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Summary. In the article we continue the formalization in Mizar of [15,
98-105]. We work with structures of the form

L= <C7 < T>7

where C' is the carrier of the structure, < - an ordering relation on C and 7 a
family of subsets of C'. When (C, <) is a complete lattice we say that L is Scott,
if 7 is the Scott topology of (C, <). We define the Scott convergence (lim inf co-
nvergence). Following [15] we prove that in the case of a continuous lattice (C, <)
the Scott convergence is topological, i.e. enjoys the properties: (CONSTANTS),
(SUBNETS), (DIVERGENCE), ITERATED LIMITS). We formalize the the-
orem, that if the Scott convergence has the (ITERATED LIMITS) property, the
(C, <) is continuous.

MML Identifier: WAYBEL11.

The terminology and notation used in this paper are introduced in the following
articles: [29], [35], [37], [25], [12], [14], [36], [10], [11], [9], [3], [8], [33], [23], [27],
38], [28], [26], [41], [17], [30], [2], [24], [1], [22], [34], [4], [5], [6], [16], [40], [13],
[18], [19], [20], [7], [39], [32], [21], and [31].

1. PRELIMINARIES

The scheme Irrel deals with non empty sets A, B, a unary functor F yielding
a set, a binary functor F yielding a set, and a unary predicate P, and states
that:
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{F(u),u ranges over elements of A : Plu]} = {F(i,v
over elements of B,v ranges over elements of A : Plv]}
provided the following condition is met:
e For every element ¢ of B and for every element u of A holds
F(u) = F(i,u).

One can prove the following three propositions:

1 ranges
)s g

(1) Let L be a complete non empty lattice and X, Y be subsets of the carrier
of L. If Y is coarser than X, then [ |1 X <[] Y-

(2) Let L be a complete non empty lattice and X, Y be subsets of the carrier
of L. If X is finer than Y then | |, X <| ], Y.

(3) Let T be a relational structure, A be an upper subset of T, and B be a
directed subset of T'. Then A N B is directed.

Let T be a reflexive non empty relational structure. Observe that there exists
a subset of T" which is non empty, directed, and finite.
Next we state the proposition

(4) For every non empty poset 7" with Lu.b.’s and for every non empty
directed finite subset D of T" holds sup D € D.

Let us observe that there exists a relational structure which is trivial, refle-
xive, transitive, non empty, antisymmetric, finite, and strict and has L.u.b.’s.
Let us observe that there exists a 1-sorted structure which is finite, non
empty, and strict.
Let T be a finite 1-sorted structure. Note that every subset of T is finite.
Let R be a relational structure. Note that @i is lower and upper.
Let R be a trivial non empty relational structure. Note that every subset of
R is upper.
One can prove the following propositions:
(5) Let T be a non empty relational structure, x be an element of 7', and A
be an upper subset of T. If x ¢ A, then A misses |x.
(6) Let T be a non empty relational structure, = be an element of 7', and A
be a lower subset of T'. If x € A, then |x C A.

2. ScorT TOPOLOGY

Let T be a non empty reflexive relational structure and let S be a subset of
T. We say that S is inaccessible by directed joins if and only if:
(Def. 1) For every non empty directed subset D of T" such that sup D € S holds
D meets S.
We introduce S is inaccessible as a synonym of S is inaccessible by directed
joins. We say that S is closed under directed sups if and only if:
(Def. 2) For every non empty directed subset D of T' such that D C S holds
supD € S.
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We introduce S is directly closed as a synonym of .S is closed under directed sups.
We say that S is property(S) if and only if the condition (Def. 3) is satisfied.

(Def. 3) Let D be a non empty directed subset of T'. Suppose sup D € S. Then
there exists an element y of T" such that y € D and for every element x of
T such that x € D and = > y holds z € S.

We introduce S has the property (S) as a synonym of S is property(S).

Let T be a non empty reflexive relational structure. One can check that (p
is property(S) and directly closed.

Let T be a non empty reflexive relational structure. Observe that there exists
a subset of T which is property(S) and directly closed.

Let T be a non empty reflexive relational structure and let S be a property(S)
subset of T'. One can verify that —5 is directly closed.

Let T be a reflexive non empty FR-structure. We say that T is Scott if and
only if:

(Def. 4) For every subset S of T holds S is open iff S is inaccessible and upper.

Let T be a reflexive transitive antisymmetric non empty finite relational
structure with l.u.b.’s. Note that every subset of T is inaccessible.

Let T be a reflexive transitive antisymmetric non empty finite FR-structure
with l.u.b.’s. Let us observe that T is Scott if and only if:

(Def. 5) For every subset S of T" holds S is open iff S is upper.

Let us mention that there exists a non empty strict TopLattice which is
trivial, complete, and Scott.
Let T be a non empty reflexive relational structure. Observe that Qp is
directly closed and inaccessible.
Let T be a non empty reflexive relational structure. Note that there exists
a subset of T which is directly closed, lower, inaccessible, and upper.
Let T be a complete non empty TopLattice and let S be an inaccessible
subset of T'. Note that —S is directly closed.
Let T be a non empty reflexive relational structure and let S be a directly
closed subset of T'. One can check that —S' is inaccessible.
One can prove the following propositions:
(7) Let T be a complete Scott non empty TopLattice and S be a subset of
T. Then S is closed if and only if S is directly closed and lower.
(8) For every complete non empty TopLattice T' and for every element = of
T holds |z is directly closed.
(9) For every complete Scott non empty TopLattice T' and for every element
z of T holds {z} = |.
(10) Every complete Scott non empty TopLattice is a Tp-space.

(11) For every complete Scott non empty TopLattice T" and for every element
x of T holds |z is closed.

(12) For every complete Scott non empty TopLattice T" and for every element
x of T holds — |z is open.
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(13) Let T be a complete Scott non empty TopLattice,  be an element of T,
and A be an upper subset of T'. If z ¢ A, then — | is a neighbourhood of
A.

(14) Let T be a complete Scott non empty TopLattice and S be an upper
subset of T'. Then there exists a family F of subsets of T such that S = (| F
and for every subset X of T" such that X € F holds X is a neighbourhood
of S.

(15) Let T be a Scott non empty TopLattice and S be a subset of T'. Then §
is open if and only if S is upper and property(S).

Let T be a complete non empty TopLattice. Observe that every subset of T'
which is lower is also property(S).
One can prove the following proposition

(16) Let T be a non empty transitive reflexive FR-structure. Suppose the
topology of T' = {5, S ranges over subsets of T: S has the property (S)}.
Then T is topological space-like.

3. ScorT CONVERGENCE

In the sequel R will be a non empty relational structure, N will be a net in
R, and i, j will be elements of the carrier of N.

Let us consider R, N. The functor liminf N yielding an element of R is
defined by:

(Def. 6) liminf N = | |z{[ [r{N(¢) : i > j} : j ranges over elements of the carrier
of N}.

Let R be a reflexive non empty relational structure, let V be a net in R,
and let p be an element of the carrier of R. We say that p is S-limit of N if and
only if:

(Def. 7)  p < liminf N.
Let R be a reflexive non empty relational structure. The Scott convergence
of R yields a convergence class of R and is defined by the condition (Def. 8).
(Def. 8) Let N be a strict net in R. Suppose N € NetUniv(R). Let p be an
element of the carrier of R. Then (N, p) € the Scott convergence of R if
and only if p is S-limit of N.

The following two propositions are true:

(17) Let R be a non empty complete lattice, N be a net in R, and p, ¢ be
elements of the carrier of R. If p is S-limit of N and N is eventually in |gq,
then p < gq.

(18) Let R be a non empty complete lattice, N be a net in R, and p, ¢ be
elements of the carrier of R. If N is eventually in Tq, then liminf N > q.

Let R be a reflexive non empty relational structure and let IV be a non empty
net structure over R. Let us observe that IV is monotone if and only if:
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(Def. 9) For all elements 7, j of the carrier of N such that ¢ < j holds N (i) < N(j).

Let R be a non empty relational structure, let S be a non empty set, and let
f be a function from S into the carrier of R. The functor NetStr(S, f) yielding
a strict non empty net structure over R is defined by the conditions (Def. 10).

(Def. 10)(i)  The carrier of NetStr(S, f) = S,
(ii))  the mapping of NetStr(S, f) = f, and
(iii)  for all elements ¢, j of NetStr(S, f) holds i < j iff (NetStr(S, f))(7) <
(NetStr (S, f))(4)-
The following two propositions are true:

(19) Let L be a non empty l-sorted structure and N be a non empty net
structure over L. Then rng (the mapping of N) = {N(i) : i ranges over
elements of the carrier of N}.

(20) Let R be a non empty relational structure, S be a non empty set, and
f be a function from S into the carrier of R. If rng f is directed, then
NetStr(S, f) is directed.

Let R be a non empty relational structure, let S be a non empty set, and let
f be a function from S into the carrier of R. Note that NetStr(.S, f) is monotone.

Let R be a transitive non empty relational structure, let .S be a non empty
set, and let f be a function from S into the carrier of R. Note that NetStr(.S, f)
is transitive.

Let R be a reflexive non empty relational structure, let S be a non empty set,
and let f be a function from S into the carrier of R. Observe that NetStr(S, f)
is reflexive.

We now state the proposition

(21) Let R be a non empty transitive relational structure, S be a non empty
set, and f be a function from S into the carrier of R. If S C the carrier of
R and NetStr(S, f) is directed, then NetStr(S, f) € NetUniv(R).

Let R be a non empty lattice. One can check that there exists a net in R
which is monotone, reflexive, and strict.

The following propositions are true:

(22) For every non empty complete lattice R and for every monotone reflexive
net N in R holds liminf N = sup N.

(23) For every complete non empty lattice R and for every constant net N in
R holds the value of N = liminf N.

(24) For every complete non empty lattice R and for every constant net N in
R holds the value of N is S-limit of V.

Let .S be a non empty 1-sorted structure and let e be an element of the carrier
of S. The functor NetStr(e) yielding a strict net structure over S is defined as
follows:

(Def. 11) The carrier of NetStr(e) = {e} and the internal relation of NetStr(e) =
{{e, e)} and the mapping of NetStr(e) = idy.

Let S be a non empty 1-sorted structure and let e be an element of the

carrier of S. Observe that NetStr(e) is non empty.
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One can prove the following propositions:

(25) Let S be a non empty 1-sorted structure, e be an element of the carrier
of S, and z be an element of NetStr(e). Then z = e.

(26) Let S be a non empty 1-sorted structure, e be an element of the carrier
of S, and z be an element of NetStr(e). Then (NetStr(e))(z) = e.

Let S be a non empty 1-sorted structure and let e be an element of the carrier
of S. Observe that NetStr(e) is reflexive transitive directed and antisymmetric.
We now state several propositions:

(27) Let S be a non empty 1-sorted structure, e be an element of the carrier
of S, and X be a set. Then NetStr(e) is eventually in X if and only if
ee€ X.

(28) Let S be a reflexive antisymmetric non empty relational structure and e
be an element of the carrier of S. Then e = liminf NetStr(e).

(29) For every non empty reflexive relational structure S and for every ele-
ment e of the carrier of S holds NetStr(e) € NetUniv(S).

(30) Let R be a non empty complete lattice, Z be a net in R, and D be a
subset of R. Suppose D = {[ [r{Z(k), k ranges over elements of the carrier
of Z: k > j} : j ranges over elements of the carrier of Z}. Then D is non
empty and directed.

(31) Let L be a non empty complete lattice and S be a subset of L. Then
S € the topology of ConvergenceSpace(the Scott convergence of L) if and
only if S is inaccessible and upper.

(32) Let T be a non empty complete Scott TopLattice. Then the topological
structure of T'= ConvergenceSpace(the Scott convergence of T').

(33) Let T be a non empty complete TopLattice. Suppose the topological
structure of T'= ConvergenceSpace(the Scott convergence of T'). Let S be
a subset of T'. Then S is open if and only if S is inaccessible and upper.

(34) Let T be a non empty complete TopLattice. Suppose the topological
structure of T' = ConvergenceSpace(the Scott convergence of T'). Then T
is Scott.

Let R be a complete non empty lattice. Note that the Scott convergence of
R has (CONSTANTS) property.

Let R be a complete non empty lattice. Observe that the Scott convergence
of R has (SUBNETS) property.

The following proposition is true
(35) Let S be a non empty 1-sorted structure, N be a net in S, X be a set,

and M be a subnet of N. If M = N~!(X), then for every element i of the
carrier of M holds M (i) € X.

Let L be a non empty complete lattice. The functor sigma L yielding a family
of subsets of L is defined as follows:

(Def. 12) sigma L = the topology of ConvergenceSpace(the Scott convergence of
L).
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One can prove the following propositions:

(36) For every continuous complete Scott TopLattice L and for every element
x of L holds 7z is open.

(37) For every non empty complete TopLattice T" such that the topology of
T = sigmaT holds T is Scott.

Let R be a continuous non empty complete lattice. Observe that the Scott
convergence of R is topological.
We now state a number of propositions:

(38) Let T be a continuous non empty complete Scott TopLattice, = be an
element of the carrier of 7', and N be anet in T'. If N € NetUniv(7'), then
x is S-limit of V iff x € Lim N.

(39) Let L be a complete non empty poset. Suppose the Scott convergence of
L has (ITERATED LIMITS) property. Then L is continuous.

(40) Let T be a complete Scott non empty TopLattice. Then T is continuous
if and only if Convergence(7") = the Scott convergence of T'.

(41)?  For every complete Scott non empty TopLattice T and for every upper
subset S of T such that S is open holds S is open.

(42) Let L be a non empty relational structure, S be an upper subset of L,
and x be an element of L. If x € S, then T2 C S.

(43) Let L be a non empty complete continuous Scott TopLattice, p be an
element of L, and S be a subset of L. If S is open and p € S, then there
exists an element ¢ of L such that ¢ < p and g € S.

(44) Let L be a non empty complete continuous Scott TopLattice and p be
an element of L. Then {}¢, g ranges over elements of L: ¢ < p} is a basis
of p.

(45)  For every complete continuous Scott non empty TopLattice 7" holds {fz :
x ranges over elements of T'} is a basis of T'.

(46)> Let T be a complete continuous Scott non empty TopLattice and S be
an upper subset of 7. Then S is open if and only if .S is open.

(47) For every complete continuous Scott non empty TopLattice 7" and for
every element p of T" holds IntTp = 1p.

(48) Let T be a complete continuous Scott non empty TopLattice and S be
a subset of T. Then Int S = [ J{1z, z ranges over elements of T: {z C S}.
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