
FORMALIZED MATHEMATICS

Volume 6, Number 2, 1997

University of Białystok

2’s Complement Circuit

Katsumi Wasaki

National College of Technology

Nagano

Pauline N. Kawamoto

Shinshu University

Nagano

Summary. This article introduces various Boolean operators which are
used in discussing the properties and stability of a 2’s complement circuit. We pre-
sent the definitions and related theorems for the following logical operators which
include negative input/output: ’and2a’, ’or2a’, ’xor2a’ and ’nand2a’, ’nor2a’, etc.
We formalize the concept of a 2’s complement circuit, define the structures of
complementors/incrementors for binary operations, and prove the stability of the
circuit.

MML Identifier: TWOSCOMP.

The terminology and notation used here are introduced in the following articles:
[13], [15], [12], [1], [17], [5], [6], [16], [2], [4], [11], [14], [10], [8], [9], [7], and [3].

1. Boolean Operators

Let x be a set. Then 〈x〉 is a finite sequence with length 1. Let y be a set.
Then 〈x, y〉 is a finite sequence with length 2. Let z be a set. Then 〈x, y, z〉 is a
finite sequence with length 3.
Let n, m be natural numbers, let p be a finite sequence with length n, and

let q be a finite sequence with length m. Then p a q is a finite sequence with
length n + m.

Let S be an unsplit non void non empty many sorted signature, let A be a
Boolean circuit of S, let s be a state of A, and let v be a vertex of S. Then s(v)
is an element of Boolean .
Next we state two propositions:

(1) For every function f and for all sets x1, x2 such that x1 ∈ dom f and
x2 ∈ dom f holds f · 〈x1, x2〉 = 〈f(x1), f(x2)〉.

189
c© 1997 University of Białystok

ISSN 1426–2630



190 katsumi wasaki and pauline n. kawamoto

(2) For every function f and for all sets x1, x2, x3 such that x1 ∈ dom f and
x2 ∈ dom f and x3 ∈ dom f holds f · 〈x1, x2, x3〉 = 〈f(x1), f(x2), f(x3)〉.

The function and2 from Boolean
2 into Boolean is defined by:

(Def. 1) For all elements x, y of Boolean holds and2(〈x, y〉) = x ∧ y.

The function and2a from Boolean
2 into Boolean is defined by:

(Def. 2) For all elements x, y of Boolean holds (and2a)(〈x, y〉) = ¬x ∧ y.

The function and2b from Boolean
2 into Boolean is defined as follows:

(Def. 3) For all elements x, y of Boolean holds (and2b)(〈x, y〉) = ¬x ∧ ¬y.

The function nand2 from Boolean
2 into Boolean is defined by:

(Def. 4) For all elements x, y of Boolean holds nand2(〈x, y〉) = ¬(x ∧ y).

The function nand2a from Boolean
2 into Boolean is defined as follows:

(Def. 5) For all elements x, y of Boolean holds (nand2a)(〈x, y〉) = ¬(¬x ∧ y).

The function nand2b from Boolean
2 into Boolean is defined as follows:

(Def. 6) For all elements x, y of Boolean holds (nand2b)(〈x, y〉) = ¬(¬x ∧ ¬y).

The function or2 from Boolean
2 into Boolean is defined by:

(Def. 7) For all elements x, y of Boolean holds or2(〈x, y〉) = x ∨ y.

The function or2a from Boolean
2 into Boolean is defined as follows:

(Def. 8) For all elements x, y of Boolean holds (or2a)(〈x, y〉) = ¬x ∨ y.

The function or2b from Boolean
2 into Boolean is defined as follows:

(Def. 9) For all elements x, y of Boolean holds (or2b)(〈x, y〉) = ¬x ∨ ¬y.

The function nor2 from Boolean
2 into Boolean is defined by:

(Def. 10) For all elements x, y of Boolean holds nor2(〈x, y〉) = ¬(x ∨ y).

The function nor2a from Boolean
2 into Boolean is defined by:

(Def. 11) For all elements x, y of Boolean holds (nor2a)(〈x, y〉) = ¬(¬x ∨ y).

The function nor2b from Boolean
2 into Boolean is defined as follows:

(Def. 12) For all elements x, y of Boolean holds (nor2b)(〈x, y〉) = ¬(¬x ∨ ¬y).

The function xor2 from Boolean
2 into Boolean is defined by:

(Def. 13) For all elements x, y of Boolean holds xor2(〈x, y〉) = x⊕ y.

The function xor2a from Boolean
2 into Boolean is defined as follows:

(Def. 14) For all elements x, y of Boolean holds (xor2a)(〈x, y〉) = ¬x⊕ y.

The function xor2b from Boolean
2 into Boolean is defined as follows:

(Def. 15) For all elements x, y of Boolean holds (xor2b)(〈x, y〉) = ¬x⊕ ¬y.

We now state a number of propositions:

(3) For all elements x, y of Boolean holds and2(〈x, y〉) = x∧y and (and2a)(〈x,

y〉) = ¬x ∧ y and (and2b)(〈x, y〉) = ¬x ∧ ¬y.

(4) For all elements x, y of Boolean holds nand2(〈x, y〉) = ¬(x ∧ y) and
(nand2a)(〈x, y〉) = ¬(¬x ∧ y) and (nand2b)(〈x, y〉) = ¬(¬x ∧ ¬y).

(5) For all elements x, y of Boolean holds or2(〈x, y〉) = x ∨ y and (or2a)(〈x,

y〉) = ¬x ∨ y and (or2b)(〈x, y〉) = ¬x ∨ ¬y.



2’s complement circuit 191

(6) For all elements x, y of Boolean holds nor2(〈x, y〉) = ¬(x ∨ y) and
(nor2a)(〈x, y〉) = ¬(¬x ∨ y) and (nor2b)(〈x, y〉) = ¬(¬x ∨ ¬y).

(7) For all elements x, y of Boolean holds xor2(〈x, y〉) = x⊕y and (xor2a)(〈x,

y〉) = ¬x⊕ y and (xor2b)(〈x, y〉) = ¬x⊕ ¬y.

(8) For all elements x, y of Boolean holds and2(〈x, y〉) = (nor2b)(〈x, y〉) and
(and2a)(〈x, y〉) = (nor2a)(〈y, x〉) and (and2b)(〈x, y〉) = nor2(〈x, y〉).

(9) For all elements x, y of Boolean holds or2(〈x, y〉) = (nand2b)(〈x, y〉) and
(or2a)(〈x, y〉) = (nand2a)(〈y, x〉) and (or2b)(〈x, y〉) = nand2(〈x, y〉).

(10) For all elements x, y of Boolean holds (xor2b)(〈x, y〉) = xor2(〈x, y〉).

(11)(i) and2(〈0, 0〉) = 0,
(ii) and2(〈0, 1〉) = 0,
(iii) and2(〈1, 0〉) = 0,
(iv) and2(〈1, 1〉) = 1,
(v) (and2a)(〈0, 0〉) = 0,
(vi) (and2a)(〈0, 1〉) = 1,
(vii) (and2a)(〈1, 0〉) = 0,
(viii) (and2a)(〈1, 1〉) = 0,
(ix) (and2b)(〈0, 0〉) = 1,
(x) (and2b)(〈0, 1〉) = 0,
(xi) (and2b)(〈1, 0〉) = 0, and
(xii) (and2b)(〈1, 1〉) = 0.

(12)(i) or2(〈0, 0〉) = 0,
(ii) or2(〈0, 1〉) = 1,
(iii) or2(〈1, 0〉) = 1,
(iv) or2(〈1, 1〉) = 1,
(v) (or2a)(〈0, 0〉) = 1,
(vi) (or2a)(〈0, 1〉) = 1,
(vii) (or2a)(〈1, 0〉) = 0,
(viii) (or2a)(〈1, 1〉) = 1,
(ix) (or2b)(〈0, 0〉) = 1,
(x) (or2b)(〈0, 1〉) = 1,
(xi) (or2b)(〈1, 0〉) = 1, and
(xii) (or2b)(〈1, 1〉) = 0.

(13) xor2(〈0, 0〉) = 0 and xor2(〈0, 1〉) = 1 and xor2(〈1, 0〉) = 1 and xor2(〈1,
1〉) = 0 and (xor2a)(〈0, 0〉) = 1 and (xor2a)(〈0, 1〉) = 0 and (xor2a)(〈1,
0〉) = 0 and (xor2a)(〈1, 1〉) = 1.

The function and3 from Boolean
3 into Boolean is defined as follows:

(Def. 16) For all elements x, y, z of Boolean holds and3(〈x, y, z〉) = x ∧ y ∧ z.

The function and3a from Boolean
3 into Boolean is defined by:

(Def. 17) For all elements x, y, z of Boolean holds (and3a)(〈x, y, z〉) = ¬x ∧ y ∧ z.

The function and3b from Boolean
3 into Boolean is defined by:

(Def. 18) For all elements x, y, z of Boolean holds (and3b)(〈x, y, z〉) = ¬x∧¬y∧ z.

The function and3c from Boolean
3 into Boolean is defined by:



192 katsumi wasaki and pauline n. kawamoto

(Def. 19) For all elements x, y, z of Boolean holds (and3c)(〈x, y, z〉) = ¬x∧¬y∧¬z.

The function nand3 from Boolean
3 into Boolean is defined by:

(Def. 20) For all elements x, y, z of Boolean holds nand3(〈x, y, z〉) = ¬(x∧ y ∧ z).

The function nand3a from Boolean
3 into Boolean is defined as follows:

(Def. 21) For all elements x, y, z of Boolean holds (nand3a)(〈x, y, z〉) = ¬(¬x ∧
y ∧ z).

The function nand3b from Boolean
3 into Boolean is defined as follows:

(Def. 22) For all elements x, y, z of Boolean holds (nand3b)(〈x, y, z〉) = ¬(¬x ∧
¬y ∧ z).

The function nand3c from Boolean
3 into Boolean is defined by:

(Def. 23) For all elements x, y, z of Boolean holds (nand3c)(〈x, y, z〉) = ¬(¬x ∧
¬y ∧ ¬z).

The function or3 from Boolean
3 into Boolean is defined by:

(Def. 24) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = x ∨ y ∨ z.

The function or3a from Boolean
3 into Boolean is defined as follows:

(Def. 25) For all elements x, y, z of Boolean holds (or3a)(〈x, y, z〉) = ¬x ∨ y ∨ z.

The function or3b from Boolean
3 into Boolean is defined as follows:

(Def. 26) For all elements x, y, z of Boolean holds (or3b)(〈x, y, z〉) = ¬x ∨ ¬y ∨ z.

The function or3c from Boolean
3 into Boolean is defined as follows:

(Def. 27) For all elements x, y, z of Boolean holds (or3c)(〈x, y, z〉) = ¬x∨¬y∨¬z.

The function nor3 from Boolean
3 into Boolean is defined by:

(Def. 28) For all elements x, y, z of Boolean holds nor3(〈x, y, z〉) = ¬(x ∨ y ∨ z).

The function nor3a from Boolean
3 into Boolean is defined as follows:

(Def. 29) For all elements x, y, z of Boolean holds (nor3a)(〈x, y, z〉) = ¬(¬x∨y∨z).

The function nor3b from Boolean
3 into Boolean is defined by:

(Def. 30) For all elements x, y, z of Boolean holds (nor3b)(〈x, y, z〉) = ¬(¬x∨¬y∨
z).

The function nor3c from Boolean
3 into Boolean is defined by:

(Def. 31) For all elements x, y, z of Boolean holds (nor3c)(〈x, y, z〉) = ¬(¬x∨¬y∨
¬z).

The function xor3 from Boolean
3 into Boolean is defined by:

(Def. 32) For all elements x, y, z of Boolean holds xor3(〈x, y, z〉) = x⊕ y ⊕ z.

Next we state a number of propositions:

(14) For all elements x, y, z of Boolean holds and3(〈x, y, z〉) = x ∧ y ∧ z and
(and3a)(〈x, y, z〉) = ¬x ∧ y ∧ z and (and3b)(〈x, y, z〉) = ¬x ∧ ¬y ∧ z and
(and3c)(〈x, y, z〉) = ¬x ∧ ¬y ∧ ¬z.

(15) Let x, y, z be elements of Boolean . Then nand3(〈x, y, z〉) = ¬(x∧ y ∧ z)
and (nand3a)(〈x, y, z〉) = ¬(¬x ∧ y ∧ z) and (nand3b)(〈x, y, z〉) = ¬(¬x ∧
¬y ∧ z) and (nand3c)(〈x, y, z〉) = ¬(¬x ∧ ¬y ∧ ¬z).



2’s complement circuit 193

(16) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = x ∨ y ∨ z and
(or3a)(〈x, y, z〉) = ¬x∨y∨z and (or3b)(〈x, y, z〉) = ¬x∨¬y∨z and (or3c)(〈x,

y, z〉) = ¬x ∨ ¬y ∨ ¬z.

(17) Let x, y, z be elements of Boolean . Then nor3(〈x, y, z〉) = ¬(x∨y∨z) and
(nor3a)(〈x, y, z〉) = ¬(¬x ∨ y ∨ z) and (nor3b)(〈x, y, z〉) = ¬(¬x ∨ ¬y ∨ z)
and (nor3c)(〈x, y, z〉) = ¬(¬x ∨ ¬y ∨ ¬z).

(18) For all elements x, y, z of Boolean holds xor3(〈x, y, z〉) = x⊕ y ⊕ z.

(19) For all elements x, y, z of Boolean holds and3(〈x, y, z〉) = (nor3c)(〈x,

y, z〉) and (and3a)(〈x, y, z〉) = (nor3b)(〈z, y, x〉) and (and3b)(〈x, y, z〉) =
(nor3a)(〈z, y, x〉) and (and3c)(〈x, y, z〉) = nor3(〈x, y, z〉).

(20) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = (nand3c)(〈x,

y, z〉) and (or3a)(〈x, y, z〉) = (nand3b)(〈z, y, x〉) and (or3b)(〈x, y, z〉) =
(nand3a)(〈z, y, x〉) and (or3c)(〈x, y, z〉) = nand3(〈x, y, z〉).

(21) and3(〈0, 0, 0〉) = 0 and and3(〈0, 0, 1〉) = 0 and and3(〈0, 1, 0〉) = 0 and
and3(〈0, 1, 1〉) = 0 and and3(〈1, 0, 0〉) = 0 and and3(〈1, 0, 1〉) = 0 and
and3(〈1, 1, 0〉) = 0 and and3(〈1, 1, 1〉) = 1.

(22) (and3a)(〈0, 0, 0〉) = 0 and (and3a)(〈0, 0, 1〉) = 0 and (and3a)(〈0, 1, 0〉) = 0
and (and3a)(〈0, 1, 1〉) = 1 and (and3a)(〈1, 0, 0〉) = 0 and (and3a)(〈1, 0,
1〉) = 0 and (and3a)(〈1, 1, 0〉) = 0 and (and3a)(〈1, 1, 1〉) = 0.

(23) (and3b)(〈0, 0, 0〉) = 0 and (and3b)(〈0, 0, 1〉) = 1 and (and3b)(〈0, 1, 0〉) =
0 and (and3b)(〈0, 1, 1〉) = 0 and (and3b)(〈1, 0, 0〉) = 0 and (and3b)(〈1, 0,
1〉) = 0 and (and3b)(〈1, 1, 0〉) = 0 and (and3b)(〈1, 1, 1〉) = 0.

(24) (and3c)(〈0, 0, 0〉) = 1 and (and3c)(〈0, 0, 1〉) = 0 and (and3c)(〈0, 1, 0〉) =
0 and (and3c)(〈0, 1, 1〉) = 0 and (and3c)(〈1, 0, 0〉) = 0 and (and3c)(〈1, 0,
1〉) = 0 and (and3c)(〈1, 1, 0〉) = 0 and (and3c)(〈1, 1, 1〉) = 0.

(25) or3(〈0, 0, 0〉) = 0 and or3(〈0, 0, 1〉) = 1 and or3(〈0, 1, 0〉) = 1 and or3(〈0,
1, 1〉) = 1 and or3(〈1, 0, 0〉) = 1 and or3(〈1, 0, 1〉) = 1 and or3(〈1, 1, 0〉) = 1
and or3(〈1, 1, 1〉) = 1.

(26) (or3a)(〈0, 0, 0〉) = 1 and (or3a)(〈0, 0, 1〉) = 1 and (or3a)(〈0, 1, 0〉) = 1 and
(or3a)(〈0, 1, 1〉) = 1 and (or3a)(〈1, 0, 0〉) = 0 and (or3a)(〈1, 0, 1〉) = 1 and
(or3a)(〈1, 1, 0〉) = 1 and (or3a)(〈1, 1, 1〉) = 1.

(27) (or3b)(〈0, 0, 0〉) = 1 and (or3b)(〈0, 0, 1〉) = 1 and (or3b)(〈0, 1, 0〉) = 1 and
(or3b)(〈0, 1, 1〉) = 1 and (or3b)(〈1, 0, 0〉) = 1 and (or3b)(〈1, 0, 1〉) = 1 and
(or3b)(〈1, 1, 0〉) = 0 and (or3b)(〈1, 1, 1〉) = 1.

(28) (or3c)(〈0, 0, 0〉) = 1 and (or3c)(〈0, 0, 1〉) = 1 and (or3c)(〈0, 1, 0〉) = 1 and
(or3c)(〈0, 1, 1〉) = 1 and (or3c)(〈1, 0, 0〉) = 1 and (or3c)(〈1, 0, 1〉) = 1 and
(or3c)(〈1, 1, 0〉) = 1 and (or3c)(〈1, 1, 1〉) = 0.

(29) xor3(〈0, 0, 0〉) = 0 and xor3(〈0, 0, 1〉) = 1 and xor3(〈0, 1, 0〉) = 1 and
xor3(〈0, 1, 1〉) = 0 and xor3(〈1, 0, 0〉) = 1 and xor3(〈1, 0, 1〉) = 0 and
xor3(〈1, 1, 0〉) = 0 and xor3(〈1, 1, 1〉) = 1.



194 katsumi wasaki and pauline n. kawamoto

2. 2’s Complement Circuit Properties

Let x, b be sets. The functor CompStr(x, b) yields an unsplit non void strict
non empty many sorted signature with arity held in gates and Boolean denota-
tion held in gates and is defined by:

(Def. 33) CompStr(x, b) = 1GateCircStr(〈x, b〉, xor2a).

Let x, b be sets. The functor CompCirc(x, b) yields a strict Boolean circuit
of CompStr(x, b) with denotation held in gates and is defined as follows:

(Def. 34) CompCirc(x, b) = 1GateCircuit(x, b, xor2a).

Let x, b be sets. The functor CompOutput(x, b) yielding an element of
InnerVertices(CompStr(x, b)) is defined by:

(Def. 35) CompOutput(x, b) = 〈〈〈x, b〉, xor2a 〉〉.

Let x, b be sets. The functor IncrementStr(x, b) yielding an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates is defined by:

(Def. 36) IncrementStr(x, b) = 1GateCircStr(〈x, b〉, and2a).

Let x, b be sets. The functor IncrementCirc(x, b) yields a strict Boolean
circuit of IncrementStr(x, b) with denotation held in gates and is defined as
follows:

(Def. 37) IncrementCirc(x, b) = 1GateCircuit(x, b, and2a).

Let x, b be sets. The functor IncrementOutput(x, b) yields an element of
InnerVertices(IncrementStr(x, b)) and is defined by:

(Def. 38) IncrementOutput(x, b) = 〈〈〈x, b〉, and2a 〉〉.

Let x, b be sets. The functor BitCompStr(x, b) yielding an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates is defined as follows:

(Def. 39) BitCompStr(x, b) = CompStr(x, b)+· IncrementStr(x, b).

Let x, b be sets. The functor BitCompCirc(x, b) yielding a strict Boolean
circuit of BitCompStr(x, b) with denotation held in gates is defined by:

(Def. 40) BitCompCirc(x, b) = CompCirc(x, b)+· IncrementCirc(x, b).

One can prove the following propositions:

(30) For all non pair sets x, b holds InnerVertices(CompStr(x, b)) is a binary
relation.

(31) For all non pair sets x, b holds x ∈ the carrier of CompStr(x, b) and
b ∈ the carrier of CompStr(x, b) and 〈〈〈x, b〉, xor2a 〉〉 ∈ the carrier of
CompStr(x, b).

(32) For all non pair sets x, b holds the carrier of CompStr(x, b) = {x, b} ∪
{〈〈〈x, b〉, xor2a 〉〉}.

(33) For all non pair sets x, b holds InnerVertices(CompStr(x, b)) = {〈〈〈x, b〉,
xor2a 〉〉}.



2’s complement circuit 195

(34) For all non pair sets x, b holds 〈〈〈x, b〉, xor2a 〉〉 ∈
InnerVertices(CompStr(x, b)).

(35) For all non pair sets x, b holds InputVertices(CompStr(x, b)) = {x, b}.

(36) For all non pair sets x, b holds x ∈ InputVertices(CompStr(x, b)) and
b ∈ InputVertices(CompStr(x, b)).

(37) For all non pair sets x, b holds InputVertices(CompStr(x, b)) has no pairs.

(38) For all non pair sets x, b holds InnerVertices(IncrementStr(x, b)) is a
binary relation.

(39) For all non pair sets x, b holds x ∈ the carrier of IncrementStr(x, b) and
b ∈ the carrier of IncrementStr(x, b) and 〈〈〈x, b〉, and2a 〉〉 ∈ the carrier of
IncrementStr(x, b).

(40) For all non pair sets x, b holds the carrier of IncrementStr(x, b) = {x, b}∪
{〈〈〈x, b〉, and2a 〉〉}.

(41) For all non pair sets x, b holds InnerVertices(IncrementStr(x, b)) = {〈〈〈x,

b〉, and2a 〉〉}.

(42) For all non pair sets x, b holds 〈〈〈x, b〉, and2a 〉〉 ∈
InnerVertices(IncrementStr(x, b)).

(43) For all non pair sets x, b holds InputVertices(IncrementStr(x, b)) =
{x, b}.

(44) For all non pair sets x, b holds x ∈ InputVertices(IncrementStr(x, b))
and b ∈ InputVertices(IncrementStr(x, b)).

(45) For all non pair sets x, b holds InputVertices(IncrementStr(x, b)) has no
pairs.

(46) For all non pair sets x, b holds InnerVertices(BitCompStr(x, b)) is a
binary relation.

(47) Let x, b be non pair sets. Then
(i) x ∈ the carrier of BitCompStr(x, b),
(ii) b ∈ the carrier of BitCompStr(x, b),
(iii) 〈〈〈x, b〉, xor2a 〉〉 ∈ the carrier of BitCompStr(x, b), and
(iv) 〈〈〈x, b〉, and2a 〉〉 ∈ the carrier of BitCompStr(x, b).

(48) For all non pair sets x, b holds the carrier of BitCompStr(x, b) = {x, b}∪
{〈〈〈x, b〉, xor2a 〉〉, 〈〈〈x, b〉, and2a 〉〉}.

(49) For all non pair sets x, b holds InnerVertices(BitCompStr(x, b)) = {〈〈〈x,

b〉, xor2a 〉〉, 〈〈〈x, b〉, and2a 〉〉}.

(50) For all non pair sets x, b holds 〈〈〈x, b〉, xor2a 〉〉 ∈
InnerVertices(BitCompStr(x, b)) and 〈〈〈x, b〉, and2a 〉〉 ∈
InnerVertices(BitCompStr(x, b)).

(51) For all non pair sets x, b holds InputVertices(BitCompStr(x, b)) = {x, b}.

(52) For all non pair sets x, b holds x ∈ InputVertices(BitCompStr(x, b)) and
b ∈ InputVertices(BitCompStr(x, b)).

(53) For all non pair sets x, b holds InputVertices(BitCompStr(x, b)) has no
pairs.



196 katsumi wasaki and pauline n. kawamoto

(54) For all non pair sets x, b and for every state s of CompCirc(x, b)
holds (Following(s))(CompOutput(x, b)) = (xor2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(55) Let x, b be non pair sets, s be a state of CompCirc(x, b), and
a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(b), then
(Following(s))(CompOutput(x, b)) = ¬a1⊕a2 and (Following(s))(x) = a1

and (Following(s))(b) = a2.

(56) For all non pair sets x, b and for every state s of BitCompCirc(x, b)
holds (Following(s))(CompOutput(x, b)) = (xor2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(57) Let x, b be non pair sets, s be a state of BitCompCirc(x, b), and
a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(b), then
(Following(s))(CompOutput(x, b)) = ¬a1⊕a2 and (Following(s))(x) = a1

and (Following(s))(b) = a2.

(58) For all non pair sets x, b and for every state s of IncrementCirc(x, b)
holds (Following(s))(IncrementOutput(x, b)) = (and2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(59) Let x, b be non pair sets, s be a state of IncrementCirc(x, b),
and a1, a2 be elements of Boolean . If a1 = s(x) and a2 =
s(b), then (Following(s))(IncrementOutput(x, b)) = ¬a1 ∧ a2 and
(Following(s))(x) = a1 and (Following(s))(b) = a2.

(60) For all non pair sets x, b and for every state s of BitCompCirc(x, b)
holds (Following(s))(IncrementOutput(x, b)) = (and2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(61) Let x, b be non pair sets, s be a state of BitCompCirc(x, b),
and a1, a2 be elements of Boolean . If a1 = s(x) and a2 =
s(b), then (Following(s))(IncrementOutput(x, b)) = ¬a1 ∧ a2 and
(Following(s))(x) = a1 and (Following(s))(b) = a2.

(62) Let x, b be non pair sets and s be a state of BitCompCirc(x, b).
Then (Following(s))(CompOutput(x, b)) = (xor2a)(〈s(x), s(b)〉) and
(Following(s))(IncrementOutput(x, b)) = (and2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(63) Let x, b be non pair sets, s be a state of BitCompCirc(x, b),
and a1, a2 be elements of Boolean . Suppose a1 = s(x) and
a2 = s(b). Then (Following(s))(CompOutput(x, b)) = ¬a1 ⊕
a2 and (Following(s))(IncrementOutput(x, b)) = ¬a1 ∧ a2 and
(Following(s))(x) = a1 and (Following(s))(b) = a2.

(64) For all non pair sets x, b and for every state s of BitCompCirc(x, b) holds
Following(s) is stable.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.



2’s complement circuit 197

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Ma-
thematics, 5(3):367–380, 1996.

[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[7] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits. Formalized Mathema-
tics, 5(2):283–295, 1996.

[8] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Intro-
duction to circuits, I. Formalized Mathematics, 5(2):227–232, 1996.

[9] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Intro-
duction to circuits, II. Formalized Mathematics, 5(2):273–278, 1996.

[10] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-
minaries to circuits, II. Formalized Mathematics, 5(2):215–220, 1996.

[11] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[12] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[14] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[15] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[16] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,
1990.

[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received October 25, 1996


