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Summary. We define pseudocompact topological spaces and prove that
every compact space is pseudocompact. We also solve an exercise from [16] p.225
that the for a topological space X the following are equivalent:

• Every continuous real map from X is bounded (i.e. X is pseudocompact).

• Every continuous real map from X attains minimum.

• Every continuous real map from X attains maximum.

Finally, for a compact set in E
2 we define its bounding rectangle and introduce

a collection of notions associated with the box.

MML Identifier: PSCOMP 1.

The papers [25], [30], [19], [7], [29], [24], [18], [17], [27], [21], [23], [10], [1], [26],

[31], [3], [4], [14], [12], [13], [11], [22], [15], [20], [6], [5], [2], [8], [9], and [28]

provide the notation and terminology for this paper.

1. Preliminaries

Let X be a set. Let us observe that X has non empty elements if and only

if:

(Def. 1) 0 /∈ X.

We introduce X is without zero as a synonym of X has non empty elements.

We introduce X has zero as an antonym of X has non empty elements.

Let us observe that R has zero and N has zero.
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Let us observe that there exists a set which is non empty and without zero

and there exists a set which is non empty and has zero.

Let us observe that there exists a subset of R which is non empty and without

zero and there exists a subset of R which is non empty and has zero.

Next we state the proposition

(1) For every set F such that F is non empty and ⊆-linear and has non

empty elements holds F is centered.

Let F be a set. Note that every family of subsets of F which is non empty

and ⊆-linear and has non empty elements is also centered.

Let A, B be sets and let f be a function from A into B. Then rng f is a

subset of B.

Let X, Y be non empty sets and let f be a function from X into Y . Note

that f◦X is non empty.

Let X, Y be sets and let f be a function from X into Y . The functor −1f

yields a function from 2Y into 2X and is defined by:

(Def. 2) For every subset y of Y holds (−1f)(y) = f−1(y).

We now state the proposition

(2) Let X, Y , x be sets, S be a subset of 2Y , and f be a function from X

into Y . If x ∈
⋂

((−1f)◦S), then f(x) ∈
⋂

S.

We follow the rules: p, q, r, r1, r2, s, t are real numbers, s1 is a sequence of

real numbers, and X, Y are subsets of R.

One can prove the following propositions:

(3) If |r|+ |s| = 0, then r = 0 and s = 0.

(4) If r < s and s < t, then |s| < |r|+ |t|.

(5) If −s < r and r < s, then |r| < s.

(6) If s1 is convergent and non-zero and lim s1 = 0, then s1
−1 is non boun-

ded.

(7) rng s1 is bounded iff s1 is bounded.

Next we state four propositions:

(8) Let X be a non empty subset of R and given r. Suppose X is lower bo-

unded. Then r = infX if and only if the following conditions are satisfied:

(i) for every p such that p ∈ X holds p ­ r, and

(ii) for every q such that for every p such that p ∈ X holds p ­ q holds

r ­ q.

(9) Let X be a non empty subset of R and given r. Suppose X is upper

bounded. Then r = supX if and only if the following conditions are satis-

fied:

(i) for every p such that p ∈ X holds p ¬ r, and

(ii) for every q such that for every p such that p ∈ X holds p ¬ q holds

r ¬ q.
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(10) For every non empty subset X of R and for every subset Y of R such

that X ⊆ Y and Y is lower bounded holds inf Y ¬ infX.

(11) For every non empty subset X of R and for every subset Y of R such

that X ⊆ Y and Y is upper bounded holds supX ¬ supY.

Let X be a subset of R. We say that X has maximum if and only if:

(Def. 3) X is upper bounded and supX ∈ X.

We say that X has minimum if and only if:

(Def. 4) X is lower bounded and infX ∈ X.

One can verify that there exists a subset of R which is non empty, closed,

and bounded.

Let R be a family of subsets of R. We say that R is open if and only if:

(Def. 5) For every subset X of R such that X ∈ R holds X is open.

We say that R is closed if and only if:

(Def. 6) For every subset X of R such that X ∈ R holds X is closed.

Let X be a subset of R. The functor −X yielding a subset of R is defined

by:

(Def. 7) −X = {−r : r ∈ X}.

Next we state the proposition

(12) r ∈ X iff −r ∈ −X.

Let X be a non empty subset of R. One can check that −X is non empty.

One can prove the following propositions:

(13) −−X = X.

(14) X is upper bounded iff −X is lower bounded.

(15) X is lower bounded iff −X is upper bounded.

(16) For every non empty subset X of R such that X is lower bounded holds

infX = −sup(−X).

(17) For every non empty subset X of R such that X is upper bounded holds

supX = −inf(−X).

(18) X is closed iff −X is closed.

Let X be a subset of R and let p be a real number. The functor p+X yields

a subset of R and is defined by:

(Def. 8) p + X = {p + r : r ∈ X}.

One can prove the following proposition

(19) r ∈ X iff s + r ∈ s + X.

Let X be a non empty subset of R and let s be a real number. Observe that

s + X is non empty.

One can prove the following propositions:

(20) X = 0 + X.
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(21) s + (t + X) = (s + t) + X.

(22) X is upper bounded iff s + X is upper bounded.

(23) X is lower bounded iff s + X is lower bounded.

(24) For every non empty subset X of R such that X is lower bounded holds

inf(s + X) = s + infX.

(25) For every non empty subset X of R such that X is upper bounded holds

sup(s + X) = s + supX.

(26) X is closed iff s + X is closed.

Let X be a subset of R. The functor InvX yielding a subset of R is defined

by:

(Def. 9) InvX = {1
r

: r ∈ X}.

The following proposition is true

(27) For every without zero subset X of R such that r 6= 0 holds r ∈ X iff
1
r
∈ InvX.

Let X be a non empty without zero subset of R. One can verify that InvX

is non empty and without zero.

Let X be a without zero subset of R. One can verify that InvX is without

zero.

The following propositions are true:

(28) For every without zero subset X of R holds Inv InvX = X.

(29) For every without zero subset X of R such that X is closed and bounded

holds InvX is closed.

(30) For every family Z of subsets of R such that Z is closed holds
⋂

Z is

closed.

Let X be a subset of R. The functor X yielding a subset of R is defined by:

(Def. 10) X =
⋂
{A,A ranges over elements of 2R: X ⊆ A ∧ A is closed}.

Let X be a subset of R. Observe that X is closed.

Next we state several propositions:

(31) For every closed subset Y of R such that X ⊆ Y holds X ⊆ Y.

(32) X ⊆ X.

(33) X is closed iff X = X.

(34) ∅R = ∅.

(35) ΩR = R.

(36) X = X.

(37) If X ⊆ Y, then X ⊆ Y .

(38) r ∈ X iff for every open subset O of R such that r ∈ O holds O ∩X is

non empty.
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(39) If r ∈ X, then there exists s1 such that rng s1 ⊆ X and s1 is convergent

and lim s1 = r.

2. Functions into Reals

Let A be a set, let f be a function from A into R, and let a be a set. Then

f(a) is a real number.

Let X be a set and let f be a function from X into R. We say that f is lower

bounded if and only if:

(Def. 11) f◦X is lower bounded.

We say that f is upper bounded if and only if:

(Def. 12) f◦X is upper bounded.

Let X be a set and let f be a function from X into R. We say that f is

bounded if and only if:

(Def. 13) f is lower bounded and upper bounded.

We say that f has maximum if and only if:

(Def. 14) f◦X has maximum.

We say that f has minimum if and only if:

(Def. 15) f◦X has minimum.

Let X be a set. One can check that every function from X into R which is

bounded is also lower bounded and upper bounded and every function from X

into R which is lower bounded and upper bounded is also bounded.

Let X be a set and let f be a function from X into R. The functor −f yields

a function from X into R and is defined as follows:

(Def. 16) For every set p such that p ∈ X holds (−f)(p) = −f(p).

The following propositions are true:

(40) For all sets X, A and for every function f from X into R holds (−f)◦A =

−f◦A.

(41) For every set X and for every function f from X into R holds −−f = f.

(42) For every non empty set X and for every function f from X into R holds

f has minimum iff −f has maximum.

(43) For every non empty set X and for every function f from X into R holds

f has maximum iff −f has minimum.

(44) For every set X and for every subset A of R and for every function f

from X into R holds (−f)−1(A) = f−1(−A).

Let X be a set, let r be a real number, and let f be a function from X into

R. The functor r + f yielding a function from X into R is defined as follows:

(Def. 17) For every set p such that p ∈ X holds (r + f)(p) = r + f(p).
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One can prove the following two propositions:

(45) For all sets X, A and for every function f from X into R and for every

real number s holds (s + f)◦A = s + f◦A.

(46) For every set X and for every subset A of R and for every function f

from X into R and for every s holds (s + f)−1(A) = f−1(−s + A).

Let X be a set and let f be a function from X into R. The functor Inv f

yields a function from X into R and is defined by:

(Def. 18) For every set p such that p ∈ X holds (Inv f)(p) = 1
f(p) .

We now state the proposition

(47) Let X be a set, A be a without zero subset of R, and f be a function

from X into R. If 0 /∈ rng f, then (Inv f)−1(A) = f−1(InvA).

3. Real maps

Let T be a 1-sorted structure.

(Def. 19) A function from the carrier of T into R is called a real map of T .

Let T be a non empty 1-sorted structure. Note that there exists a real map

of T which is bounded.

In this article we present several logical schemes. The scheme NonUniqExRF

deals with a non empty topological structure A and a binary predicate P, and

states that:

There exists a real map f of A such that for every element x of

the carrier of A holds P[x, f(x)]

provided the parameters meet the following requirement:

• For every set x such that x ∈ the carrier of A there exists r such

that P[x, r].

The scheme LambdaRF deals with a non empty topological structure A and

a unary functor F yielding a real number, and states that:

There exists a real map f of A such that for every element x of

the carrier of A holds f(x) = F(x)

for all values of the parameters.

Let T be a 1-sorted structure, let f be a real map of T , and let P be a set.

Then f−1(P ) is a subset of T .

Let T be a 1-sorted structure and let f be a real map of T . The functor inf f

yielding a real number is defined by:

(Def. 20) inf f = inf(f◦(the carrier of T )).

The functor sup f yields a real number and is defined by:

(Def. 21) sup f = sup(f◦(the carrier of T )).
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Next we state three propositions:

(48) Let T be a non empty topological space and f be a lower bounded

real map of T . Then r = inf f if and only if the following conditions are

satisfied:

(i) for every point p of T holds f(p) ­ r, and

(ii) for every real number q such that for every point p of T holds f(p) ­ q

holds r ­ q.

(49) Let T be a non empty topological space and f be an upper bounded

real map of T . Then r = sup f if and only if the following conditions are

satisfied:

(i) for every point p of T holds f(p) ¬ r, and

(ii) for every real number q such that for every point p of T holds f(p) ¬ q

holds r ¬ q.

(50) For every non empty 1-sorted structure T and for every bounded real

map f of T holds inf f ¬ sup f.

Let T be a 1-sorted structure and let f be a real map of T . The functor −f

yielding a real map of T is defined by:

(Def. 22) −f = −f.

Let T be a 1-sorted structure, let r be a real number, and let f be a real

map of T . The functor r + f yields a real map of T and is defined by:

(Def. 23) r + f = r + f.

Let T be a 1-sorted structure and let f be a real map of T . The functor

Inv f yields a real map of T and is defined by:

(Def. 24) Inv f = Inv f.

Let T be a topological structure and let f be a real map of T . We say that

f is continuous if and only if:

(Def. 25) For every subset Y of R such that Y is closed holds f−1(Y ) is closed.

Let T be a non empty topological space. Note that there exists a real map

of T which is continuous.

Let T be a non empty topological space and let S be a non empty subspace

of T . One can check that there exists a real map of S which is continuous.

In the sequel T is a topological space and f is a real map of T .

Next we state several propositions:

(51) f is continuous iff for every subset Y of R such that Y is open holds

f−1(Y ) is open.

(52) If f is continuous, then −f is continuous.

(53) If f is continuous, then r + f is continuous.

(54) If f is continuous and 0 /∈ rng f, then Inv f is continuous.
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(55) For every family R of subsets of R such that f is continuous and R is

open holds (−1f)◦R is open.

(56) For every family R of subsets of R such that f is continuous and R is

closed holds (−1f)◦R is closed.

Let T be a non empty topological space, let X be a subset of T , and let f

be a real map of T . The functor f ↾ X yielding a real map of T ↾X is defined as

follows:

(Def. 26) f ↾ X = f↾X.

Let T be a non empty topological space. One can check that there exists a

subset of T which is compact and non empty.

Let T be a non empty topological space, let f be a continuous real map of T ,

and let X be a compact non empty subset of T . Note that f ↾ X is continuous.

Let T be a non empty topological space and let P be a compact non empty

subset of T . Note that T ↾P is compact.

4. Pseudocompact spaces

We now state two propositions:

(57) Let T be a non empty topological space. Then for every real map f of

T such that f is continuous holds f has maximum if and only if for every

real map f of T such that f is continuous holds f has minimum.

(58) Let T be a non empty topological space. Then for every real map f of T

such that f is continuous holds f is bounded if and only if for every real

map f of T such that f is continuous holds f has maximum.

Let T be a topological space. We say that T is pseudocompact if and only

if:

(Def. 27) For every real map f of T such that f is continuous holds f is bounded.

Let us mention that every non empty topological space which is compact is

also pseudocompact.

Let us mention that there exists a topological space which is compact and

non empty.

Let T be a pseudocompact non empty topological space. One can check that

every real map of T which is continuous is also bounded and has maximum and

minimum.

We now state two propositions:

(59) Let T be a non empty topological space, X, Y be non empty compact

subsets of T , and f be a continuous real map of T . If X ⊆ Y, then inf(f ↾

Y ) ¬ inf(f ↾ X).
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(60) Let T be a non empty topological space, X, Y be non empty compact

subsets of T , and f be a continuous real map of T . If X ⊆ Y, then sup(f ↾

X) ¬ sup(f ↾ Y ).

5. Bounding boxes for compact sets in E2

Let n be a natural number and let p1, p2 be points of E
n
T
. Note that L(p1, p2)

is compact.

One can prove the following proposition

(61) For every natural number n and for all compact subsets X, Y of En
T

holds X ∩ Y is compact.

In the sequel p is a point of E2
T
, P is a subset of E2

T
, and X is a non empty

compact subset of E2
T
.

The real map proj1 of E2
T
is defined as follows:

(Def. 28) For every point p of E2
T
holds (proj1)(p) = p1.

The real map proj2 of E2
T
is defined by:

(Def. 29) For every point p of E2
T
holds (proj2)(p) = p2.

One can prove the following propositions:

(62) (proj1)−1(]r, s[) = {[r1, r2] : r < r1 ∧ r1 < s}.

(63) For all r, s such that P = {[r1, r2] : r < r1 ∧ r1 < s} holds P is open.

(64) (proj2)−1(]r, s[) = {[r1, r2] : r < r2 ∧ r2 < s}.

(65) For all r, s such that P = {[r1, r2] : r < r2 ∧ r2 < s} holds P is open.

One can verify that proj1 is continuous and proj2 is continuous.

One can prove the following two propositions:

(66) For every non empty subset X of E2
T
and for every point p of E2

T
such

that p ∈ X holds (proj1 ↾ X)(p) = p1.

(67) For every non empty subset X of E2
T
and for every point p of E2

T
such

that p ∈ X holds (proj2 ↾ X)(p) = p2.

Let X be a non empty subset of E2
T
. The functor W-boundX yielding a real

number is defined by:

(Def. 30) W-boundX = inf(proj1 ↾ X).

The functor N-boundX yielding a real number is defined as follows:

(Def. 31) N-boundX = sup(proj2 ↾ X).

The functor E-boundX yielding a real number is defined by:

(Def. 32) E-boundX = sup(proj1 ↾ X).

The functor S-boundX yielding a real number is defined by:

(Def. 33) S-boundX = inf(proj2 ↾ X).
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We now state the proposition

(68) If p ∈ X, then W-boundX ¬ p1 and p1 ¬ E-boundX and S-boundX ¬

p2 and p2 ¬ N-boundX.

Let X be a non empty subset of E2
T
. The functor SW-cornerX yields a point

of E2
T
and is defined as follows:

(Def. 34) SW-cornerX = [W-boundX, S-boundX].

The functor NW-cornerX yielding a point of E2
T
is defined as follows:

(Def. 35) NW-cornerX = [W-boundX,N-boundX].

The functor NE-cornerX yields a point of E2
T
and is defined as follows:

(Def. 36) NE-cornerX = [E-boundX,N-boundX].

The functor SE-cornerX yields a point of E2
T
and is defined as follows:

(Def. 37) SE-cornerX = [E-boundX, S-boundX].

Let X be a non empty subset of E2
T
. The functor W-mostX yielding a subset

of E2
T
is defined as follows:

(Def. 38) W-mostX = L(SW-cornerX,NW-cornerX) ∩X.

The functor N-mostX yielding a subset of E2
T
is defined as follows:

(Def. 39) N-mostX = L(NW-cornerX,NE-cornerX) ∩X.

The functor E-mostX yields a subset of E2
T
and is defined by:

(Def. 40) E-mostX = L(SE-cornerX,NE-cornerX) ∩X.

The functor S-mostX yielding a subset of E2
T
is defined by:

(Def. 41) S-mostX = L(SW-cornerX, SE-cornerX) ∩X.

Let X be a non empty compact subset of E2
T
. One can check the following

observations:

∗ W-mostX is non empty and compact,

∗ N-mostX is non empty and compact,

∗ E-mostX is non empty and compact, and

∗ S-mostX is non empty and compact.

Let X be a non empty compact subset of E2
T
. The functor W-minX yielding

a point of E2
T
is defined by:

(Def. 42) W-minX = [W-boundX, inf(proj2 ↾W-mostX)].

The functor W-maxX yielding a point of E2
T
is defined by:

(Def. 43) W-maxX = [W-boundX, sup(proj2 ↾W-mostX)].

The functor N-minX yielding a point of E2
T
is defined by:

(Def. 44) N-minX = [inf(proj1 ↾ N-mostX),N-boundX].

The functor N-maxX yielding a point of E2
T
is defined by:

(Def. 45) N-maxX = [sup(proj1 ↾ N-mostX),N-boundX].

The functor E-maxX yields a point of E2
T
and is defined by:
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(Def. 46) E-maxX = [E-boundX, sup(proj2 ↾ E-mostX)].

The functor E-minX yields a point of E2
T
and is defined by:

(Def. 47) E-minX = [E-boundX, inf(proj2 ↾ E-mostX)].

The functor S-maxX yields a point of E2
T
and is defined by:

(Def. 48) S-maxX = [sup(proj1 ↾ S-mostX),S-boundX].

The functor S-minX yielding a point of E2
T
is defined by:

(Def. 49) S-minX = [inf(proj1 ↾ S-mostX),S-boundX].

Next we state a number of propositions:

(69) (SW-cornerX)1 = W-boundX and (W-minX)1 = W-boundX and

(W-maxX)1 =W-boundX and (NW-cornerX)1 =W-boundX.

(70) (SW-cornerX)1 = (NW-cornerX)1 and (SW-cornerX)1 = (W-minX)1
and (SW-cornerX)1 = (W-maxX)1 and (W-minX)1 = (W-maxX)1 and

(W-minX)1 = (NW-cornerX)1 and (W-maxX)1 = (NW-cornerX)1.

(71) (SW-cornerX)2 = S-boundX and (W-minX)2 = inf(proj2 ↾

W-mostX) and (W-maxX)2 = sup(proj2 ↾ W-mostX) and

(NW-cornerX)2 = N-boundX.

(72) (SW-cornerX)2 ¬ (W-minX)2 and (SW-cornerX)2 ¬ (W-maxX)2
and (SW-cornerX)2 ¬ (NW-cornerX)2 and (W-minX)2 ¬ (W-maxX)2
and (W-minX)2 ¬ (NW-cornerX)2 and (W-maxX)2 ¬ (NW-cornerX)2.

(73) If p ∈ W-mostX, then p1 = (W-minX)1 and (W-minX)2 ¬ p2 and

p2 ¬ (W-maxX)2.

(74) W-mostX ⊆ L(W-minX,W-maxX).

(75) L(W-minX,W-maxX) ⊆ L(SW-cornerX,NW-cornerX).

(76) W-minX ∈W-mostX and W-maxX ∈W-mostX.

(77) L(SW-cornerX,W-minX) ∩X = {W-minX} and

L(W-maxX,NW-cornerX) ∩X = {W-maxX}.

(78) If W-minX =W-maxX, then W-mostX = {W-minX}.

(79) (NW-cornerX)2 = N-boundX and (N-minX)2 = N-boundX and

(N-maxX)2 = N-boundX and (NE-cornerX)2 = N-boundX.

(80) (NW-cornerX)2 = (NE-cornerX)2 and (NW-cornerX)2 = (N-minX)2
and (NW-cornerX)2 = (N-maxX)2 and (N-minX)2 = (N-maxX)2 and

(N-minX)2 = (NE-cornerX)2 and (N-maxX)2 = (NE-cornerX)2.

(81) (NW-cornerX)1 = W-boundX and (N-minX)1 = inf(proj1 ↾

N-mostX) and (N-maxX)1 = sup(proj1 ↾ N-mostX) and

(NE-cornerX)1 = E-boundX.

(82) (NW-cornerX)1 ¬ (N-minX)1 and (NW-cornerX)1 ¬ (N-maxX)1
and (NW-cornerX)1 ¬ (NE-cornerX)1 and (N-minX)1 ¬ (N-maxX)1
and (N-minX)1 ¬ (NE-cornerX)1 and (N-maxX)1 ¬ (NE-cornerX)1.



438 czesław byliński and piotr rudnicki

(83) If p ∈ N-mostX, then p2 = (N-minX)2 and (N-minX)1 ¬ p1 and

p1 ¬ (N-maxX)1.

(84) N-mostX ⊆ L(N-minX,N-maxX).

(85) L(N-minX,N-maxX) ⊆ L(NW-cornerX,NE-cornerX).

(86) N-minX ∈ N-mostX and N-maxX ∈ N-mostX.

(87) L(NW-cornerX,N-minX) ∩X = {N-minX} and

L(N-maxX,NE-cornerX) ∩X = {N-maxX}.

(88) If N-minX = N-maxX, then N-mostX = {N-minX}.

(89) (SE-cornerX)1 = E-boundX and (E-minX)1 = E-boundX and

(E-maxX)1 = E-boundX and (NE-cornerX)1 = E-boundX.

(90) (SE-cornerX)1 = (NE-cornerX)1 and (SE-cornerX)1 = (E-minX)1
and (SE-cornerX)1 = (E-maxX)1 and (E-minX)1 = (E-maxX)1 and

(E-minX)1 = (NE-cornerX)1 and (E-maxX)1 = (NE-cornerX)1.

(91) (SE-cornerX)2 = S-boundX and (E-minX)2 = inf(proj2 ↾ E-mostX)

and (E-maxX)2 = sup(proj2 ↾ E-mostX) and (NE-cornerX)2 =

N-boundX.

(92) (SE-cornerX)2 ¬ (E-minX)2 and (SE-cornerX)2 ¬ (E-maxX)2 and

(SE-cornerX)2 ¬ (NE-cornerX)2 and (E-minX)2 ¬ (E-maxX)2 and

(E-minX)2 ¬ (NE-cornerX)2 and (E-maxX)2 ¬ (NE-cornerX)2.

(93) If p ∈ E-mostX, then p1 = (E-minX)1 and (E-minX)2 ¬ p2 and

p2 ¬ (E-maxX)2.

(94) E-mostX ⊆ L(E-minX,E-maxX).

(95) L(E-minX,E-maxX) ⊆ L(SE-cornerX,NE-cornerX).

(96) E-minX ∈ E-mostX and E-maxX ∈ E-mostX.

(97) L(SE-cornerX,E-minX) ∩X = {E-minX} and

L(E-maxX,NE-cornerX) ∩X = {E-maxX}.

(98) If E-minX = E-maxX, then E-mostX = {E-minX}.

(99) (SW-cornerX)2 = S-boundX and (S-minX)2 = S-boundX and

(S-maxX)2 = S-boundX and (SE-cornerX)2 = S-boundX.

(100) (SW-cornerX)2 = (SE-cornerX)2 and (SW-cornerX)2 = (S-minX)2
and (SW-cornerX)2 = (S-maxX)2 and (S-minX)2 = (S-maxX)2 and

(S-minX)2 = (SE-cornerX)2 and (S-maxX)2 = (SE-cornerX)2.

(101) (SW-cornerX)1 =W-boundX and (S-minX)1 = inf(proj1 ↾ S-mostX)

and (S-maxX)1 = sup(proj1 ↾ S-mostX) and (SE-cornerX)1 =

E-boundX.

(102) (SW-cornerX)1 ¬ (S-minX)1 and (SW-cornerX)1 ¬ (S-maxX)1 and

(SW-cornerX)1 ¬ (SE-cornerX)1 and (S-minX)1 ¬ (S-maxX)1 and

(S-minX)1 ¬ (SE-cornerX)1 and (S-maxX)1 ¬ (SE-cornerX)1.
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(103) If p ∈ S-mostX, then p2 = (S-minX)2 and (S-minX)1 ¬ p1 and p1 ¬

(S-maxX)1.

(104) S-mostX ⊆ L(S-minX, S-maxX).

(105) L(S-minX, S-maxX) ⊆ L(SW-cornerX, SE-cornerX).

(106) S-minX ∈ S-mostX and S-maxX ∈ S-mostX.

(107) L(SW-cornerX, S-minX) ∩X = {S-minX} and

L(S-maxX, SE-cornerX) ∩X = {S-maxX}.

(108) If S-minX = S-maxX, then S-mostX = {S-minX}.

(109) If W-maxX = N-minX, then W-maxX = NW-cornerX.

(110) If N-maxX = E-maxX, then N-maxX = NE-cornerX.

(111) If E-minX = S-maxX, then E-minX = SE-cornerX.

(112) If S-minX =W-minX, then S-minX = SW-cornerX.
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