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The articles [15], [18], [19], [21], [20], [7], [8], [10], [1], [2], [6], [14], [11], [16], [12],
[17], [3], [4], [23], [9], [5], [22], and [13] provide the terminology and notation for
this paper.
Let L be a relational structure. We introduce L°P as a synonym of L.
We now state several propositions:
(1) For every relational structure L and for all elements z, y of L°P holds
<y iff x> Ay
(2) Let L be arelational structure, x be an element of L, and y be an element
of L°P. Then
(i) xz<wvyiff 2~ >y, and
(i) x> yiff 27 <y.
3

3)
(4) For every relational structure L holds L is reflexive iff L°P is reflexive.
(5)

5

For every relational structure L holds L is empty iff L°P is empty.

For every relational structure L holds L is antisymmetric iff L°P is anti-
symmetric.

(6) For every relational structure L holds L is transitive iff L°P is transitive.

(7) For every non empty relational structure L holds L is connected iff L°P
is connected.

Let L be a reflexive relational structure. One can check that L°P is reflexive.

Let L be a transitive relational structure. One can check that L°P is transi-
tive.

Let L be an antisymmetric relational structure. Note that L°P is antisym-
metric.
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Let L be a connected non empty relational structure. Observe that L°P is
connected.
One can prove the following propositions:
(8) Let L be a relational structure, = be an element of L, and X be a set.
Then
(i) z< X iff 27> X, and
(i) z>Xiff 2~ < X.
(9) Let L be a relational structure, 2 be an element of L°P, and X be a set.
Then
(i) z<Xiff nz > X, and
(i) x> Xiff mz < X.
(10) Let L be a relational structure and X be a set. Then sup X exists in L
if and only if inf X exists in L°P.
(11) Let L be a relational structure and X be a set. Then sup X exists in
L°P if and only if inf X exists in L.
(12) Let L be a non empty relational structure and X be a set. If sup X
exists in L or inf X exists in L, then | |, X = [ JzonyX.
(13) Let L be a non empty relational structure and X be a set. If inf X exists
in L or sup X exists in L°P, then [ [ X = |_|(Lop) X.
(14) For all relational structures L;, Lo such that the relational structure of
L, = the relational structure of Ly and Lq has g.1.b.’s holds L has g.1.b.’s.
(15) For all relational structures L;, Lo such that the relational structure of
L1 = the relational structure of Ly and L1 has l.u.b.’s holds Lo has l.u.b.’s.

(16) For every relational structure L holds L has g.1.b.’s iff L°P has Lu.b.’s.

(17) For every non empty relational structure L holds L is complete iff L°P
is complete.

Let L be a relational structure with g.l.b.’s. Note that L°P has l.u.b.’s.

Let L be a relational structure with L.u.b.’s. One can check that L°P has
g.l.b.’s.

Let L be a complete non empty relational structure. One can check that L°P
is complete.

The following propositions are true:

(18) Let L be a non empty relational structure, X be a subset of L, and Y be
a subset of L°P. If X =Y/, then fininfs(X) = finsups(Y’) and finsups(X) =
fininfs(Y").

(19) Let L be a relational structure, X be a subset of L, and Y be a subset
of L°P. If X =Y, then | X =1Y and 1X = |Y.

(20) Let L be a non empty relational structure,  be an element of L, and y
be an element of L°P. If x = y, then |x = Ty and Tz = |y.

(21) For every poset L with g.l.b.’s and for all elements z, y of L holds
zMNy=z Uy~
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(22) For every poset L with g.l.b.’s and for all elements z, y of L°P holds
Az lay =z Uy.
(23) For every poset L with Lu.b.’s and for all elements x, y of L holds
zUy=x My~
(24) For every poset L with Lu.b.’s and for all elements z, y of L°P holds
YUy =xly.
(25) For every lattice L holds L is distributive iff L°P is distributive.
Let L be a distributive lattice. One can check that L°P is distributive.
Next we state a number of propositions:
(26) Let L be a relational structure and z be a set. Then z is a directed subset
of L if and only if x is a filtered subset of L°P.
(27) Let L be a relational structure and z be a set. Then z is a directed subset
of L°P if and only if z is a filtered subset of L.
(28) Let L be a relational structure and x be a set. Then x is a lower subset
of L if and only if x is an upper subset of L°P.
(29) Let L be a relational structure and x be a set. Then x is a lower subset
of L°P if and only if  is an upper subset of L.
(30) For every relational structure L holds L is lower-bounded iff L°P is upper-
bounded.
(31) For every relational structure L holds L°P is lower-bounded iff L is upper-
bounded.
(32) For every relational structure L holds L is bounded iff L°P is bounded.
(33) For every lower-bounded antisymmetric non empty relational structure
L holds (J;L)v = TLop and J\(TLop) = LL.
(34) For every upper-bounded antisymmetric non empty relational structure
L holds (TL)V = J_Lop and ﬁ(J_Lop) = TL.
(35) Let L be a bounded lattice and =, y be elements of L. Then y is a
complement of x if and only if ¥~ is a complement of z™.
(36) For every bounded lattice L holds L is complemented iff L°P is comple-
mented.
Let L be a lower-bounded relational structure. One can verify that L°P is
upper-bounded.
Let L be an upper-bounded relational structure. Note that L°P is lower-
bounded.
Let L be a complemented bounded lattice. One can check that L°P is com-
plemented.
Next we state the proposition
(37) For every Boolean lattice L and for every element x of L holds —(z~) =
—x.
Let L be a non empty relational structure. The functor - yields a map
from L into L°P and is defined as follows:

(Def. 1) For every element x of L holds -y (x) = —x.
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Let L be a Boolean lattice. Observe that —f, is one-to-one.
Let L be a Boolean lattice. One can verify that —, is isomorphic.
The following propositions are true:

(38) For every Boolean lattice L holds L and L°P are isomorphic.

(39) Let S, T be non empty relational structures and f be a set. Then

(i)  fis amap from S into T iff f is a map from S°P into T,

(ii)  fis a map from S into T iff f is a map from S into 7T°P, and

(iii)  f is a map from S into 7" iff f is a map from S°P into T°P.

(40) Let S, T be non empty relational structures, f be a map from S into T,
and g be a map from S into T°P such that f = g. Then

(i)  f is monotone iff g is antitone, and

(ii)  f is antitone iff g is monotone.

(41) Let S, T be non empty relational structures, f be a map from S into
T°P and g be a map from S°P into T such that f = ¢g. Then

(i)  f is monotone iff g is monotone, and

(ii)  f is antitone iff ¢ is antitone.

(42) Let S, T be non empty relational structures, f be a map from S into T,
and g be a map from S°P into T°P such that f = g. Then

(i)  f is monotone iff g is monotone, and

(ii)  f is antitone iff ¢ is antitone.

(43) Let S, T be non empty relational structures and f be a set. Then

(i)  f is a connection between S and T' iff f is a connection between S

and T,

(ii)  f is a connection between S and T iff f is a connection between S and
T, and

(iii)  f is a connection between S and T iff f is a connection between S~
and T

(44) Let S, T be non empty posets, fi be a map from S into T', g; be a map
from T into S, fo be a map from S~ into T, and g» be a map from
T~ into S™. If f1 = fo and g1 = g9, then (f1, g1) is Galois iff (g2, f2) is
Galois.

(45) Let J be a set, D be a non empty set, K be a many sorted set inde-
xed by J, and F be a set of elements of D double indexed by K. Then
domy F(k) = K.

Let J, D be non empty sets, let K be a non-empty many sorted set indexed
by J, let F' be a set of elements of D double indexed by K, let j be an element
of J, and let k be an element of K (j). Then F(j)(k) is an element of D.

One can prove the following propositions:

(46) Let L be a non empty relational structure, J be a set, K be a many
sorted set indexed by J, and = be a set. Then x is a set of elements of L

double indexed by K if and only if x is a set of elements of L°P double
indexed by K.
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(47) Let L be a complete lattice, J be a non empty set, K be a non-empty
many sorted set indexed by J, and F be a set of elements of L double
indexed by K. Then Sup(Infs(F')) < Inf(Sups(Frege(F))).

(48) Let L be a complete lattice. Then L is completely-distributive if and
only if for every non empty set J and for every non-empty many sorted
set K indexed by J and for every set F' of elements of L double indexed
by K holds Sup(Infs(F)) = Inf(Sups(Frege(F))).

(49) Let L be a complete antisymmetric non empty relational structure and
F be a function. Then | |, F' = [|zor)F" and [ |oF" = | op) I

(50) Let L be a complete antisymmetric non empty relational structure and
F be a function yielding function. Then uLF = H(Lop) Fand [ F =

Uy, -

One can check that every non empty relational structure which is completely-
distributive is also complete.

Let us observe that there exists a non empty poset which is completely-
distributive, trivial, and strict.

The following proposition is true

(51) For every non empty poset L holds L is completely-distributive iff L°P
is completely-distributive.
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