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Irreducible and Prime Elements!

Beata Madras

Summary. In the paper open and order generating subsets are defined.
Irreducible and prime elements are also defined. The article includes definitions
and facts presented in [16, pp. 68-72].

MML Identifier: WAYBEL_6.

The articles [29], [25], [1], [15], [28], [30], [31], [9], [23], [2], [24], [4], [11], [12],
[10], [13], [3], [27], [21], [22], [5], [18], [6], [14], [33], [19], [20], [8], [17], [32], [26],

and [7] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper L denotes a lattice and [ denotes an element of L.

The scheme NonUniqEzD1 concerns a non empty relational structure A, a
subset B of A, a non empty subset C of A, and a binary predicate P, and states
that:

There exists a function f from B into C such that for every element
e of Aif e € B, then there exists an element u of A such that
u € C and u = f(e) and Ple, u]
provided the following requirement is met:
e For every element e of A such that e € BB there exists an element
u of A such that u € C and Ple, u.

Let L be a lattice, let A be a non empty subset of the carrier of L, let f be
a function from A into A, and let n be an element of N. Then f is a function
from A into A.

!This work has been partially supported by the Office of Naval Research Grant N00014-95-
1-1336.

@ 1997 University of Bialystok
233 ISSN 14262630



234 BEATA MADRAS

Let L be a lattice, let C', D be non empty subsets of the carrier of L, let
f be a function from C into D, and let ¢ be an element of C. Then f(c) is an
element of L.

Let L be a non empty poset. One can check that every chain of L is filtered
and directed.

Let us observe that there exists a lattice which is strict, continuous, distri-
butive, and lower-bounded.

Next we state three propositions:

(1) Let S, T be semilattices and f be a map from S into 7. Then f is
meet-preserving if and only if for all elements x, y of S holds f(zMy) =
f@) 1 (y).

(2) Let S, T be sup-semilattices and f be a map from S into 7. Then f is
join-preserving if and only if for all elements z, y of S holds f(z U y) =
fl@)uf(y).

(3) Let S, T be lattices and f be a map from S into 7. Suppose T is distri-
butive and f is meet-preserving, join-preserving, and one-to-one. Then S
is distributive.

Let S, T be complete lattices. Observe that there exists a map from S into
T which is sups-preserving.
The following proposition is true
(4) Let S, T be complete lattices and f be a sups-preserving map from S into

T. Suppose T is meet-continuous and f is meet-preserving and one-to-one.
Then S is meet-continuous.

2. OPEN SETS

Let L be a non empty reflexive relational structure and let X be a subset of
L. We say that X is open if and only if:

(Def. 1) For every element = of L such that © € X there exists an element y of
L such that y € X and y < x.
The following two propositions are true:
(5) Let L be an up-complete lattice and X be an upper subset of L. Then
X is open if and only if for every element x of L such that x € X holds
N X #0.
(6) Let L be an up-complete lattice and X be an upper subset of L. Then
X is open if and only if X = (J{fz, 2 ranges over elements of L: x € X}.
Let L be an up-complete lower-bounded lattice. Note that there exists a
filter of L which is open.
The following three propositions are true:
(7) For every lower-bounded continuous lattice L and for every element x of
L holds {z is open.
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(8) Let L be a lower-bounded continuous lattice and z, y be elements of L.
If x < y, then there exists an open filter F' of L such that y € F and
F C 1z

(9) Let L be a complete lattice, X be an open upper subset of L, and = be
an element of L. If z € — X, then there exists an element m of L such that
x < m and m is maximal in —X.

3. IRREDUCIBLE ELEMENTS

Let G be a non empty relational structure and let g be an element of G. We
say that g is meet-irreducible if and only if:

(Def. 2) For all elements z, y of G such that g =2 My holds z = g or y = g.
We introduce g is irreducible as a synonym of g is meet-irreducible.
Let G be a non empty relational structure and let g be an element of G. We
say that g is join-irreducible if and only if:
(Def. 3) For all elements x, y of G such that g =z Uy holds x = g or y = g.
Let L be a non empty relational structure. The functor IRR(L) yielding a
subset of L is defined as follows:
(Def. 4) For every element z of L holds = € IRR(L) iff z is irreducible.
The following proposition is true
(10) For every upper-bounded antisymmetric non empty relational structure
L with g.l.b.’s holds T, is irreducible.
Let L be an upper-bounded antisymmetric non empty relational structure
with g.1.b.’s. Observe that there exists an element of L which is irreducible.
We now state four propositions:
(11) Let L be a semilattice and = be an element of L. Then z is irreducible if
and only if for every finite non empty subset A of L such that x = inf A
holds x € A.
(12) For every lattice L and for every element [ of L such that 71\ {l} is a
filter of L holds [ is irreducible.
(13) Let L be a lattice, p be an element of L, and F be a filter of L. If p is
maximal in —F) then p is irreducible.
(14) Let L be a lower-bounded continuous lattice and z, y be elements of
L. Suppose y £ x. Then there exists an element p of L such that p is
irreducible and x < p and y £ p.

4. ORDER GENERATING SETS

Let L be a non empty relational structure and let X be a subset of L. We
say that X is order-generating if and only if:
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(Def. 5) For every element x of L holds inf TzNX exists in L and x = inf(TzNX).
The following propositions are true:

(15) Let L be an up-complete lower-bounded lattice and X be a subset of L.
Then X is order-generating if and only if for every element [ of L there
exists a subset Y of X such that [ = [ [LY.

(16) Let L be an up-complete lower-bounded lattice and X be a subset of
L. Then X is order-generating if and only if for every subset Y of L such
that X CY and for every subset Z of Y holds [ | Z € Y holds the carrier
of L=Y.

(17) Let L be an up-complete lower-bounded lattice and X be a subset of L.
Then X is order-generating if and only if for all elements I1, I of L such
that ls £ [ there exists an element p of L such that p € X and [; < p and
la £ p.

(18) Let L be a lower-bounded continuous lattice and X be a subset of L. If
X =1IRR(L) \ {Tr}, then X is order-generating.

(19) Let L be a lower-bounded continuous lattice and X, Y be subsets of L.
If X is order-generating and X C Y, then Y is order-generating.

5. PRIME ELEMENTS

Let L be a non empty relational structure and let [ be an element of L. We
say that [ is prime if and only if:
(Def. 6) For all elements z, y of L such that x My <[ holds z <l or y <.
Let L be a non empty relational structure. The functor PRIME(L) yielding
a subset of L is defined by:
(Def. 7) For every element = of L holds z € PRIME(L) iff x is prime.

Let L be a non empty relational structure and let [ be an element of L. We
say that [ is co-prime if and only if:
(Def. 8) ™ is prime.
We now state two propositions:
(20) For every upper-bounded antisymmetric non empty relational structure
L holds T, is prime.
(21) For every lower-bounded antisymmetric non empty relational structure
L holds Ly, is co-prime.
Let L be an upper-bounded antisymmetric non empty relational structure.
Note that there exists an element of I which is prime.
The following propositions are true:
(22) Let L be a semilattice and [ be an element of L. Then [ is prime if and

only if for every finite non empty subset A of L such that [ > inf A there
exists an element a of L such that a € A and [ > a.
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(23) Let L be a sup-semilattice and x be an element of L. Then z is co-prime
if and only if for every finite non empty subset A of L such that x < sup A
there exists an element a of L such that a € A and z < a.

(24) For every lattice L and for every element [ of L such that [ is prime holds
[ is irreducible.

(25) Let given [. Then [ is prime if and only if for arbitrary = and for every
map f from L into Q{Cx} such that for every element p of L holds f(p) =0
iff p <1 holds f is meet-preserving and join-preserving.

(26) Let L be an upper-bounded lattice and ! be an element of L. If [ # T,
then [ is prime iff —|[ is a filter of L.

(27) For every distributive lattice L and for every element ! of L holds [ is
prime iff [ is irreducible.

(28) For every distributive lattice L holds PRIME(L) = IRR(L).

(29) Let L be a Boolean lattice and [ be an element of L. Suppose | # Tr.
Then [ is prime if and only if for every element x of L such that x > [
holds x = T.

(30) Let L be a continuous distributive lower-bounded lattice and [ be an
element of L. Suppose [ # T. Then [ is prime if and only if there exists
an open filter /' of L such that [ is maximal in —F.

(31) Let L be a relational structure and X be a subset of the carrier of L.

Then Xx the carrier of 1 15 @ map from L into 2{3}.

(32) Let L be a non empty relational structure and p, = be elements of L.
Then X_ | the carrier of 1(z) = 0 if and only if = < p.

(33) Let L be an upper-bounded lattice, f be a map from L into Q{C@}, and

p be a prime element of L. Suppose X_|, the carrier of L = f- Then f is
meet-preserving and join-preserving.

(34) For every complete lattice L such that PRIME(L) is order-generating
holds L is distributive and meet-continuous.

(35) For every lower-bounded continuous lattice L holds L is distributive iff
PRIME(L) is order-generating.

(36) For every lower-bounded continuous lattice L holds L is distributive iff
L is Heyting.

(37) Let L be a continuous complete lattice. Suppose that for every element
[ of L there exists a subset X of L such that [ = sup X and for every
element x of L such that x € X holds x is co-prime. Let [ be an element
of L. Then | = | |, ({1 " PRIME(L°P)).

(38) Let L be a complete lattice. Then L is completely-distributive if and
only if the following conditions are satisfied:

(i) L is continuous, and
(ii) for every element [ of L there exists a subset X of L such that [ = sup X
and for every element x of L such that x € X holds z is co-prime.
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(39) Let L be a complete lattice. Then L is completely-distributive if and
only if L is distributive and continuous and L°P is continuous.
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