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Summary. In the paper open and order generating subsets are defined.
Irreducible and prime elements are also defined. The article includes definitions
and facts presented in [16, pp. 68–72].
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The articles [29], [25], [1], [15], [28], [30], [31], [9], [23], [2], [24], [4], [11], [12],
[10], [13], [3], [27], [21], [22], [5], [18], [6], [14], [33], [19], [20], [8], [17], [32], [26],
and [7] provide the notation and terminology for this paper.

1. Preliminaries

In this paper L denotes a lattice and l denotes an element of L.
The scheme NonUniqExD1 concerns a non empty relational structure A, a

subset B of A, a non empty subset C of A, and a binary predicate P, and states
that:

There exists a function f from B into C such that for every element
e of A if e ∈ B, then there exists an element u of A such that
u ∈ C and u = f(e) and P[e, u]

provided the following requirement is met:
• For every element e of A such that e ∈ B there exists an element

u of A such that u ∈ C and P[e, u].
Let L be a lattice, let A be a non empty subset of the carrier of L, let f be

a function from A into A, and let n be an element of N. Then fn is a function
from A into A.

1This work has been partially supported by the Office of Naval Research Grant N00014-95-
1-1336.
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Let L be a lattice, let C, D be non empty subsets of the carrier of L, let
f be a function from C into D, and let c be an element of C. Then f(c) is an
element of L.
Let L be a non empty poset. One can check that every chain of L is filtered

and directed.
Let us observe that there exists a lattice which is strict, continuous, distri-

butive, and lower-bounded.
Next we state three propositions:

(1) Let S, T be semilattices and f be a map from S into T . Then f is
meet-preserving if and only if for all elements x, y of S holds f(x ⊓ y) =
f(x) ⊓ f(y).

(2) Let S, T be sup-semilattices and f be a map from S into T . Then f is
join-preserving if and only if for all elements x, y of S holds f(x ⊔ y) =
f(x) ⊔ f(y).

(3) Let S, T be lattices and f be a map from S into T . Suppose T is distri-
butive and f is meet-preserving, join-preserving, and one-to-one. Then S

is distributive.

Let S, T be complete lattices. Observe that there exists a map from S into
T which is sups-preserving.
The following proposition is true

(4) Let S, T be complete lattices and f be a sups-preserving map from S into
T . Suppose T is meet-continuous and f is meet-preserving and one-to-one.
Then S is meet-continuous.

2. Open sets

Let L be a non empty reflexive relational structure and let X be a subset of
L. We say that X is open if and only if:

(Def. 1) For every element x of L such that x ∈ X there exists an element y of
L such that y ∈ X and y ≪ x.

The following two propositions are true:

(5) Let L be an up-complete lattice and X be an upper subset of L. Then
X is open if and only if for every element x of L such that x ∈ X holds
↓↓x ∩X 6= ∅.

(6) Let L be an up-complete lattice and X be an upper subset of L. Then
X is open if and only if X =

⋃
{↑↑x, x ranges over elements of L: x ∈ X}.

Let L be an up-complete lower-bounded lattice. Note that there exists a
filter of L which is open.
The following three propositions are true:

(7) For every lower-bounded continuous lattice L and for every element x of
L holds ↑↑x is open.
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(8) Let L be a lower-bounded continuous lattice and x, y be elements of L.
If x ≪ y, then there exists an open filter F of L such that y ∈ F and
F ⊆ ↑↑x.

(9) Let L be a complete lattice, X be an open upper subset of L, and x be
an element of L. If x ∈ −X, then there exists an element m of L such that
x ¬ m and m is maximal in −X.

3. Irreducible elements

Let G be a non empty relational structure and let g be an element of G. We
say that g is meet-irreducible if and only if:

(Def. 2) For all elements x, y of G such that g = x ⊓ y holds x = g or y = g.

We introduce g is irreducible as a synonym of g is meet-irreducible.
Let G be a non empty relational structure and let g be an element of G. We

say that g is join-irreducible if and only if:

(Def. 3) For all elements x, y of G such that g = x ⊔ y holds x = g or y = g.

Let L be a non empty relational structure. The functor IRR(L) yielding a
subset of L is defined as follows:

(Def. 4) For every element x of L holds x ∈ IRR(L) iff x is irreducible.

The following proposition is true

(10) For every upper-bounded antisymmetric non empty relational structure
L with g.l.b.’s holds ⊤L is irreducible.

Let L be an upper-bounded antisymmetric non empty relational structure
with g.l.b.’s. Observe that there exists an element of L which is irreducible.
We now state four propositions:

(11) Let L be a semilattice and x be an element of L. Then x is irreducible if
and only if for every finite non empty subset A of L such that x = inf A
holds x ∈ A.

(12) For every lattice L and for every element l of L such that ↑l \ {l} is a
filter of L holds l is irreducible.

(13) Let L be a lattice, p be an element of L, and F be a filter of L. If p is
maximal in −F, then p is irreducible.

(14) Let L be a lower-bounded continuous lattice and x, y be elements of
L. Suppose y 6¬ x. Then there exists an element p of L such that p is
irreducible and x ¬ p and y 6¬ p.

4. Order generating sets

Let L be a non empty relational structure and let X be a subset of L. We
say that X is order-generating if and only if:
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(Def. 5) For every element x of L holds inf ↑x∩X exists in L and x = inf(↑x∩X).

The following propositions are true:

(15) Let L be an up-complete lower-bounded lattice and X be a subset of L.
Then X is order-generating if and only if for every element l of L there
exists a subset Y of X such that l = ⌈−⌉LY.

(16) Let L be an up-complete lower-bounded lattice and X be a subset of
L. Then X is order-generating if and only if for every subset Y of L such
that X ⊆ Y and for every subset Z of Y holds ⌈−⌉LZ ∈ Y holds the carrier
of L = Y.

(17) Let L be an up-complete lower-bounded lattice and X be a subset of L.
Then X is order-generating if and only if for all elements l1, l2 of L such
that l2 6¬ l1 there exists an element p of L such that p ∈ X and l1 ¬ p and
l2 6¬ p.

(18) Let L be a lower-bounded continuous lattice and X be a subset of L. If
X = IRR(L) \ {⊤L}, then X is order-generating.

(19) Let L be a lower-bounded continuous lattice and X, Y be subsets of L.
If X is order-generating and X ⊆ Y, then Y is order-generating.

5. Prime elements

Let L be a non empty relational structure and let l be an element of L. We
say that l is prime if and only if:

(Def. 6) For all elements x, y of L such that x ⊓ y ¬ l holds x ¬ l or y ¬ l.

Let L be a non empty relational structure. The functor PRIME(L) yielding
a subset of L is defined by:

(Def. 7) For every element x of L holds x ∈ PRIME(L) iff x is prime.

Let L be a non empty relational structure and let l be an element of L. We
say that l is co-prime if and only if:

(Def. 8) l` is prime.

We now state two propositions:

(20) For every upper-bounded antisymmetric non empty relational structure
L holds ⊤L is prime.

(21) For every lower-bounded antisymmetric non empty relational structure
L holds ⊥L is co-prime.

Let L be an upper-bounded antisymmetric non empty relational structure.
Note that there exists an element of L which is prime.
The following propositions are true:

(22) Let L be a semilattice and l be an element of L. Then l is prime if and
only if for every finite non empty subset A of L such that l ­ inf A there
exists an element a of L such that a ∈ A and l ­ a.
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(23) Let L be a sup-semilattice and x be an element of L. Then x is co-prime
if and only if for every finite non empty subset A of L such that x ¬ supA

there exists an element a of L such that a ∈ A and x ¬ a.

(24) For every lattice L and for every element l of L such that l is prime holds
l is irreducible.

(25) Let given l. Then l is prime if and only if for arbitrary x and for every

map f from L into 2
{x}
⊆ such that for every element p of L holds f(p) = ∅

iff p ¬ l holds f is meet-preserving and join-preserving.

(26) Let L be an upper-bounded lattice and l be an element of L. If l 6= ⊤L,

then l is prime iff −↓l is a filter of L.

(27) For every distributive lattice L and for every element l of L holds l is
prime iff l is irreducible.

(28) For every distributive lattice L holds PRIME(L) = IRR(L).

(29) Let L be a Boolean lattice and l be an element of L. Suppose l 6= ⊤L.

Then l is prime if and only if for every element x of L such that x > l

holds x = ⊤L.

(30) Let L be a continuous distributive lower-bounded lattice and l be an
element of L. Suppose l 6= ⊤L. Then l is prime if and only if there exists
an open filter F of L such that l is maximal in −F.

(31) Let L be a relational structure and X be a subset of the carrier of L.

Then χX,the carrier of L is a map from L into 2
{∅}
⊆ .

(32) Let L be a non empty relational structure and p, x be elements of L.
Then χ−↓p,the carrier of L(x) = ∅ if and only if x ¬ p.

(33) Let L be an upper-bounded lattice, f be a map from L into 2
{∅}
⊆ , and

p be a prime element of L. Suppose χ−↓p,the carrier of L = f. Then f is
meet-preserving and join-preserving.

(34) For every complete lattice L such that PRIME(L) is order-generating
holds L is distributive and meet-continuous.

(35) For every lower-bounded continuous lattice L holds L is distributive iff
PRIME(L) is order-generating.

(36) For every lower-bounded continuous lattice L holds L is distributive iff
L is Heyting.

(37) Let L be a continuous complete lattice. Suppose that for every element
l of L there exists a subset X of L such that l = supX and for every
element x of L such that x ∈ X holds x is co-prime. Let l be an element
of L. Then l =

⊔
L(↓↓l ∩ PRIME(Lop)).

(38) Let L be a complete lattice. Then L is completely-distributive if and
only if the following conditions are satisfied:

(i) L is continuous, and

(ii) for every element l of L there exists a subsetX of L such that l = supX

and for every element x of L such that x ∈ X holds x is co-prime.
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(39) Let L be a complete lattice. Then L is completely-distributive if and
only if L is distributive and continuous and Lop is continuous.
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