x ∨ ¬y).

The function xor2 from Boolean
2 into Boolean is defined by:

(Def. 13) For all elements x, y of Boolean holds xor2(〈x, y〉) = x⊕ y.

The function xor2a from Boolean
2 into Boolean is defined as follows:

(Def. 14) For all elements x, y of Boolean holds (xor2a)(〈x, y〉) = ¬x⊕ y.

The function xor2b from Boolean
2 into Boolean is defined as follows:

(Def. 15) For all elements x, y of Boolean holds (xor2b)(〈x, y〉) = ¬x⊕ ¬y.

We now state a number of propositions:

(3) For all elements x, y of Boolean holds and2(〈x, y〉) = x∧y and (and2a)(〈x,

y〉) = ¬x ∧ y and (and2b)(〈x, y〉) = ¬x ∧ ¬y.

(4) For all elements x, y of Boolean holds nand2(〈x, y〉) = ¬(x ∧ y) and
(nand2a)(〈x, y〉) = ¬(¬x ∧ y) and (nand2b)(〈x, y〉) = ¬(¬x ∧ ¬y).

(5) For all elements x, y of Boolean holds or2(〈x, y〉) = x ∨ y and (or2a)(〈x,

y〉) = ¬x ∨ y and (or2b)(〈x, y〉) = ¬x ∨ ¬y.
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(6) For all elements x, y of Boolean holds nor2(〈x, y〉) = ¬(x ∨ y) and
(nor2a)(〈x, y〉) = ¬(¬x ∨ y) and (nor2b)(〈x, y〉) = ¬(¬x ∨ ¬y).

(7) For all elements x, y of Boolean holds xor2(〈x, y〉) = x⊕y and (xor2a)(〈x,

y〉) = ¬x⊕ y and (xor2b)(〈x, y〉) = ¬x⊕ ¬y.

(8) For all elements x, y of Boolean holds and2(〈x, y〉) = (nor2b)(〈x, y〉) and
(and2a)(〈x, y〉) = (nor2a)(〈y, x〉) and (and2b)(〈x, y〉) = nor2(〈x, y〉).

(9) For all elements x, y of Boolean holds or2(〈x, y〉) = (nand2b)(〈x, y〉) and
(or2a)(〈x, y〉) = (nand2a)(〈y, x〉) and (or2b)(〈x, y〉) = nand2(〈x, y〉).

(10) For all elements x, y of Boolean holds (xor2b)(〈x, y〉) = xor2(〈x, y〉).

(11)(i) and2(〈0, 0〉) = 0,
(ii) and2(〈0, 1〉) = 0,
(iii) and2(〈1, 0〉) = 0,
(iv) and2(〈1, 1〉) = 1,
(v) (and2a)(〈0, 0〉) = 0,
(vi) (and2a)(〈0, 1〉) = 1,
(vii) (and2a)(〈1, 0〉) = 0,
(viii) (and2a)(〈1, 1〉) = 0,
(ix) (and2b)(〈0, 0〉) = 1,
(x) (and2b)(〈0, 1〉) = 0,
(xi) (and2b)(〈1, 0〉) = 0, and
(xii) (and2b)(〈1, 1〉) = 0.

(12)(i) or2(〈0, 0〉) = 0,
(ii) or2(〈0, 1〉) = 1,
(iii) or2(〈1, 0〉) = 1,
(iv) or2(〈1, 1〉) = 1,
(v) (or2a)(〈0, 0〉) = 1,
(vi) (or2a)(〈0, 1〉) = 1,
(vii) (or2a)(〈1, 0〉) = 0,
(viii) (or2a)(〈1, 1〉) = 1,
(ix) (or2b)(〈0, 0〉) = 1,
(x) (or2b)(〈0, 1〉) = 1,
(xi) (or2b)(〈1, 0〉) = 1, and
(xii) (or2b)(〈1, 1〉) = 0.

(13) xor2(〈0, 0〉) = 0 and xor2(〈0, 1〉) = 1 and xor2(〈1, 0〉) = 1 and xor2(〈1,
1〉) = 0 and (xor2a)(〈0, 0〉) = 1 and (xor2a)(〈0, 1〉) = 0 and (xor2a)(〈1,
0〉) = 0 and (xor2a)(〈1, 1〉) = 1.

The function and3 from Boolean
3 into Boolean is defined as follows:

(Def. 16) For all elements x, y, z of Boolean holds and3(〈x, y, z〉) = x ∧ y ∧ z.

The function and3a from Boolean
3 into Boolean is defined by:

(Def. 17) For all elements x, y, z of Boolean holds (and3a)(〈x, y, z〉) = ¬x ∧ y ∧ z.

The function and3b from Boolean
3 into Boolean is defined by:

(Def. 18) For all elements x, y, z of Boolean holds (and3b)(〈x, y, z〉) = ¬x∧¬y∧ z.

The function and3c from Boolean
3 into Boolean is defined by:
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(Def. 19) For all elements x, y, z of Boolean holds (and3c)(〈x, y, z〉) = ¬x∧¬y∧¬z.

The function nand3 from Boolean
3 into Boolean is defined by:

(Def. 20) For all elements x, y, z of Boolean holds nand3(〈x, y, z〉) = ¬(x∧ y ∧ z).

The function nand3a from Boolean
3 into Boolean is defined as follows:

(Def. 21) For all elements x, y, z of Boolean holds (nand3a)(〈x, y, z〉) = ¬(¬x ∧
y ∧ z).

The function nand3b from Boolean
3 into Boolean is defined as follows:

(Def. 22) For all elements x, y, z of Boolean holds (nand3b)(〈x, y, z〉) = ¬(¬x ∧
¬y ∧ z).

The function nand3c from Boolean
3 into Boolean is defined by:

(Def. 23) For all elements x, y, z of Boolean holds (nand3c)(〈x, y, z〉) = ¬(¬x ∧
¬y ∧ ¬z).

The function or3 from Boolean
3 into Boolean is defined by:

(Def. 24) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = x ∨ y ∨ z.

The function or3a from Boolean
3 into Boolean is defined as follows:

(Def. 25) For all elements x, y, z of Boolean holds (or3a)(〈x, y, z〉) = ¬x ∨ y ∨ z.

The function or3b from Boolean
3 into Boolean is defined as follows:

(Def. 26) For all elements x, y, z of Boolean holds (or3b)(〈x, y, z〉) = ¬x ∨ ¬y ∨ z.

The function or3c from Boolean
3 into Boolean is defined as follows:

(Def. 27) For all elements x, y, z of Boolean holds (or3c)(〈x, y, z〉) = ¬x∨¬y∨¬z.

The function nor3 from Boolean
3 into Boolean is defined by:

(Def. 28) For all elements x, y, z of Boolean holds nor3(〈x, y, z〉) = ¬(x ∨ y ∨ z).

The function nor3a from Boolean
3 into Boolean is defined as follows:

(Def. 29) For all elements x, y, z of Boolean holds (nor3a)(〈x, y, z〉) = ¬(¬x∨y∨z).

The function nor3b from Boolean
3 into Boolean is defined by:

(Def. 30) For all elements x, y, z of Boolean holds (nor3b)(〈x, y, z〉) = ¬(¬x∨¬y∨
z).

The function nor3c from Boolean
3 into Boolean is defined by:

(Def. 31) For all elements x, y, z of Boolean holds (nor3c)(〈x, y, z〉) = ¬(¬x∨¬y∨
¬z).

The function xor3 from Boolean
3 into Boolean is defined by:

(Def. 32) For all elements x, y, z of Boolean holds xor3(〈x, y, z〉) = x⊕ y ⊕ z.

Next we state a number of propositions:

(14) For all elements x, y, z of Boolean holds and3(〈x, y, z〉) = x ∧ y ∧ z and
(and3a)(〈x, y, z〉) = ¬x ∧ y ∧ z and (and3b)(〈x, y, z〉) = ¬x ∧ ¬y ∧ z and
(and3c)(〈x, y, z〉) = ¬x ∧ ¬y ∧ ¬z.

(15) Let x, y, z be elements of Boolean . Then nand3(〈x, y, z〉) = ¬(x∧ y ∧ z)
and (nand3a)(〈x, y, z〉) = ¬(¬x ∧ y ∧ z) and (nand3b)(〈x, y, z〉) = ¬(¬x ∧
¬y ∧ z) and (nand3c)(〈x, y, z〉) = ¬(¬x ∧ ¬y ∧ ¬z).
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(16) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = x ∨ y ∨ z and
(or3a)(〈x, y, z〉) = ¬x∨y∨z and (or3b)(〈x, y, z〉) = ¬x∨¬y∨z and (or3c)(〈x,

y, z〉) = ¬x ∨ ¬y ∨ ¬z.

(17) Let x, y, z be elements of Boolean . Then nor3(〈x, y, z〉) = ¬(x∨y∨z) and
(nor3a)(〈x, y, z〉) = ¬(¬x ∨ y ∨ z) and (nor3b)(〈x, y, z〉) = ¬(¬x ∨ ¬y ∨ z)
and (nor3c)(〈x, y, z〉) = ¬(¬x ∨ ¬y ∨ ¬z).

(18) For all elements x, y, z of Boolean holds xor3(〈x, y, z〉) = x⊕ y ⊕ z.

(19) For all elements x, y, z of Boolean holds and3(〈x, y, z〉) = (nor3c)(〈x,

y, z〉) and (and3a)(〈x, y, z〉) = (nor3b)(〈z, y, x〉) and (and3b)(〈x, y, z〉) =
(nor3a)(〈z, y, x〉) and (and3c)(〈x, y, z〉) = nor3(〈x, y, z〉).

(20) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = (nand3c)(〈x,

y, z〉) and (or3a)(〈x, y, z〉) = (nand3b)(〈z, y, x〉) and (or3b)(〈x, y, z〉) =
(nand3a)(〈z, y, x〉) and (or3c)(〈x, y, z〉) = nand3(〈x, y, z〉).

(21) and3(〈0, 0, 0〉) = 0 and and3(〈0, 0, 1〉) = 0 and and3(〈0, 1, 0〉) = 0 and
and3(〈0, 1, 1〉) = 0 and and3(〈1, 0, 0〉) = 0 and and3(〈1, 0, 1〉) = 0 and
and3(〈1, 1, 0〉) = 0 and and3(〈1, 1, 1〉) = 1.

(22) (and3a)(〈0, 0, 0〉) = 0 and (and3a)(〈0, 0, 1〉) = 0 and (and3a)(〈0, 1, 0〉) = 0
and (and3a)(〈0, 1, 1〉) = 1 and (and3a)(〈1, 0, 0〉) = 0 and (and3a)(〈1, 0,
1〉) = 0 and (and3a)(〈1, 1, 0〉) = 0 and (and3a)(〈1, 1, 1〉) = 0.

(23) (and3b)(〈0, 0, 0〉) = 0 and (and3b)(〈0, 0, 1〉) = 1 and (and3b)(〈0, 1, 0〉) =
0 and (and3b)(〈0, 1, 1〉) = 0 and (and3b)(〈1, 0, 0〉) = 0 and (and3b)(〈1, 0,
1〉) = 0 and (and3b)(〈1, 1, 0〉) = 0 and (and3b)(〈1, 1, 1〉) = 0.

(24) (and3c)(〈0, 0, 0〉) = 1 and (and3c)(〈0, 0, 1〉) = 0 and (and3c)(〈0, 1, 0〉) =
0 and (and3c)(〈0, 1, 1〉) = 0 and (and3c)(〈1, 0, 0〉) = 0 and (and3c)(〈1, 0,
1〉) = 0 and (and3c)(〈1, 1, 0〉) = 0 and (and3c)(〈1, 1, 1〉) = 0.

(25) or3(〈0, 0, 0〉) = 0 and or3(〈0, 0, 1〉) = 1 and or3(〈0, 1, 0〉) = 1 and or3(〈0,
1, 1〉) = 1 and or3(〈1, 0, 0〉) = 1 and or3(〈1, 0, 1〉) = 1 and or3(〈1, 1, 0〉) = 1
and or3(〈1, 1, 1〉) = 1.

(26) (or3a)(〈0, 0, 0〉) = 1 and (or3a)(〈0, 0, 1〉) = 1 and (or3a)(〈0, 1, 0〉) = 1 and
(or3a)(〈0, 1, 1〉) = 1 and (or3a)(〈1, 0, 0〉) = 0 and (or3a)(〈1, 0, 1〉) = 1 and
(or3a)(〈1, 1, 0〉) = 1 and (or3a)(〈1, 1, 1〉) = 1.

(27) (or3b)(〈0, 0, 0〉) = 1 and (or3b)(〈0, 0, 1〉) = 1 and (or3b)(〈0, 1, 0〉) = 1 and
(or3b)(〈0, 1, 1〉) = 1 and (or3b)(〈1, 0, 0〉) = 1 and (or3b)(〈1, 0, 1〉) = 1 and
(or3b)(〈1, 1, 0〉) = 0 and (or3b)(〈1, 1, 1〉) = 1.

(28) (or3c)(〈0, 0, 0〉) = 1 and (or3c)(〈0, 0, 1〉) = 1 and (or3c)(〈0, 1, 0〉) = 1 and
(or3c)(〈0, 1, 1〉) = 1 and (or3c)(〈1, 0, 0〉) = 1 and (or3c)(〈1, 0, 1〉) = 1 and
(or3c)(〈1, 1, 0〉) = 1 and (or3c)(〈1, 1, 1〉) = 0.

(29) xor3(〈0, 0, 0〉) = 0 and xor3(〈0, 0, 1〉) = 1 and xor3(〈0, 1, 0〉) = 1 and
xor3(〈0, 1, 1〉) = 0 and xor3(〈1, 0, 0〉) = 1 and xor3(〈1, 0, 1〉) = 0 and
xor3(〈1, 1, 0〉) = 0 and xor3(〈1, 1, 1〉) = 1.
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2. 2’s Complement Circuit Properties

Let x, b be sets. The functor CompStr(x, b) yields an unsplit non void strict
non empty many sorted signature with arity held in gates and Boolean denota-
tion held in gates and is defined by:

(Def. 33) CompStr(x, b) = 1GateCircStr(〈x, b〉, xor2a).

Let x, b be sets. The functor CompCirc(x, b) yields a strict Boolean circuit
of CompStr(x, b) with denotation held in gates and is defined as follows:

(Def. 34) CompCirc(x, b) = 1GateCircuit(x, b, xor2a).

Let x, b be sets. The functor CompOutput(x, b) yielding an element of
InnerVertices(CompStr(x, b)) is defined by:

(Def. 35) CompOutput(x, b) = 〈〈〈x, b〉, xor2a 〉〉.

Let x, b be sets. The functor IncrementStr(x, b) yielding an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates is defined by:

(Def. 36) IncrementStr(x, b) = 1GateCircStr(〈x, b〉, and2a).

Let x, b be sets. The functor IncrementCirc(x, b) yields a strict Boolean
circuit of IncrementStr(x, b) with denotation held in gates and is defined as
follows:

(Def. 37) IncrementCirc(x, b) = 1GateCircuit(x, b, and2a).

Let x, b be sets. The functor IncrementOutput(x, b) yields an element of
InnerVertices(IncrementStr(x, b)) and is defined by:

(Def. 38) IncrementOutput(x, b) = 〈〈〈x, b〉, and2a 〉〉.

Let x, b be sets. The functor BitCompStr(x, b) yielding an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates is defined as follows:

(Def. 39) BitCompStr(x, b) = CompStr(x, b)+· IncrementStr(x, b).

Let x, b be sets. The functor BitCompCirc(x, b) yielding a strict Boolean
circuit of BitCompStr(x, b) with denotation held in gates is defined by:

(Def. 40) BitCompCirc(x, b) = CompCirc(x, b)+· IncrementCirc(x, b).

One can prove the following propositions:

(30) For all non pair sets x, b holds InnerVertices(CompStr(x, b)) is a binary
relation.

(31) For all non pair sets x, b holds x ∈ the carrier of CompStr(x, b) and
b ∈ the carrier of CompStr(x, b) and 〈〈〈x, b〉, xor2a 〉〉 ∈ the carrier of
CompStr(x, b).

(32) For all non pair sets x, b holds the carrier of CompStr(x, b) = {x, b} ∪
{〈〈〈x, b〉, xor2a 〉〉}.

(33) For all non pair sets x, b holds InnerVertices(CompStr(x, b)) = {〈〈〈x, b〉,
xor2a 〉〉}.



2’s complement circuit 195

(34) For all non pair sets x, b holds 〈〈〈x, b〉, xor2a 〉〉 ∈
InnerVertices(CompStr(x, b)).

(35) For all non pair sets x, b holds InputVertices(CompStr(x, b)) = {x, b}.

(36) For all non pair sets x, b holds x ∈ InputVertices(CompStr(x, b)) and
b ∈ InputVertices(CompStr(x, b)).

(37) For all non pair sets x, b holds InputVertices(CompStr(x, b)) has no pairs.

(38) For all non pair sets x, b holds InnerVertices(IncrementStr(x, b)) is a
binary relation.

(39) For all non pair sets x, b holds x ∈ the carrier of IncrementStr(x, b) and
b ∈ the carrier of IncrementStr(x, b) and 〈〈〈x, b〉, and2a 〉〉 ∈ the carrier of
IncrementStr(x, b).

(40) For all non pair sets x, b holds the carrier of IncrementStr(x, b) = {x, b}∪
{〈〈〈x, b〉, and2a 〉〉}.

(41) For all non pair sets x, b holds InnerVertices(IncrementStr(x, b)) = {〈〈〈x,

b〉, and2a 〉〉}.

(42) For all non pair sets x, b holds 〈〈〈x, b〉, and2a 〉〉 ∈
InnerVertices(IncrementStr(x, b)).

(43) For all non pair sets x, b holds InputVertices(IncrementStr(x, b)) =
{x, b}.

(44) For all non pair sets x, b holds x ∈ InputVertices(IncrementStr(x, b))
and b ∈ InputVertices(IncrementStr(x, b)).

(45) For all non pair sets x, b holds InputVertices(IncrementStr(x, b)) has no
pairs.

(46) For all non pair sets x, b holds InnerVertices(BitCompStr(x, b)) is a
binary relation.

(47) Let x, b be non pair sets. Then
(i) x ∈ the carrier of BitCompStr(x, b),
(ii) b ∈ the carrier of BitCompStr(x, b),
(iii) 〈〈〈x, b〉, xor2a 〉〉 ∈ the carrier of BitCompStr(x, b), and
(iv) 〈〈〈x, b〉, and2a 〉〉 ∈ the carrier of BitCompStr(x, b).

(48) For all non pair sets x, b holds the carrier of BitCompStr(x, b) = {x, b}∪
{〈〈〈x, b〉, xor2a 〉〉, 〈〈〈x, b〉, and2a 〉〉}.

(49) For all non pair sets x, b holds InnerVertices(BitCompStr(x, b)) = {〈〈〈x,

b〉, xor2a 〉〉, 〈〈〈x, b〉, and2a 〉〉}.

(50) For all non pair sets x, b holds 〈〈〈x, b〉, xor2a 〉〉 ∈
InnerVertices(BitCompStr(x, b)) and 〈〈〈x, b〉, and2a 〉〉 ∈
InnerVertices(BitCompStr(x, b)).

(51) For all non pair sets x, b holds InputVertices(BitCompStr(x, b)) = {x, b}.

(52) For all non pair sets x, b holds x ∈ InputVertices(BitCompStr(x, b)) and
b ∈ InputVertices(BitCompStr(x, b)).

(53) For all non pair sets x, b holds InputVertices(BitCompStr(x, b)) has no
pairs.
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(54) For all non pair sets x, b and for every state s of CompCirc(x, b)
holds (Following(s))(CompOutput(x, b)) = (xor2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(55) Let x, b be non pair sets, s be a state of CompCirc(x, b), and
a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(b), then
(Following(s))(CompOutput(x, b)) = ¬a1⊕a2 and (Following(s))(x) = a1

and (Following(s))(b) = a2.

(56) For all non pair sets x, b and for every state s of BitCompCirc(x, b)
holds (Following(s))(CompOutput(x, b)) = (xor2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(57) Let x, b be non pair sets, s be a state of BitCompCirc(x, b), and
a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(b), then
(Following(s))(CompOutput(x, b)) = ¬a1⊕a2 and (Following(s))(x) = a1

and (Following(s))(b) = a2.

(58) For all non pair sets x, b and for every state s of IncrementCirc(x, b)
holds (Following(s))(IncrementOutput(x, b)) = (and2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(59) Let x, b be non pair sets, s be a state of IncrementCirc(x, b),
and a1, a2 be elements of Boolean . If a1 = s(x) and a2 =
s(b), then (Following(s))(IncrementOutput(x, b)) = ¬a1 ∧ a2 and
(Following(s))(x) = a1 and (Following(s))(b) = a2.

(60) For all non pair sets x, b and for every state s of BitCompCirc(x, b)
holds (Following(s))(IncrementOutput(x, b)) = (and2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(61) Let x, b be non pair sets, s be a state of BitCompCirc(x, b),
and a1, a2 be elements of Boolean . If a1 = s(x) and a2 =
s(b), then (Following(s))(IncrementOutput(x, b)) = ¬a1 ∧ a2 and
(Following(s))(x) = a1 and (Following(s))(b) = a2.

(62) Let x, b be non pair sets and s be a state of BitCompCirc(x, b).
Then (Following(s))(CompOutput(x, b)) = (xor2a)(〈s(x), s(b)〉) and
(Following(s))(IncrementOutput(x, b)) = (and2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(63) Let x, b be non pair sets, s be a state of BitCompCirc(x, b),
and a1, a2 be elements of Boolean . Suppose a1 = s(x) and
a2 = s(b). Then (Following(s))(CompOutput(x, b)) = ¬a1 ⊕
a2 and (Following(s))(IncrementOutput(x, b)) = ¬a1 ∧ a2 and
(Following(s))(x) = a1 and (Following(s))(b) = a2.

(64) For all non pair sets x, b and for every state s of BitCompCirc(x, b) holds
Following(s) is stable.
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