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The Ordering of Points on a Curve. Part 1
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Summary. Some auxiliary theorems needed to formalize the proof of the
Jordan Curve Theorem according to [25] are proved.

MML Identifier: JORDAN5B.

The articles [26], [29], [13], [1], [22], [24], [31], [2], [4], [5], [11], [28], [20], [12],
[16], [23], [9], [8], [27], [10], [30], [15], [17], [18], [14], [19], [21], [6], [7], and [3]
provide the terminology and notation for this paper.

1. PRELIMINARIES

The following propositions are true:

(1) For every natural number 7; such that 1 <; holds i; —' 1 < iy.

(2) For all natural numbers ¢, k such that ¢ + 1 < k holds 1 < k —' 4.

(3) For all natural numbers 4, k such that 1 < iand 1 < k holds k—"i+1 < k.
(4)

4) For every real number r such that r € the carrier of I holds 1 — r € the

carrier of I.

(5) For all points p, ¢, p1 of % such that pa # g2 and p1 € L(p, q) holds if
(p1)2 = p2, then (p1)1 = p1.

(6) For all points p, g, p1 of 2 such that p1 # q1 and p; € L(p, q) holds if
(p1)1 = p1, then (p1)2 = p2.

IThis paper was written while the author visited the Shinshu University in the winter of
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(7) Let f be a finite sequence of elements of £2, P be a non empty subset
of the carrier of £2, F be a map from I into (€2)[P, and i be a natural
number. Suppose 1 < i and 7+ 1 < len f and f is a special sequence and
P = L(f) and F is a homeomorphism and F(0) = 7y f and F(1) = mien 1 f-
Then there exist real numbers p;, ps such that p; < p2 and 0 < p; and
p1 < 1land 0 < py and py < 1 and L(f,i) = F°[p1,p2] and F(p1) = mif
and F(pg) = 7Ti+1f.

(8) Let f be a finite sequence of elements of £2, @, R be non empty subsets
of the carrier of £2, F be a map from I into (£2)]Q, i be a natural number,
and P be a non empty subset of I. Suppose that

) [ is a special sequence,
) Fis a homeomorphism,
) F(0)=mf.
) F(1) = Tens 1,
(v) 1<4i,
) i+1<lenf,
) FoP=L(f.i),
) Q=L(f), and
) R=L(f1)
Then there exists a map G from I| P into (£2)[R such that G = F|P and
G is a homeomorphism.

2. SOME PROPERTIES OF REAL INTERVALS

One can prove the following propositions:
(9) For all points pi, pa, p of E2 such that p; # pe and p € L(p1,p2) holds

LE(p, p,p1, p2)-

(10) For all points p, p1, p2 of E% such that p; # p2 and p € L(p1,p2) holds
LE(p1,p,p1,p2)-

(11) For all points p, p1, p2 of £% such that p € L(p1,p2) and p1 # pa holds
LE(p, p2, p1,p2)-

(12) For all points pi, p2, q1, g2, g3 of 8% such that p; # po and
LE(g1, g2, p1,p2) and LE(g2, g3, p1, p2) holds LE(g1, g3, p1, p2).

(13) For all points p, q of % such that p # ¢ holds L(p,q) = {p1;p1 ranges
over points of 8%: LE(p,p1,p,q9) N LE(p1,4,p,9)}-

(14) Let P be a non empty subset of the carrier of S% and p1, p2 be points of
5%. If P is an arc from p; to ps, then P is an arc from ps to p;.

(15) Let f be a finite sequence of elements of £%, P be a subset of the carrier
of S%, and ¢ be a natural number. Suppose f is a special sequence and
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l1<iandi+1<lenf and P = L(f,i). Then P is an arc from m;f to
Tit1f

3. CUTTING OFF SEQUENCES

One can prove the following propositions:

(16) Let g1 be a finite sequence of elements of £% and i be a natural number.
Suppose 1 < ¢ and ¢ < leng; and g; is a special sequence. If w191 €
E(mid(ghi,lengl)), then 7 = 1.

(17) Let f be a finite sequence of elements of £% and p be a point of E2. If f
is a special sequence and p = f(len f), then | p, f = (p,p).

(18) Let f be a finite sequence of elements of 8% and k be a natural number.
If 1 <k and k <len f, then mid(f, k, k) = (mpf).

(19) Let f be a finite sequence of elements of 5% and p be a point of 8%. If f
is a special sequence and p = f(1), then | f,p = (p).

(20) Let f be a finite sequence of elements of 5% and p be a point of S%. If f
is a special sequence and p € /:'(f), then /:'(Lf,p) C E(f)

(21) _Let f be a finite sequence of elements of 5% and p be a point of 5%. Ifp e
L(f)and p # f(len f) and f is a special sequence, then Index(p, | p, f) = 1.

(22) Let f be a finite sequence of elements of S% and p be a point of E%. If
pE E(f) and f is a special sequence, then p € E(J D, f).

(23) Let f be a finite sequence of elements of 5% and p be a point of S%. If
pE Z(f) and f is a special sequence and p # f(1), then p € E(Lf,p).
(24) Let f be a finite sequence of elements of 5% and p be a point of E%. If

D E E(f) and p # f(len f) and f is a special sequence, then || p, f,p = (p).

(25) Let f be a finite sequence of elements of 5% and p, q¢ be points of 8%. If
pE E:(f) and g € Z(f) and p = f(len f) and f is a special sequence, then
peL(lq,f)

(26) Let f be a finite sequence of elements of £2 and p, q be points of £2. If
pE §(f) and ¢ € L£(f) and f is a special sequence, then p € £(| ¢, f) or
qe€ L(p,f)

(27) Let f be a finite sequence of elements of £% and p, q be points of £2.
Suppose p € /:’(f) and q € Z(f) and p # f(len f) or ¢ # f(len f) and f is
a special sequence. Then E(J lp, f,q) C /:'(f)

(28) Let f be a non constant standard special circular sequence and i, j
be natural numbers. Suppose 1 < i and j < lenthe Go-board of f and
i < j. Then L((the Go-board of f)1i widththe Go-board of f, (the Go-board of
f)i,width the Go-board of f) ﬂﬁ((the Go-board of f)j,widththe Go-board of f5 (the
Go-board of f)ienthe Go-board of f, width the Go-board of f) = 0.
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(29) Let f be a non constant standard special circular sequence and i, j
be natural numbers. Suppose 1 < 7 and j < widththe Go-board of f
and 7 < j. Then L((the Go-board of f)ien the Go-board of f, 1, (the Go-board
of f)len the Go-board of f, z) N L:((the Go-board of f)len the Go-board of f, j» (the
Go-board of f)len the Go-board of f, widththe Go-board of f) = @

(30) Let f be a finite sequence of elements of £2 and p be a point of £2. If f
is a special sequence, then | m f, f = f.

(31) Let f be a finite sequence of elements of £2 and p be a point of £2. If f
is a special sequence, then | f, Ten p f = f.

(32) Let f be a finite sequence of elements of &% and p be a point of
E2. If p € L(f) and f is a special sequence and p # f(len f), then

pE E(WIndex(p,f) I Trlndex(p,f)+1f)'

(33) Let f be a finite sequence of elements of 8%, p be a point of 5%, and i
be a natural number. If f is a special sequence, then if 71 f € L(f,1), then
1= 1.

(34) Let f be a non constant standard special circular sequence, j be a natural
number, and P be a subset of the carrier of 5%. Suppose 1 < j and
j < widththe Go-board of f and P = L((the Go-board of f); j, (the Go-
board of f)ienthe Go-board of f, j)- Then P is a special polygonal arc joining
(the Go-board of f);; and (the Go-board of f)ienthe Go-board of f, j-

(35) Let f be a non constant standard special circular sequence, j be a natural
number, and P be a subset of the carrier of £2. Suppose 1 < j and
J < lenthe Go-board of f and P = L((the Go-board of f);1, (the Go-
board of f); widththe Go-board of f)- Then P is a special polygonal arc joining
(the Go-board of f);1 and (the Go-board of f); widththe Go-board of f-
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