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Summary. The aim of this paper is to formalize the second part of Chap-
ter I Section 1 (1.9-1.19) in [12]. Definitions of Scott’s auxiliary and approxima-
ting relations are introduced in this work. We showed that in a meet-continuous
lattice, the way-below relation is the intersection of all approximating auxiliary
relations (proposition (40) — compare 1.13 in [12, pp. 43-47]). By (41) a con-
tinuous lattice is a complete lattice in which < is the smallest approximating
auxiliary relation. The notions of the strong interpolation property and the in-
terpolation property are also introduced.

MML Identifier: WAYBEL_4.

The articles [21], [25], [19], [10], [23], [24], [20], [9], [3], [26], [28], [7], [8], [27],
2], [4], [22], [18], [1], [17], [13], [29], [14], [15], [5], [11], [16], and [6] provide the

notation and terminology for this paper.

1. AUXILIARY RELATIONS

Let L be a 1-sorted structure.
(Def. 1) A binary relation on the carrier of L is called a binary relation on L.

Let L be a non empty reflexive relational structure. The functor <, yields
a binary relation on L and is defined as follows:

(Def. 2) For all elements z, y of L holds (x, y) € <, iff z < y.

Let L be a relational structure. The functor <;, yielding a binary relation
on L is defined by:
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(Def. 3) <y, = the internal relation of L.

Let L be a relational structure and let R be a binary relation on L. We say
that R is auxiliary(i) if and only if:

(Def. 4) For all elements z, y of L such that (x, y) € R holds z < y.
We say that R is auxiliary(ii) if and only if:
(Def. 5) For all elements z, y, z, u of L such that u < z and (x, y) € Randy < z
holds (u, z) € R.
Let L be a non empty relational structure and let R be a binary relation on
L. We say that R is auxiliary(iii) if and only if:
(Def. 6) For all elements x, y, z of L such that (x, z) € R and (y, z) € R holds
(zUy, z) € R.
We say that R is auxiliary(iv) if and only if:
(Def. 7)  For every element x of L holds (L, z) € R.

Let L be a non empty relational structure and let R be a binary relation on
L. We say that R is auxiliary if and only if:

(Def. 8) R is auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv).

Let L be a non empty relational structure. Note that every binary relation
on L which is auxiliary is also auxiliary(i), auxiliary(ii), auxiliary(iii), and au-
xiliary(iv) and every binary relation on L which is auxiliary(i), auxiliary(ii),
auxiliary(iii), and auxiliary(iv) is also auxiliary.

Let L be a lower-bounded transitive antisymmetric relational structure with
l.u.b.’s. Note that there exists a binary relation on L which is auxiliary.

Next we state the proposition

(1) Let L be a lower-bounded sup-semilattice, Ay be an auxiliary binary
relation on L, and x, y, z, u be elements of L. If (z, z) € A; and (y,
u) € Ay, then (x Uy, zUu) € A;.

Let L be a lower-bounded sup-semilattice. Observe that every binary relation
on L which is auxiliary is also transitive.

Let L be a relational structure. Note that <y, is auxiliary(i).

Let L be a transitive relational structure. One can verify that <; is auxi-
liary(ii).

Let L be an antisymmetric relational structure with l.u.b.’s. One can check
that <y, is auxiliary(iii).

Let L be a lower-bounded antisymmetric non empty relational structure.
Note that < is auxiliary(iv).

In the sequel a will denote a set.

Let L be a lower-bounded sup-semilattice. The functor Aux(L) is defined as
follows:

(Def. 9) a € Aux(L) iff a is an auxiliary binary relation on L.

Let L be a lower-bounded sup-semilattice. Note that Aux(L) is non empty.
The following two propositions are true:
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(2) For every lower-bounded sup-semilattice L and for every auxiliary binary
relation A7 on L holds A; C <;,.
(3) For every lower-bounded sup-semilattice L holds T(Aux(L),C) = <L -

Let L be a lower-bounded sup-semilattice. Note that (Aux(L), C) is upper-
bounded.

Let L be a non empty relational structure. The functor AuxBottom(L) yields
a binary relation on L and is defined as follows:

(Def. 10) For all elements z, y of L holds (x, y) € AuxBottom(L) iff z = L.

Let L be a lower-bounded sup-semilattice. Observe that AuxBottom (L) is
auxiliary.

The following propositions are true:

(4) For every lower-bounded sup-semilattice L and for every auxiliary binary
relation A; on L holds AuxBottom(L) C A;.

(5) For every lower-bounded sup-semilattice L and for every auxiliary binary
relation Ay on L holds L au(r),cy = AuxBottom(L).

Let L be a lower-bounded sup-semilattice. One can verify that (Aux(L), C)
is lower-bounded.

The following two propositions are true:

(6) Let L be a lower-bounded sup-semilattice and a, b be auxiliary binary
relations on L. Then a Nb is an auxiliary binary relation on L.

(7) Let L be a lower-bounded sup-semilattice and X be a non empty subset
of (Aux(L),C). Then ()X is an auxiliary binary relation on L.

Let L be a lower-bounded sup-semilattice. Note that (Aux(L), C) has g.1.b.’s.

Let L be a lower-bounded sup-semilattice. Observe that (Aux(L),C) is com-
plete.

Let L be a non empty relational structure, let x be an element of L, and
let A; be a binary relation on L. The functor | A, yields a subset of L and is
defined by:

(Def. 11) |4, = {y,y ranges over elements of L: {(y, ) € A1}.
The functor § 4, % yielding a subset of L is defined by:
(Def. 12) 1, 2 = {y, y ranges over elements of L: (z, y) € A1}.

One can prove the following proposition

(8) Let L be a lower-bounded sup-semilattice, x be an element of L, and A;
be an auxiliary(i) binary relation on L. Then |4,z C |z.

Let L be a lower-bounded sup-semilattice, let x be an element of L, and let
A; be an auxiliary(ii) auxiliary(iii) auxiliary(iv) binary relation on L. Observe
that |4, is directed lower and non empty.

Let L be a lower-bounded sup-semilattice and let A; be an auxiliary(ii)

auxiliary(iii) auxiliary(iv) binary relation on L. The functor | A; yields a map
from L into (Ids(L),C) and is defined by:

(Def. 13) For every element z of L holds ({A1)(x) = {4,.
We now state three propositions:
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(9) Let L be a non empty relational structure, A; be a binary relation on
L, a be a set, and y be an element of L. Then a € |4,y if and only if {a,
y) € A
(10) Let L be a sup-semilattice, A; be a binary relation on L, and y be an
element of L. Then a € 1, y if and only if (y, a) € Ay.

(11) Let L be a lower-bounded sup-semilattice, A; be an auxiliary binary
relation on L, and x be an element of L. If A; = the internal relation of
L, then |4,z = |z.
Let L be a non empty poset. The functor MonSet(L) yields a strict relational
structure and is defined by the conditions (Def. 14).
(Def. 14)(i)  a € the carrier of MonSet(L) iff there exists a map s from L into
(Ids(L), C€) such that a = s and s is monotone and for every element z of
L holds s(x) C |z, and
(ii)  for all sets ¢, d holds (¢, d) € the internal relation of MonSet(L) iff
there exist maps f, g from L into (Ids(L),C) such that ¢ = f and d =g
and ¢ € the carrier of MonSet(L) and d € the carrier of MonSet(L) and
f<g
One can prove the following propositions:
(12) Let L be a lower-bounded sup-semilattice. Then MonSet(L) is a full
relational substructure of ((Ids(L), C))the carrier of L
(13) Let L be a lower-bounded sup-semilattice, A; be an auxiliary binary
relation on L, and z, y be elements of L. If x < y, then 4,2 C {a,v.
Let L be a lower-bounded sup-semilattice and let A; be an auxiliary binary
relation on L. Note that | A4; is monotone.
Next we state the proposition
(14) Let L be a lower-bounded sup-semilattice and A; be an auxiliary binary
relation on L. Then [A; € the carrier of MonSet(L).
Let L be a lower-bounded sup-semilattice. Observe that MonSet(L) is non
empty.
Next we state several propositions:
(15) For every lower-bounded sup-semilattice L holds IdsMap(L) € the car-
rier of MonSet(L).

(16) For every lower-bounded sup-semilattice L and for every auxiliary binary
relation A; on L holds {A; < IdsMap(L).

(17) For every lower-bounded non empty poset L and for every ideal I of L
holds 17, € I.

(18) For every upper-bounded non empty poset L and for every filter ' of L
holds Ty, € F.

(19) For every lower-bounded non empty poset L holds |[(Lr)={Ll.}.
(20) For every upper-bounded non empty poset L holds 1(Tr) ={Tr}.

In the sequel L is a lower-bounded sup-semilattice, A; is an auxiliary binary
relation on L, and z is an element of L.



AUXILIARY AND APPROXIMATING RELATIONS 183

The following propositions are true:
(21) The carrier of L — {11} is a map from L into (Ids(L), C).
(22) The carrier of L — {11} € the carrier of MonSet(L).
(23) (the carrier of L — {11}, [ A1) € the internal relation of MonSet(L).

Let us consider L. Note that MonSet(L) is upper-bounded.
Let us consider L. The functor Rel2Map(L) yields a map from (Aux(L), C)
into MonSet(L) and is defined by:
(Def. 15) For every A; holds (Rel2Map(L))(A;) = [ A;.
The following propositions are true:
(24) For all auxiliary binary relations R, Ro on L such that Ry C Ry holds
LRy < |Ry.
(25) For all auxiliary binary relations R, Ro on L such that Ry C Ry holds
Iryz C gy
Let us consider L. One can verify that Rel2Map(L) is monotone.
Let us consider L. The functor Map2Rel(L) yields a map from MonSet(L)
into (Aux(L), C) and is defined by the condition (Def. 16).
(Def. 16) Let s be a set. Suppose s € the carrier of MonSet(L). Then there exists
an auxiliary binary relation A; on L such that
(i) A} = (Map2Rel(L))(s), and
(ii)  for all sets x, y holds (z, y) € Ay iff there exist elements 2/, ¢’ of L and
there exists a map s’ from L into (Ids(L), C) such that 2’ =z and ¢/ =y
and s’ = s and 2’ € §' (/).
Let us consider L. One can check that Map2Rel(L) is monotone.
We now state two propositions:
(26) Map2Rel(L) - Rel2Map(L) = idgom Rel2Map(L)-
(27) Releap(L) ’ MapQRel(L) = idthe carrier of MonSet(L)+

Let us consider L. Observe that Rel2Map(L) is one-to-one.
The following three propositions are true:

(28) (Rel2Map(L))~! = Map2Rel(L).

(29) Rel2Map(L) is isomorphic.

(30) For every complete lattice L and for every element x of L holds ({I,I
ranges over ideals of L: x < sup [} = .

The scheme LambdaC’ concerns a non empty relational structure A, a unary
functor F yielding a set, a unary functor G yielding a set, and a unary predicate
P, and states that:
There exists a function f such that dom f = the carrier of A and
for every element = of A holds if P[x], then f(z) = F(z) and if
not P[z], then f(z) = G(x)

for all values of the parameters.

Let L be a semilattice and let I be an ideal of L. The functor DownMap(I)
yields a map from L into (Ids(L),C) and is defined by:
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(Def. 17) For every element x of L holds if < sup I, then (DownMap([))(z) =
lzN T and if € sup I, then (DownMap(I))(z) = |x.
One can prove the following two propositions:
(31) For every semilattice L and for every ideal I of L holds DownMap(I) €
the carrier of MonSet(L).
(32) Let L be an antisymmetric reflexive relational structure with g.l.b.’s,
x be an element of L, and D be a non empty lower subset of L. Then

{z} D= |zND.

2. APPROXIMATING RELATIONS

Let L be a non empty relational structure and let A; be a binary relation
on L. We say that A; is approximating if and only if:
(Def. 18) For every element z of L holds z = sup | 4,z.
Let L be a non empty poset and let m; be a map from L into (Ids(L), C).
We say that m; is approximating if and only if:
(Def. 19) For every element z of L there exists a subset i1 of L such that i; = m(z)
and x = supi;.
Next we state two propositions:
(33) For every lower-bounded meet-continuous semilattice L and for every
ideal I of L holds DownMap(7) is approximating.
(34) Every lower-bounded continuous lattice is meet-continuous.
Let us mention that every lower-bounded lattice which is continuous is also
meet-continuous.
The following proposition is true
(35) For every lower-bounded continuous lattice L and for every ideal I of L
holds DownMap(I) is approximating.
Let L be a non empty reflexive antisymmetric relational structure. Observe
that <, is auxiliary(i).
Let L be a non empty reflexive transitive relational structure. One can check
that <z, is auxiliary(ii).
Let L be a poset with L.u.b.’s. One can verify that <, is auxiliary(iii).
Let L be an inf-complete non empty poset. Note that <, is auxiliary(iii).
Let L be a lower-bounded antisymmetric reflexive non empty relational
structure. Observe that <y, is auxiliary(iv).
Next we state two propositions:
(36) For every complete lattice L and for every element z of L holds |« ,z =
lz.
(37) For every lattice L holds <y, is approximating.
Let L be a lower-bounded continuous lattice. One can verify that <, is
approximating.
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Let L be a complete lattice. Observe that there exists an auxiliary binary
relation on L which is approximating.
Let L be a complete lattice. The functor App(L) is defined as follows:

(Def. 20) a € App(L) iff a is an approximating auxiliary binary relation on L.
Let L be a complete lattice. Note that App(L) is non empty.
Next we state three propositions:

(38) Let L be a complete lattice and m; be a map from L into (Ids(L), C).
Suppose m; is approximating and my € the carrier of MonSet(L). Then
there exists an approximating auxiliary binary relation A; on L such that
A1 = (Map2Rel(L))(mq).

(39) For every complete lattice L and for every element z of L holds
N{(DownMap(I))(x) : I ranges over ideals of L} = |x.

(40) Let L be a lower-bounded meet-continuous lattice and = be an element
of L. Then N{la,7, A1 ranges over auxiliary binary relations on L: A; €
App(L)} = lz.

In the sequel L denotes a complete lattice.
Next we state two propositions:

(41) L is continuous if and only if for every approximating auxiliary binary
relation R on L holds < C R and <, is approximating.

(42) L is continuous if and only if the following conditions are satisfied:

(i) L is meet-continuous, and
(ii)  there exists an approximating auxiliary binary relation R on L such that
for every approximating auxiliary binary relation R’ on L holds R C R'.
Let L be a non empty relational structure and let A; be a binary relation
on L. We say that A; satisfies strong interpolation property if and only if:
(Def. 21) For all elements z, z of L such that (x, z) € A; and z # z there exists
an element y of L such that (z, y) € 4; and (y, z) € A; and = # y.
Let L be a non empty relational structure and let A; be a binary relation
on L. We say that A; satisfies interpolation property if and only if:
(Def. 22) For all elements z, z of L such that (z, z) € A; there exists an element
y of L such that (z, y) € 41 and (y, z) € A;.
Next we state two propositions:

(43) Let L be a non empty relational structure, A; be a binary relation on
L, and z, z be elements of L. If (z, z) € A; and = = z, then there exists
an element y of L such that (z, y) € 4; and (y, z) € A;.

(44) Let L be a non empty relational structure and A; be a binary relation
on L. Suppose A; satisfies strong interpolation property. Then Ay satisfies
interpolation property.

Let L be a non empty relational structure. Observe that every binary relation
on L which satisfies strong interpolation property satisfies also interpolation
property.
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In the sequel A; is an auxiliary binary relation on L and z, y, z are elements
of L.
The following four propositions are true:

(45) Let A; be an approximating auxiliary binary relation on L. If z £ vy,
then there exists an element u of L such that (u, ) € A; and u £ y.
(46) Let R be an approximating auxiliary binary relation on L. If (x, z) € R

and x # z, then there exists y such that x < y and (y, z) € R and = # y.
(47) Let R be an approximating auxiliary binary relation on L. Suppose z <
z and x # z. Then there exists an element y of L such that (z, y) € R
and (y, z) € Rand z # y.
(48) For every lower-bounded continuous lattice L holds <, satisfies strong
interpolation property.
Let L be a lower-bounded continuous lattice. Observe that < satisfies
strong interpolation property.
Next we state two propositions:
(49) Let L be a lower-bounded continuous lattice and z, y be elements of L. If
x < y, then there exists an element 2’ of L such that z < 2’ and 2’ < y.
(50) Let L be a lower-bounded continuous lattice and x, y be elements of L.
Then z < y if and only if for every non empty directed subset D of L
such that y < sup D there exists an element d of L such that d € D and
T L d.

3. EXERCISES

Let L be a relational structure, let X be a subset of L, and let R be a binary
relation on the carrier of L. We say that X is directed w.r.t. R if and only if:

(Def. 23) For all elements z, y of L such that z € X and y € X there exists an
element z of L such that z € X and (z, z) € R and (y, z) € R.

We now state the proposition

(51) Let L be a relational structure and X be a subset of L. Suppose X is
directed w.r.t. the internal relation of L. Then X is directed.

Let L be a relational structure, let X be a set, let « be an element of L, and
let R be a binary relation on the carrier of L. We say that x is maximal w.r.t.
X, R if and only if:
(Def. 24) z € X and it is not true that there exists an element y of L such that
y€ X and y # z and (z, y) € R.

Let L be a relational structure, let X be a set, and let = be an element of
L. We say that = is maximal in X if and only if:

(Def. 25) z is maximal w.r.t. X, the internal relation of L.
One can prove the following proposition



AUXILIARY AND APPROXIMATING RELATIONS 187

(52) Let L be a relational structure, X be a set, and x be an element of L.
Then x is maximal in X if and only if the following conditions are satisfied:
(i) z€ X, and
(ii) it is not true that there exists an element y of L such that y € X and
x <y.
Let L be a relational structure, let X be a set, let « be an element of L, and
let R be a binary relation on the carrier of L. We say that z is minimal w.r.t.
X, R if and only if:
(Def. 26) z € X and it is not true that there exists an element y of L such that
y€ X and y # x and (y, =) € R.

Let L be a relational structure, let X be a set, and let = be an element of
L. We say that z is minimal in X if and only if:

(Def. 27) z is minimal w.r.t. X, the internal relation of L.
We now state several propositions:

(53) Let L be a relational structure, X be a set, and x be an element of L.
Then x is minimal in X if and only if the following conditions are satisfied:
(i) z€ X, and
(ii) it is not true that there exists an element y of L such that y € X and
x> y.
(54) If A; satisfies strong interpolation property, then for every x such that
there exists y which is maximal w.r.t. | 4,2, A; holds (x, z) € A;.

(55) If for every x such that there exists y which is maximal w.r.t. { 4,7, 4;
holds (z, ) € Ay, then A; satisfies strong interpolation property.

(56) 1If A; satisfies interpolation property, then for every x holds |4,z is
directed w.r.t. A;.

(57) If for every = holds | 4,7 is directed w.r.t. Ay, then A; satisfies interpo-
lation property.

(58) Let R be an approximating auxiliary binary relation on L. Suppose R
satisfies interpolation property. Then R satisfies strong interpolation pro-
perty.

Let us consider L. One can verify that every approximating auxiliary bi-
nary relation on L which satisfies interpolation property satisfies also strong
interpolation property.
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